用户名: 密码: 验证码:
铈基介孔低温氧化催化剂和钡基NOx储存还原催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化净化是消除汽车尾气污染,提高空气质量的最有效方法之一。传统的三效催化剂不能有效消除低温冷起动阶段排放的一氧化碳和烃类,以及稀燃发动机排放的氮氧化物,因此,开发高性能低成本的低温氧化催化剂和具有良好抗硫性能的氮氧化物储存还原催化剂具有重要意义。本文选取少量贵金属促进的铈基复合氧化物催化剂为研究对象,对催化剂的制备过程、组分之间的相互作用、以及CO和C_3H_8催化氧化的机理等进行了系统研究;同时,对稀燃氮氧化物储存还原催化剂Pt/Ba/Al_2O_3进行了深入研究,重点考察了助剂Fe的添加及制备方法等对催化剂微观结构的影响,并与催化剂的储存和抗硫性能进行关联。
     首先,我们利用表面活性剂辅助合成法制备了系列Co_3O_4-CeO_2复合氧化物。BET和孔径分布测试结果表明,该方法制得的催化剂具有较高比表面积和较均匀的介孔。对催化剂的结构研究发现,该催化剂具备包裹结构,仅少量Co离子暴露于表面并与CeO_2相互作用。这种结构保证了Co_3O_4-CeO_2在三维方向上具有最为强烈的相互作用,使得该催化剂表现出独特的氧化还原性能。活性测试结果发现,该催化剂表现出优良的氧化性能。结构和机理研究的结果显示:CO和丙烷氧化所需活性位不同,CO氧化主要发生在Co_3O_4-CeO_2界面,而丙烷氧化主要发生在与表面Co_3O_4微晶相邻的晶格氧上。同时,在催化剂中添加少量Pd后,样品对CO氧化活性急剧提高提高,即Pd-Co_3O_4间存在显著的催化协同效应,但对丙烷氧化活性没有影响,催化机理和速控步骤的不同决定了催化协同效应的有无,据此,我们针对CO氧化从分子水平上提出了加Pd前后截然不同的动力学反应路径。
     为进一步简化制备步骤并保证催化剂具有较大的比表面积,对表面活性剂辅助合成法进行了改进,采用一步合成法。同时为发现普适的反应规律和探索新的催化体系,我们对贵金属和过渡金属氧化物进行调变。结果发现,该方法制备的催化剂仅有微量的Pd暴露于表面,但这些Pd物种与过渡金属氧化物间存在着对CO氧化的协同效应。原位DRIFTS结果表明,协同效应本质为二者相互作用能产生活泼的氧物种,这些氧物种能与CO迅速反应生成反应中间产物-双齿碳酸盐物种(1587和1285 cm-1)。协同效应的大小取决于Pd与金属氧化物MOx作用的强弱程度。其中,FeOx和MnOx这两种金属氧化物与CeO_2间能形成固溶体,促进了这种相互作用,使得CO氧化起燃温度较不添加Pd的催化剂分别降低了70 oC和100 oC以上。尤其是Pd-MnOx-CeO_2催化剂在室温下对CO的转化率即可达到80%。但对于丙烷氧化,速控步骤是C-H键的断裂而非氧的活化。C-H键断裂的难易在很大程度上取决于3d过渡金属氧化物的d电子结构。随着d电子增加,3d过渡金属氧化物对丙烷氧化表现出双峰行为。
     论文还研究了助剂Fe的添加对Pt/Ba/Al_2O_3催化剂结构、NOx储存和脱硫性能的影响,结果表明,尽管Fe的添加能抑制BaSO_4颗粒的长大,但对NOx的储存和硫的脱除均是不利的。EXAFS、原位DRIFTS和循环TPR表征结果表明:Pt-Ba间的相互作用对NOx储存和硫的脱除是非常重要的。Pt-Ba间相互作用不仅促进了储存中的关键步骤-NOx溢流,同时也有助于BaSO_4选择性地还原为H2S,促进硫的脱除和催化剂的再生。在Pt/Ba/Al_2O_3中加入Fe,经历氧化还原循环后,Pt-Fe间形成合金,使得活性位Pt被Fe及其氧化物覆盖,抑制了Pt-Ba间的相互作用,导致储存能力和抗硫能力的下降。
     最后,利用嵌段共聚物P123作为模板,合成了介孔Pt/BaCO_3-Al_2O_3 NOx储存还原催化剂,并与传统浸渍法制备的催化剂进行比较,同时对催化剂的结构和性能进行了系统研究。结构表征表明:介孔Pt/BaCO_3-Al_2O_3具有较高的比表面积,均匀的孔径和较高的热稳定性。Ba物种三维高度分散,且与Al_2O_3强烈作用,所有的BaCO_3均以低温碳酸钡形式存在。同传统浸渍样品比较,介孔样品作为NSR催化剂具有明显的优势,比如较高的NOx储存能力、较低的硫的吸附能力以及较强的脱硫能力。同时在NOx和SOx吸附后没有体相物种生成。
Catalytic purification of automotive exhaust is one of the most efficient methods to improve the air quality. Since the conventional three-way catalysts can not effectively reduce the emissions of CO and hydrocarbons during the cold star period, as well as NOx from the lean-burn engines, it is necessary to develop highly active and low-cost oxidation catalysts, and highly sulfur-resistant NOx storage-reduction catalysts. In this dissertation, the preparation process of the noble metal-promoted CeO_2-based mixed oxide catalysts, the component interaction, and the catalytic mechanism for CO and C_3H_8 oxidation were systematically investigated, aiming at developing new catalyst system for the abatement of hazardous emissions during cold start. Meanwhile, the effect of Fe additive and preparation method on the microstructure of the Pt/Ba/Al_2O_3 NSR catalyst were carefully probed, and the structures were well correlated with the catalytic performance for NOx storage and desulfation.
     Firstly, mesoporous Co_3O_4-CeO_2 mixed oxide catalysts with high surface area were successfully synthesized by a surfactant-assisted method. The Co_3O_4 crystallites in these catalysts are encapsulated by nanosized CeO_2 with only a small fraction of Co ions exposing on the surface and strongly interacting with CeO_2. Such structure maximizes the interaction between Co_3O_4 and CeO_2 in three dimensions, resulting in unique redox properties. The results of activity measurements indicated that these catalysts exhibit excellent oxidation performance. By correlating the structure with the activity, it was found that the active site requirements for CO and C_3H_8 oxidation are different. CO oxidation preferentially occurs at the interface between Co_3O_4 and CeO_2, whereas C_3H_8 oxidation takes place on the neighboring surface lattice oxygen sites in Co_3O_4 crystallites. It was also found that the introduction of a small amount of Pd to Co_3O_4-CeO_2 can remarkably promote the CO oxidation, but can hardly alter the C_3H_8 oxidation. The different behaviors for CO and C_3H_8 oxidation are determined by their different reaction mechanisms and different rate-determining steps, on this basis, two totally different kinetic reaction pathways on molecular level for CO oxidation were proposed for Co_3O_4-CeO_2 and Pd/Co_3O_4-CeO_2 catalysts.
     In order to simplify the preparative procedures and maintain high surface area of the catalyst at the same time, a series of Pd-prmoted MOx-CeO_2 (M=Mn, Fe, Co, Ni, Cu) mixed oxide catalysts were synthesized by the surfactant-assisted method in one step. The aim of the study was to investigate the reaction mechanism from a broad point of view, and design new catalyst system. It was found that only trace amounts of Pd species are exposed on the surface, but there is a synergistic effect between these species and 3d transition metal oxides for CO oxidation. According to the in-situ DRIFTS results, the synergistic essential originates from the interaction-assisted generation of active oxygen species between Pd and MOx, which react readily with CO, forming bedentate carbonate (1587 and 1285 cm-1) as intermediates. The extent of synergism depends on the strength of interaction. Since a solid solution is formed between CeO_2 and MnOx or FeOx, very strong interaction between Pd and MOx is generated, resulting in the greatly enhanced CO oxidation activity. The light-off temperatures for Pd-doped Mn and Fe-containing catalysts, as compared with the Pd-free catalysts, are decreased by more than 70 and 100 oC, respectively. In particular, a CO conversion as high as 80% can be achieved at room temperature over the Pd-MnOx-CeO_2 catalyst. Whereas for C_3H_8 oxidation, the C-H bond activation, but not the oxygen activation, consists of the rate-determining step. The C-H bond activation ability is largely determined by the d-electron configurations of M cations, and a double-peak phenomenon can be derived with the 3d-transition metal oxides.
     The influence of the introduction of Fe on the structures, NOx storage and sulfur removal performance of the Pt/Ba/Al_2O_3 catalyst was studied. The results showed that although the introduction of Fe can greatly inhabit the growth of BaSO_4 particles, it is detrimental to the NOx storage and sulfur removal. Based upon the results of EXAFS, in-situ DRIFTS and repeated H2-TPR, it was found that the interaction between Pt and Ba species is of great importance for the NOx storage and sulfur removal. The Pt-Ba interaction not only accelerates the NOx spillover which is a key step during storage, but also facilitates the selective reduction of BaSO_4 into H2S, favorable to sulfur removal and catalyst regeneration. The introduction of Fe to the Pt/Ba/Al_2O_3 catalyst decreases the Pt-Ba interaction by encapsulation of Pt in the matrix of Fe/FeOx after repeated redox cycles, leading to the decrease of NOx storage capacity and sulfur removal ability.
     A mesoporous NSR catalyst Pt/BaCO_3-Al_2O_3 was synthesized by using tri-block copolymer P123 as template. Systematic comparative studies were performed on the structural and catalytic performance between this catalyst and the conventional impregnated one. The results of structural characterization show that the mesoporous catalyst exhibits high specific surface area, uniform pore size and high thermal stability. The Ba-containing species are highly dispersed in three-dimensions and strongly interacted with Al_2O_3, and all the BaCO_3 presents as LT-BaCO_3 (BaCO_3 with low thermal stability). Compared with the impregnated catalyst, the mesoporous sample possesses great advantages in serving as NSR catalysts, such as enhanced NOx trapping ability, lower sulfation degree and higher desulfation extent. In addition, after NOx and SOx sorption, no bulk phase of barium nitrates and sulfates are formed in the mesopotous catalyst.
引文
[1]太平洋汽车网www.pcauto.com.cn
    [2]外山敏夫,香川顺,在烟雾中生活(燃料化工设计院译),北京:燃料化工出版社,1973,3
    [3] Thomas J M, Zamaraev K I, Perspectives in catalysis, London: Blackwell Sci. Pub., 1992, 1
    [4] Truex T J, Searles R A, Sun D C. Catalysts for nitrogen oxides control under lean burn conditions, Platinum Metals Rev., 1992, 36(1): 2-10
    [5] Roth J F. Industrial catalysis: poised for innovation, Chemtech, 1991, 21(6): 357-360
    [6] Talor K C. Nitric oxide catalysis in automotive exhaust systems, Catal. Rev. Sci. Eng., 1993, 35(4): 457-481
    [7]田广生,区柏森,陈罕立,近地层氮氧化物和臭氧的区域分布研究,环境科学研究,1995,8(6):1-6
    [8]张远航,李金龙,中国城市光化学烟雾污染研究,北京大学学报:自然科学版,1998,34(2):392-400
    [9]齐立文,王文兴,我国低纬度、亚热带地区的降水化学及其雨水酸化趋势分析,环境科学研究,1995,8(1):12-20
    [10] Linberg S E, Turner R R, Meyer T P, Talyor G E, et al., Atmospheric concentrations and deposition of mercury to a deciduous forests at Walker Branch Watershed, Tennessee USA, Water Air Soil Pollut, 1991, 56: 577-594
    [11] Beilke S, Elshout A J, Acid deposition: Commission of the European Communities, Springer, 1983, 40
    [12]王务林,赵航,王继先,汽车催化转化器系统概论,北京:人民交通出版社,1999,20
    [13]肖益鸿,蔡国辉,詹瑛瑛,魏可镁,汽车尾气催化净化技术发展动向,中国有色金属学报,2004, 14(1): 347-353
    [14] Lafyatis D S, Ansell G P, Bennett S C, Frost J C, Millington P J, Rajaram R R, Walker A P, Ballinger T H, Ambient temperature light-off for automobile emission control, Appl. Catal. B, 1998, 18:123-135
    [15] Westerholm R, Christersen A, Rosen A, Regulated and unregulated exhaust emissions from two three-way catalyst equipped gasoline fuelled vehicles, Atmos. Environ., 1996, 30(20):3529-3536
    [16] Heck R M, Farrauto R J, Catalytic Air Pollution Control, New York: Van Nostrand Reinhold, 1995, 106
    [17]王建昕,汽车排气污染治理及催化转化器,北京:石油工业出版社,2000,15-16;242-244
    [18]周玉明,内燃机废气排放及控制技术,北京:人民交通出版社,2001,152-153
    [19] Hoost T E, Laframboise K A, Otto K. Co-adsorption of propene and nitrogen oxides on Cu-ZSM-5: an FTIR study, Appl. Catal. B., 1995, 7(1-2): 79-93
    [20] Burch R, Breen J P, Meunier, A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts, Appl. Catal. B, 2002, 39:283-303
    [21]邵潜,龙军,贺振富,规整结构催化剂及反应器,北京:化学工业出版社,2005,70
    [22] Matsumoto S, Catalytic reduction of nitrogen oxides in automotive exhaust containing excess oxygen by NOx storage-reduction catalysts, Cattech, 2000, 4(2): 102-108
    [23]赵骧,催化剂,北京:中国物质出版社,2001,480
    [24] Heck R M, Farrauro R J, Aotomobile exhaust catalysts, Appl. Catal. A, 2001, 221:443-457
    [25] Haruta M, Yamada N, Kobayashi T, Lijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J.Catal., 1989, 115(2):301-309
    [26] Haruta M, Catalysis of gold nanoparticles deposited on metal oxides, Cattech, 2002, 6:102-115
    [27] Valden M, Lai X, Goodman D W, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science, 1998, 281:1647-1650
    [28] Gasior M, Grzybowska B, Samson K, Ruszel M, Haber J, Oxidation of CO and C3 hydrocarbons on gold dispersed on oxide supports, Catal. Today, 2004, 91-92:131-135
    [29] Solsona B E, Garcia T, Jones C, Taylor S H, Carley A F, Huchings G J, Supported gold catalysts for the total oxidation of alkanes and carbon monoxide, Appl. Catal. A, 2006, 312:67-76
    [30] Wolf A, Schuth F, A systematic study of the synthesis conditions for the preparation of highly active gold catalysts, Appl. Catal. A, 2002, 226:1-13
    [31] Oran U, Uner D, Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/γ-Al2O3 catalysts, Appl. Catal. B, 2004, 54:183-191
    [32] Su E C, Rothschild W G, Yao H C, CO oxidation over Pt/γ-Al2O3 under high pressure, J. Catal., 118(1)111-124
    [33] Zafiris G S, Gorte R J, CO oxidation on Pt/γ-Al2O3(0001): Evidence for structure sensitivity, J. Catal., 1993, 140(2):418-423
    [34] Skoglundh M, Fridell E, Strategies for enhancing low-temperature activity, Top. Catal., 2004, 28(1-5)79-87
    [35] Yazawa Y, Kagi N, Komai S, Satsuma A, Murakami Y, Hattori T, Kinetic study of support effect in the propane combustion over platinum catalyst, Catal. Lett., 2001, 72(3-4):157-160
    [36] Yoshida H, Yazawa Y, Hattori T, Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion, Catal. Today, 2003, 87:19-28
    [37] Yazawa Y, Takagi N, Yoshida H, Komai S, Satsuma A, Tanaka T, Yoshida S, Hattori T, The support effect on propane combustion over platinum catalyst: control of the oxidation-resistance of platinum by the acid strength of support materials, Appl. Catal. A, 2002, 233:103-112
    [38] Yazawa Y, Yoshida H, Komai S, Hattori T, The additive effect on propane combustion over platinum catalyst: control of the oxidation-resistance of platinum by the electronegativity of additives, Appl. Catal. A, 2002, 233:113-124
    [39] Yazawa Y, Yoshida H, Hattori T, The support effect on platinum catalyst under oxidizing atmosphere: improvement in the oxidation-resistance of platinum by the electrophilic property of support materials, Appl. Catal. A, 2002, 237:139-148
    [40] Lee A F, Wilson K, Lambert R M, Hubbard C P, Hurley R G, McCabe R W, Gandhi H S, The origin of SO2 promotion of propane oxidation over Pt/Al2O3 catalysts, J. Catal., 1999, 184:491-498
    [41] Hinz A, Skoglundh M, Fridell E, Andersson A, An investigation of the reaction mechanism for the promotion of propane oxidation over Pt/Al2O3 by SO2, J. Catal., 2001, 201:247-257
    [42] Burch R, Halpin E, Hayes M, Ruth K, Sullivan J A, The nature of activity enhancement for propane oxidation over supported Pt catalysts exposed to sulphur dioxide, Appl. Catal. B, 1998, 19:199-207
    [43] Corro G, Montiel R, Vazquez L, Promoting and inhibiting effect of SO2 on propane oxidation over Pt/Al2O3, Catal. Commun., 2002, 3:533-539
    [44] Ruth K, Hayes, Burch R, Tsubota S, Haruta M, The effects of SO2 on the oxidation of CO and propane on supported Pt and Au catalysts, Appl. Catal. B, 2000, 24:L133-L138
    [45] Gawthrope D E, Lee A F, Wilson K, Support-mediated alkane activation over Pt-SO4/Al2O3 catalysts, Catal. Lett., 2004, 94(1-2):25-29
    [46] Zhu H Q, Qin Z F, Shan W J, Shen W J, Wang J G, Low-temperature oxidation of CO over Pd/CeO2–TiO2 catalysts with different pretreatments, J. Catal., 2005, 233:41-50
    [47] Pavlova S N, Sadykov V A, Bulgalkov N N, Bredikhim M N, The Influence of support on the low-temperature activity of Pd in the reaction of CO oxidation: 3. kinetics and mechanism of the reaction, J. Catal., 1996, 161:517-523
    [48] Schalow T, Laurin M, Brandt B, Schauermann S, Guimond S, Kuhlenbeck H, Starr D E, Shaikhutdinov S K, Libuda J, Freund H J, Oxygen storage at the metal/oxide interface of catalyst nanoparticles, Angew. Chem. Int. Ed., 2005, 44:7601-7605
    [49] Fujimoto K, Ribeiro F H, Avalos-Borja M, Iglesia E, Structure and reactivity of PdOx/ZrO2 catalysts for methane oxidation at low temperature, J. Catal., 1998, 179:431-442
    [50] Su S C, Carstens J N, Bell A T, A study of the dynamics of Pd oxidation and PdO reduction by H2 and CH4, J. Catal., 1998, 176:125-135
    [51] Carstens J N, Su S C, Bell A T, Factors affecting the catalytic activity of Pd/ZrO2 for the combustion of methane, J. Catal., 1998, 176:136-142
    [52] Monteiro R S, Zemlyanov D, Storey J M, Ribeiro F H, Turnover rate and reaction orders for the complete oxidation of methane on a palladium foil in excess dioxygen, J. Catal., 2001, 199:291-301
    [53] Thevenin P O, Alcalde A, Pettersson L J, Jaras S G, Fierro J L G, Catalytic combustion of methane over cerium-doped palladium catalysts, J. Catal., 2003, 215:78-86
    [54] Beck D D, Sommers J W, DiMaggio C L, Axial characterization of catalytic activity in close-coupled lightoff and underfloor catalytic converters, Appl. Catal. B, 1997, 11:257-272
    [55] Yazawa Y, Yoshida H, Takagi N, Komai S, Satsuma A, Hattori T, Oxidation state of palladium as a factor controlling catalytic activity of Pd/SiO2-Al2O3 in propane combustion, Appl. Catal. B, 1998, 19:261-266
    [56] Beld L van de, Ven M C van der, Westerterp K R, A kinetic study of the complete oxidation of ethane, propane and their mixtures on a Pd/Al2O3 catalyst, Chem. Eng. Proc., 1995, 34:469-478
    [57] Schmal M, Aranda D A G, Noronha F B, Guimaraes A L, Monteiro R S, Oxidation and reduction effects of propane-oxygen on Pd-chlorine/alumina catalysts, Catal. Lett., 2000, 64:163-169
    [58] Yazawa Y, Yoshida H, Takagi N, Komai S, Satsuma A, Hattori T, Acid strength of support materials as a factor controlling oxidation state of palladium catalysts for propane combustion, J. Catal., 1999, 187:15-23
    [59] Taylor M, Ndifor E N, Garcia T, Solsona B, Carley A F, Taylor S H, Deep oxidation of propane using palladium-titania catalysts modified by niobium, Appl. Catal. A, in press, doi:10.1016/j.apcata.2008.07.045
    [60] Noronha F B, Aranda D A G, Ordine A P, Schmal M, The promoting effect of Nb2O5 addition to Pd/Al2O3 catalysts on propane oxidation, Catal. Today, 2000, 57:275-282
    [61] Cunningham D A H, Kobayashi T, Kamijo N, Haruta M, Influence of dry operating conditions: observation of oscillations and low temperature CO oxidation over Co3O4 and Au/Co3O4 catalysts, Catal. Lett., 1994, 25:257-264
    [62] Jansson J, Skoglundh M, Fridell E, Thormahlen P, A mechanistic study of low temperature CO oxidation over cobalt oxide, Top. Catal., 2001, 16/17:385-389
    [63] Pollard M J, Weinstock B A, Bitterwolf T E, Griffiths P R, Newbery A P, Paine J B, A mechanistic study of the low-temperature conversion of carbon monoxide to carbon dioxide over a cobalt oxide catalyst, J. Catal., 2008, 254:218-225
    [64] Lin H K, Wang C B, Chiu H C, Chien S H, In situ FTIR study of cobalt oxides for the oxidation of carbon monoxide, Catal. Lett., 2003, 86(1-3)63-68
    [65] Jansson J, Palmqvist A E C, Fridell E, Skoglundh M, Osterlund L, Thormahlen P, Langer V, On the catalytic activity of Co3O4 in low-temperature CO oxidation, J. Catal., 2002, 211:387-397
    [66] Luo J, Zhang Q, Garcia-Martinez J, Suib S L, Adsorptive and acidic properties, reversible lattice oxygen evolution, and catalytic mechanism of cryptomelane-type manganese oxides as oxidation catalysts, J. Am. Chem. Soc., 2008, 130:3198-3207
    [67] Yuranov I, Dunand N, Kiwi-Minsker L, Renken A, Metal grids with high-porous surface as structured catalysts: preparation, characterization and activity in propane total oxidation, Appl. Catal. B, 2002 36:183-191
    [68] Konagai N, Takeshita T, Azuma N, Ueno A, Preparation of Fe-Cr wires with dispersed Co3O4 as an electrically heated catalyst for cold-start emissions, Ind. Eng. Chem. Res., 2006. 45:2967-2972
    [69] Davies T, Garcia T, Solsona B, Taylor S H, Nanocrystalline cobalt oxide: a catalyst for selective alkane oxidation over under ambient conditions, Chem. Commun., 2006, 32:3417-3419
    [70] Solsona B, Vazquez I, Garcia T, Davies T E, Taylor S H, Complete oxidation of short chain alkanes using a nanocrystalline cobalt oxide catalyst, Catal. Lett., 2007, 116:116-121
    [71] Baldi M, Finicchio E, Milella F, Busca G, Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4, Appl. Catal. B, 1998, 16:43-51
    [72] Thormahlen P, Skoglundh M, Fridell E, Andersson B, Low-temperature CO oxidation over platinum and cobalt oxide catalysts, J. Catal., 1999, 188:300-310
    [73] Jansson J, Low-temperature CO oxidation over Co3O4/Al2O3, J. Catal., 2000, 194:55-60
    [74] Thoemahlen P, Fridell E, Cruise N, Skoglundh M, Palmqvist A, The influence of CO2, C3H6, NO, H2, H2O or SO2 on the low-temperature oxidation of CO on a cobalt-aluminate spinel catalyst (Co1.66Al1.34O4), Appl. Catal. B, 2001, 31:1-12
    [75] Solsona B, Davies T E, Garcia T, Vazauez I, Dejoz A, Taylor S H, Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts, Appl. Catal. B, in press, DOI:10.1016/j.apcatb.2008.03.021
    [76] Yao H C, Yao Y F Y, Ceria in automotive exhausts:1. oxygen storage, J. Catal., 1984, 86:254-265
    [77] He H, Dai H X, Ng L H, Wong K W, Au C T, Pd-, Pt-, and Rh-loaded Ce0.6Zr0.35Y0.05O2 three-way catalysts: an investigation on performance and redox properties, J. Catal., 2002, 206:1-13
    [78] Costa C N, Christou S Y, Georgiou G, Efstathiou A M, Mathematical modeling of the oxygen storage capacity phenomenon studied by CO pulse transient experiments over Pd/CeO2 catalyst, J. Catal., 2003, 219:259-272
    [79] Rocchini E, Trovarelli A, Llorca J, Graham G W, Webber W H, Maciejewski M, Baiker A, Relationships between structural-morphological modifications and oxygen storage–redox behavior of silica-doped ceria, J. Catal., 2000, 194:461-478
    [80] Yao M H, Baird R J, Kunz F W, Hoost T E, An XRD and TEM investigation of the structure of alumina-supported ceria–zirconia, J. Catal., 1997, 166:67-74
    [81] Luo M F, Zhong Y J, Yuan X X, Zheng X M, TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation, Appl. Catal. A, 1997, 162:121-131
    [82] Luo M F, Ma J M, Lu J Q, Song Y P, Wang Y J, High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation, J. Catal., 2007, 246:52-59
    [83] Martinez-Arias A, Fernandez-Garcia M, Galvez O, Coronado J M, Anderson J A, Conesa J C, Soria J, Munuera G, Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO2 and CuO/ZrCeO4 catalysts, J. Catal., 2000, 195:207-216
    [84] Martinez-Arias A, Gamarra D, Fernandez-Garcia M, Wang X Q, Comparative study on redox properties of nanosized CeO2 and CuO/CeO2 under CO/O2, J. Catal., 2006, 240:1-7
    [85] Kang M, Song M W, Lee C H, Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts, Appl. Catal. A, 2003, 251:143-156
    [86] Tang C W, Kuo C C, Kuo M C, Wang C B, Chien S H, Influence of pretreatment conditions on low-temperature carbon monoxide over CeO2/Co3O4 catalysts, Appl. Catal. A, 2006, 309:37-43
    [87] Liotta L F, Carlo G Di, Pantaleo G, Venezia A M, Deganello G, Co3O4/CeO2 composite oxides for methane emissions abatement: relationship between Co3O4-CeO2 interaction and catalytic activity, Appl. Catal. B, 2006, 66:217-227
    [88] Abecassis-Wolfovich M, Landau M V, Brenner A, Herskowitz M, Low-temperature combustion of 2,4,6-trichlorophenol in catalytic wet oxidation with nanocasted Mn-Ce-oxide catalyst, J. Catal., 2007, 247:201-213
    [89] Wang X, Kang Q, Li D, Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts, Appl. Catal. B, in press, DOI:10.1016/j.apcatb.2008.08.009
    [90] Delimaris D, Ioannides T, VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method, Appl. Catal. B, 2008, 84(1-2):303-312
    [91] Qi G, Yang R T, Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective reduction of NO with NH3, J. Phys. Chem. B, 2004, 108:15738-15747
    [92] Tang X F, Li Y G, Huang X M, Xu Y D, Zhu H Q, Wang J G, Shen W J, MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature, Appl. Catal. B, 2006, 62:265-273
    [93] Arena F, Trunfio G, Negro J, Fazio B, Spadaro L, Basic evidece of the molecular dispersion of MnCeOx catalysts synthesized via a novel“Redox-Precipitation”route, Chem. Mater., 2007, 19:2269-2276
    [94] Choudhary V R, Banerjee S, Pataskar S G, Combustion of dilute propane over transition metal-doped ZrO2 (cubic) catalysts, Appl. Catal. A, 2003, 253:65-74
    [95] Choudhary V R, Uphade B S, Pataskar S G, Keshavaraja A, Low-temperature complete combustion of methan over Mn-, Co-, and Fe-stabilized ZrO2, Angew. Chem. Int. Ed. Engl., 1996, 35(20)2393-2395
    [96] Saalfrank J W, Maier W F, Directed evolution of noble-metal-free catalysts for the oxidation of CO at room temperature, Angew. Chem. int. Ed., 2004, 43:2028-2031
    [97] Morales M R, Barbero B P, Cadus L E, Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts, Appl. Catal. B, 2006, 67:229-236
    [98] Nishihata Y, Mizuki J, Tanaka H, Uenishi M, Kimura M, Okamoto T, Hamada N, Self-regeneration of a Pd-perovskite catalyst for automotive emissions control, Science, 2002, 418:164-167
    [99] Tanaka H, Taniguchi M, Uenishi M, Kajita N, Tan I, Nishihata Y, Self-Regenerating Rh- and Pt-based Perovskite Catalysts for Automotive-Emissions Control, Angew. Chem. int. Ed., 2006, 45:5998-6002
    [100] Rodriguez J A, Ma S, Liu P, Hrbek J, Evans J, Perez M, Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction, Science, 2007, 318:1757-1760
    [101] Yueng C M Y, Yu K M K, Fu Q J, Thompsett D, Petch M I, Tsang S C, Engineering Pt in ceria for a maximum metal-support interaction in catalysis, J. Am. Chem. Soc., 2005, 127:18010-18011
    [102] Huang Y Q, Wang A Q, Li L, Wang X D, Su D S, Zhang T,“Ir-in-ceria”: A highly selective catalyst for preferential CO oxidation, J. Catal., 2008, 252:144-152
    [103] Shapovalov V, Metiu H, Catalysis by doped oxides: CO oxidation by AuxCe1-xO2, J. Catal., 2007, 245:205-214
    [104] Nagai Y, Hirabayashi T, Dohmae K, Takagi N, Minami T, Shinjoh H, Matsumoto S, Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction, J. Catal., 2006, 242:103-109
    [105] Le Van Mao R, Dufresnel L, Yao J, Long distance hydrogen back-spillover (LD-HBS) phenomenon in the aromatization of light alkanes, Appl. Catal., 1990, 65(1)143-157
    [106] Conner W C, Falconer J L, Spillover in heterogeneous catalysis, Chem. Rev., 1995, 95:759-788
    [107] Zafiris G S, Gorte R J, Evidence for low-temperature oxygen migration from ceria to Rh, J. Catal., 1993, 139:561-567
    [108] Li C, Chen Y, Li W, Xin Q, In studies in surface science and catalysis 77; Inui T, Fujimoto K, Uchijima T, Masai M, Eds; Elservier: Kyoto, Japan, 1993:217
    [109] Jobbagy M, Marino F, Schonbrod B, Baronetti G, Laborde M, Synthesis of copper-promoted CeO2 catalysts, Chem. Mater., 2006, 18:1945-1950
    [110] Bera P, Priolkar K R, Gayen A, Sarode P R, Hegde M S, Emura S, Kumashiro R, Jayaram V, Subbanna G N, Ionic dispersion of Pt over CeO2 by the combustion method- structural investigation by XRD, TEM, XPS, and EXAFS, Chem. Mater., 2003, 15:2049-2060
    [111] Priolkar K R, Bera P, Sarode P R, Hedge M S, Emura S, Kumashiro R, Lalla N P, Formation of Ce1-xPdxO2-δsolid solution in combustion-synthesized Pd-CeO2 catalyst- XRD, XPS, and EXAFS investigation, Chem. Mater., 2002, 14:2120-2128
    [112] Bera P, Hedge M S, Characterization and catalytic properties of combustion synthesized Au-CeO2 catalyst, Catal. Lett., 2002, 79(1-4):75-81
    [113] Bera P, Priolkar K R, Sarode P R, Hegde M S, Emura S, Kumashiro R, Lalla N P, Structural investigation of combustion synthesized Cu-CeO2 catalysts by EXAFS and other physical techniques: Formation of a Ce1-xCuxO2-δsolid solution, Chem. Mater., 2002, 14:3591-3601
    [114] Avgouropoulos G, Ioannides T, Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea–nitrate combustion method, Appl. Catal., 2003, 244:155-167
    [115] Papavasiliou J, Avgouropoulos G, Ioannides T, In situ combustion synthesis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production and purification of hydrogen, Appl. Catal. B, 2006, 66:168-174
    [116] Mai H X, Sun L D, Zhang Y W, Si R, Zhang H P, Liu H C, Yan C H, Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes, J. Phys. Chem. B, 2005, 109:24380-24385
    [117] Zhou K B, Wang X, Sun X, Peng Q, Li Y, Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes, J. Catal., 2005, 229:206-212
    [118] Zhou K, Xu R, Sun X, Chen H, Tian Q, Shen D, Li Y, Favorable synergetic effects between CuO and the reactive planes of ceria nanorods, Catal. Lett., 2005, 101(3-4):169-173
    [119] Kim J R, Myeong W J, Ihm S K, Characteristics in oxygen storage capacity of ceria–zirconia mixed oxides prepared by continuous hydrothermal synthesis in supercritical water, Appl. Catal. B, 2007, 71:57-63
    [120] Wang X Q, Rodriguez J A, Hanson J C, Gamarra D, Martinez-Arias A, Fernandez-Garcia M, Unusual physical and chemical properties of Cu in Ce1-xCuxO2 oxides, J. Phys. Chem. B, 2005, 109:19595-19603
    [121] Martinez-Arias A, Hungria A B, Fernandez-Garcia M, Conesa J C, Munuera G, Interfacial redox processes under CO-O2 in a nanoceria-supported copper oxide catalyst, J. Phys. Chem. B, 2004, 108:17983-17991
    [122] Shen W H, Dong X P, Zhu Y F, Chen H R, Shi J L, Mesoporous CeO2 and CuO-loaded mesoporous CeO2: Synthesis, characterization, and CO catalytic oxidation property, Micro. Mesopor. Mater., 2005, 85:157-162
    [123] Wang D H, Ma Z, Dai S, Liu J, Nie Z M, Engelhard M H, Huo Q S, Wang C M, Kou R, Low-temperature synthesis of tunable mesoptorous crystalline transition metal oxides and applications as Au catalyst supports, J. Phys. Chem. C, 2008, 112(35)13499-13509
    [124] Sinha A K, Suzuki K, Preparation and characterization of novel mesoporous ceria-titania, J. Phys. Chem. B, 2005, 109:1708-1714
    [125]Terrible D, Trovarelli A, Jordi L, Leitenburg C de, Dolcetti G, The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic-inorganic route, J. Catal., 1998, 178:299-308
    [126] Cao J L, Wang Y, Zhang T Y, Wu S H, Yuan Z Y, Preparation, characterization and catalytic behavior of nanostructured mesoporous CuO/Ce0.8Zr0.2O2 catalysts for low-temperature CO oxidation, Appl. Catal. B, 2008, 78:120-128
    [127] Cao J L, Wang Y, Yu X L, Wang S R, Wu S H, Yuan Z Y, Mesoporous CuO–Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation, Appl. Catal. B, 2008, 79:26-34
    [128] Zhang Z L, Zhang Y X, Mu Z G, Yu P F, Ni X Z, Wang S L, Zheng L S, Synthesis and catalytic properties of Ce0.6Zr0.4O2 solid solutions in the oxidation of soluble organic fraction from diesel engines, Appl. Catal. B, 2007, 76:335-347
    [129] Goralski C T, Schneider W F. Analysis of the thermodynamic feasibility of NOx decomposition catalysis to meet next generation vechicle NOx emissions standards, Appl. Catal. B, 2002, 37(4): 263-277
    [130] Matsumoto S, Recent advances in automobile exhaust catalysts, Catal. Today, 2004, 90:183-190
    [131] Lietti L, Forzatti P, Nova I, Tronconi E, NOx Storage Reduction over Pt-Ba-γ-Al2O3 Catalyst, J. Catal., 2001,204:175-191
    [132] Sedlmair, Seshan K, Jentys A, Lercher J A, Elementary steps of NOx adsorption and surface reaction on a commercial storage–reduction catalyst, J. Catal. 2003, 214:308-316
    [133] Mahzoul H, Brilhac J F, Gilot P, Experimental and mechanistic study of NOx adsorption over NOx trap catalysts, Appl. Catal. B, 1999, 20:47-55
    [134] Yi C W, Kcak H, Szanyi J, Interaction of NO2 with BaO: From cooperative adsorption to Ba(NO3)2 formation, J. Phys. Chem. C, 2007, 111:15229-15305
    [135] Malpartida I, Vargas M A L, Alemany L J, Finocchio E, Busca G, Pt-Ba-Al2O3 for NOx storage and reduction- Characterization of the dispersed species, Appl. Catal. B, 2008, 80:214-225
    [136] Schmitz P J, Baird R J, NO and NO2 adsorption on barium oxide: Model study of the trapping stage of NOx conversion via lean NOx traps, J. Phys. Chem. B, 2002, 106:4172-4180
    [137] Nova I, Castoldi L, Lietti L, Tronconi E, Forzatti P, Prinetto F, Ghiotti G, NOx adsorption study over Pt–Ba-alumina catalysts: FT-IR and pulse experiments, J. Catal., 2004, 222:377-388
    [138] Liu Z Q, Anderson J A, Influence of reductant on the thermal stability of stored NOx in Pt-Ba-Al2O3 NOx storage and reduction traps, J. Catal., 2004, 224:18-27
    [139] Lindholm A, Currier N W, Fridell E, Yezerets A, Olsson L, NOx storage and reduction over Pt based catalysts with hydrogen as the reducing agent- Influence of H2O and CO2, Appl. Catal. B, 2007, 75:78-87
    [140] Lietti L, Nova I, Forzatti P, Role of ammonia in the reduction by hydrogen of NOx stored over Pt–Ba/Al2O3 lean NOx trap catalysts, J. Catal., 2008, 257(2):270-282
    [141] Cant N W, Liu I O Y, Patterson M J, The effect of proximity between Pt and BaO on uptake, release, and reduction of NOx on storage catalysts, J. Catal., 2006, 243:309-317
    [142] Abdulhamid H, Fridell E, Dawody J, Skoglundh M, In situ FTIR study of SO2 interaction with Pt-BaCO3-Al2O3 NOx storage catalysts under lean and rich conditions, J. Catal., 2006, 241:200-210
    [143] Elbouazzaoui S, Corbos E C, Courtois X, Marecot P, Duprez D, A study of the deactivation by sulfur and regeneration of a model NSR Pt/Ba/Al2O3 catalyst, Appl. Catal. B, 2005, 61:236-243
    [144] Wei X Y, Liu X S, Deeba M, Characterization of sulfated BaO-based NOx trap, Appl. Catal. B, 2005, 58:41-49
    [145] Choi J S, Partridge W P, Daw C S, Sulfur impact on NOx storage, oxygen storage and ammonia breakthrough during cyclic lean/rich operation of a commercial lean NOx trap, Appl. Catal. B, 2007, 77:145-156
    [146] Liu Z Q, Anderson J A, Influence of reductant on the regeneration of SO2-poisoned Pt/Ba/Al2O3 NOx storage and reduction catalyst, J. Catal., 2004, 228:243-253
    [147] Poulston S, Rajaram R R, Regeneration of NOx trap catalysts, Catal. Today, 2003, 81:603-610
    [148] Huang H Y, Long R Q, Yang R T, A highly sulfur resistant Pt-Rh/TiO2/Al2O3 storage catalyst for NOx reduction under lean-rich cycles, Appl. Catal. B, 2001, 33:127-136
    [149] Yamamoto K, Kikuchi R, Takeguchi T, Eguchi K, Development of NO sorbents tolerant to sulfur oxides, J. Catal., 2006, 238:449-457
    [150] Basile F, Fornasari G, Grimandi A, Livi M, Vaccari A, Effect of Mg, Ca and Ba on the Pt-catalyst for NOx storage reduction, Appl. Catal. B, 2006, 69:59-65
    [151] Clacens J M, Montiel R, Kochkar H, Figueras F, Guyon M, Beziat J C, Pt-free sulphur resistant NOx traps, Appl. Catal. B, 2004, 53:21-27
    [152] Vaezzadeh K, Petit C, Pitchon V, The removal of NO x from a lean exhaust gas using storage and reduction on H3PW12O40·6H2O, Catal. Today, 2002, 73:297-305
    [153] Imagawa H, Tanaka T, Takahashi N, Matsunaga S, Suda A, Shinjoh H, Titanium-doped nanocomposite of Al2O3 and ZrO2–TiO2 as a support with high sulfur durability for NOx storage-reduction catalyst, Appl. Catal. B, 2008, in press, doi:10.1016/j.apcatb.2008.07.019
    [154] Ito K, Kakina S, Ikeue K, Machida M, NO adsorption/desorption property of TiO2–ZrO2 having tolerance to SO2 poisoning, Appl. Catal. B, 2007, 74:137-143
    [155] Takahashi N, Suda A, Hachisuka I, Sugiura M, Sobukawa H, Shinjoh H, Sulfur durability of NOx storage and reduction catalyst with supports of TiO2, ZrO2 and ZrO2-TiO2 mixed oxides, Appl. Catal. B, 2007, 72:187-195
    [156] Imagawa H, Tanaka T, Takahashi N, Matsunaga S, Suda A, Shinjoh H, Synthesis and characterization of Al2O3 and ZrO2–TiO2 nano-composite as a support for NOx storage–reduction catalyst, J. Catal., 2007, 251(2):315-320
    [157] Kwak J H, Kim D H, Szanyi J, Peden C H F, Excellent sulfur resistance of Pt-BaO-CeO2 lean NOx trap catalysts, Appl. Catal. B, 2008, in press, DOI:10.1016/j.apcatb.2008.05.009
    [158] Narula C K, Nakouzi S R, Wu R W, Goralski C T, Allard L F, Evaluation of sol-gel processed BaO·nAl2O3 materials as NOx traps, AICHE J., 2001, 47(3):744-753
    [159]Yamazaki K, Suzuki T, Takahashi N, Yokota K, Sugiura M, Effect of the addition of transition metals to Pt/Ba/Al2O3 catalyst on the NOx storage-reduction catalysis under oxidizing conditions in the presence of SO2, Appl. Catal. B, 2001, 30:459-468
    [160] Kim D H, Szanyi J, Kwak J H, Szailer T, Hanson J, Wang C M, Peden C H F, Effect of Barium Loading on the Desulfation of Pt-BaO/Al2O3 Studied by H2 TPRX, TEM, Sulfur K-edge XANES, and in Situ TR-XRD, J. Phys. Chem. B, 2006, 110:10441-10448
    [161] Sakamoto Y, Okumura K, Kizaki Y, Matsunaga S, Takahashi N, Shinjoh H, Adsorption and desorption analysis of NOx and SOx on a Pt/Ba thin film model catalyst, J. Catal., 2006, 238: 361-368
    [162] Piacentini M, Strobel R, Maciejewski M, Pratsinis S E, Baike A, Flame-made Pt–Ba/Al2O3 catalysts: Structural properties and behavior in lean-NOx storage-reduction, J. Catal., 2006, 243:43-56
    [163] Hendershot R J, Fanson P T, Snively C M, Lauterbach J, High-throughput catalytic science: parallel analysis of transients in catalytic reactions, Angew. Chem, Int. Ed., 2003, 42(10):1152-1155
    [164] Hendershot R J , Rogers W B, Snively C M, Ogunnaike B A, Lauterbach J, Development and optimization of NOx storage and reduction catalysts using statistically guided high-throughput experimentation, Catal. Today, 2004, 98:375-385
    [165] Hendershot R J, Vijay R, Snively C M, Lauterbach J, Response surface study of the performance of lean NOx storage catalysts as a function of reaction conditions and catalyst composition, Appl. Catal. B, 2007, 70(1-4):160-171
    [166] Li D L, Zhou H S, Honma A I, Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization, Nature Mater., 2004, 3:65-71
    [167] Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature, 1998, 396:152-155
    [168] Natile M M, Glisenti A, CoOx-CeO2 nanocomposite powders: synthesis, characterization, and reactivity, Chem. Mater., 2005, 17:3403-3414
    [169] Liotta L F, Carlo G Di, Pantaleo G, Deganello G, Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2-ZrO2 composite oxides for methane combustion: Influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture, Appl. Catal. B, 2007, 70:314-322
    [170] Harrison P G, Ball I K, Daniell W, Lukinskas P, Cespedes M, Miro E E, Ulla M A, Cobalt catalysts for the oxidation of diesel soot particulate, Chem. Engin. J., 2003, 95:47-55
    [171] Li X, Zhang C B, He H, Teraoka, Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst, Appl. Catal. B, 2007, 75(3-4):167-174
    [172] Fernandez-Garcia M, Martinez-Arias A, Iglesias-Juez A, Hungria A B, Anderson J A, Conesa J C, Soria J, Behavior of bimetallic Pd–Cr/Al2O3 and Pd–Cr/(Ce,Zr)Ox/Al2O3 catalysts for CO and NO elimination, J. Catal., 2003, 214:220-233
    [173] Hungria A B, Iglesias-Juez A, Martinez-Arias A, Fernandez-Garcia M, Anderson J A, Conesa J C, Soria J, Effects of copper on the catalytic properties of bimetallic Pd–Cu/(Ce,Zr)Ox/Al2O3 and Pd–Cu/(Ce,Zr)Ox catalysts for CO and NO elimination, J. Catal., 2002, 206:281-294
    [174] Mergler Y J, Aalst A van, Delft J van, Nieuwenhuys B E, CO oxidation over promoted Pt catalysts, Appl. Catal. B, 1996, 10:245-261
    [175] Meng M, Zha Y Q, Luo J Y, Hu T D, Xie Y N, Liu T, Zhang J, A study on the catalytic synergy effect between noble metals and cobalt phases in Ce-Al-O supported catalysts, Appl. Catal. A, 2006, 301:145-151
    [176] Bi Y S, Chen L, Lu G X, Constructing surface active centres using Pd–Fe–O on zeolite for CO oxidation, J. Mol. Catal. A, 2006, 266:173-179
    [177] Kulshreshtha S K, Gadgil M M, Physico-chemical characteristics and CO oxidation studies over Pd/(Mn2O3+SnO2) catalyst, Appl. Catal. B, 1997, 11:291-305
    [178] Liotta L F, Carlo G Di, Pantaleo G, Venezia A M, Deganello G, Borla E M, Pidria M, Combined CO/CH4 oxidation tests over Pd/Co3O4 monolithic catalyst: effects of high reaction temperature and SO2 exposure on the deactivation process, Appl. Catal. B, 2007, 75(3-4)182-188
    [179] Hoflund G B, Li Z H, Surface characterization study of a Pd/Co3O4 methane oxidation catalyst, Appl. Surf. Sci., 2006, 253:2830-2834
    [180] Lojewska J, Kolodziej A, Zak J, Stoch J, Pd-Pt promoted Co3O4 catalysts for VOCs combustion- Preparation of active catalyst on metallic carrier, Catal. Today, 2005, 105:655-661
    [181] Liotta L F, Carlo G Di, Pantaleo G, Deganello G, Borla E M, Pidria M, Honeycomb supported Co3O4/CeO2 catalyst for CO/CH4 emissions abatement: Effect of low Pd–Pt content on the catalytic activity, Catal. Commun., 2007, 8:299-304
    [182] Luo J Y, Meng M, Qian Y, Zou Z Q, Xie Y N, Hu T D, Liu T, Zhang J, A mesoporous oxidation catalyst La-Co-Ce-O prepared by citric acid complexation and orgnic template decomposition method, Catal. Lett. 2007, 116:50-56
    [183] Zou Z Q, Meng M, Luo J Y, Zha Y Q, Xie Y N, Hu T D, Liu T, A novel mesoporous oxidation catalyst La-Co-Zr-O prepared by using nonionic and cationic surfactants as co-templates, J. Mol. Catal. A, 2006, 249:240-245
    [184] Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T, Reporting physisorption data for gas/solid systems, with special reference to the determination of surface area and porosity (recommendations 1984), Pure Appl. Chem., 1985, 57:603-619
    [185] Batista M S, Santos R K S, Assaf E M, Assaf J M, Ticianelli E A, High efficiency steam reforming of ethanol by cobalt-based catalysts, J. Power Sources, 2004, 134:27-32
    [186] Chang J R, Chang S L, Lin T B,γ-alumina-supported Pt catalysts for aromatics reduction: a structural investigation of sulfur poisoning catalyst deactivation, J. Catal., 1997, 169:338-346
    [187] Morales F, Grandjean D, Mens A, Groot F M F, Weckhuysen B M, X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance, J. Phys. Chem. B, 2006, 110:8626-8639
    [188] Komova O V, Simakov A V, Rogov V A, Kochubei D I, Odegova G V, Kriventsov V V, Paukshtis E A, Ushakov V A, Sazonova N N, Nikoro T A, Investigation of the state of copper in supported copper–titanium oxide catalysts, J. Mol. Cat. A, 2000, 161:191-204
    [189] Arnoldy P, Moulijn J A, Temperature-programmed reduction of CoO/Al2O3 catalysts, J. Catal., 1986, 93:38-54
    [190] Spadaro L, Arena F, Grandados M L, Ojeda M, Fierro J L, Frusteri F, Metal–support interactions and reactivity of Co/CeO2 catalysts in the Fischer–Tropsch synthesis reaction, J. Catal., 2005, 234:451-462
    [191] Liu Z, Hao J, Fu L, Zhu T, Study of Ag/La0.6Ce0.4CoO3 catalysts for direct decomposition and reduction of nitrogen oxides with propene in the presence of oxygen, Appl. Catal. B, 2003, 44:355-370
    [192] Cesar D V, Perez C A, Schmal M, Salim M V M, Quantitative XPS analysis of silica-supported Cu–Co oxides, Appl. Surf. Sci., 2000, 157:159-166
    [193] Chang L H, Sasirekha N, Chen Y W, Wang W J, Preferential oxidation of CO in H2 stream over Au/MnO2-CeO2 catalysts, Ind. Eng. Chem. Res., 2006, 45:4927-4935
    [194] Kaliaguine S, Neste A V, Szabo V, Gallot J E, Bassir M, Muzychuk R, Perovskite-type oxides synthesized by reactive grinding Part I. Preparation and characterization, Appl. Catal. A, 2001, 209:345-358
    [195] Royer S, Duprez D, Kaliaguine S, Oxygen mobility in LaCoO3 perovskites, Catal. Today, 2006, 112:99-102
    [196] Pozdnyakova O, Teschner D, Wootsch A, Krohnert J, Steinhauer B, Sauer H, Toth L, Jentoft F C, Knop-Gericke A, Paal Z, Schlogl R, Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts: part II- Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism, J. Cata:l., 2006, 237:17-28
    [197] Sedmak G, Hocevar S, Levez J, Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2-y catalyst, J. Catal., 2003, 213:135-150
    [198] Bialobok B, Trawczynski J, Mista W, Zawadzki M, Ethanol combustion over strontium- and cerium-doped LaCoO3 catalysts, Appl. Catal. B, 2007, 72:395-403
    [199] Wang J B, Tsai D H, Huang T J, Synergistic catalysis of carbon monoxide oxidation over copper oxide supported on samaria-doped ceria, J. Catal., 2002, 208:370-380
    [200] Nowitzki T, Carlsson A F, Martyanov O, Naschitzki M, Zielasek V, Risse T, Schmal M, Freund H J, Baumer M, Oxidation of Al2O3 supported Co and Co-Pd Model catalysts for the Fischer-Tropsch reaction, J. Phys. Chem. C, 2007, 111:8566-8572
    [201] Glaspell G, Fuoco L, El-Shall M S, Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation, J. Phys. Chem. B Lett., 2005, 109:17350-17355
    [202] Bera P, Patil K C, Jayaram V, Subbanna G N, Hegde M S, Ionic dispersion of Pt and Pd on CeO2 by combustion method: effect of metal–ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation, J. Catal., 2000, 196:293-301
    [203] Schalow T, Brandt B, Laurin M, Schauermann S, Libuda J, Freund H J, CO oxidation on partially oxidized Pd nanoparticles, J. Catal., 2006, 242:58-70
    [204] Veser G, Ziauddin M, Schmidt L D, Ignition in alkane oxidation on noble-metal catalysts, Catal. Today, 1999, 47:219-228
    [205] Baldi M, Escribano V S, Amores J M G, Milella F, Busca G, Characterization of manganese and iron oxides as combustion catalysts for propane and propene, Appl. Catal. B Lett., 1998, 17:175-182
    [206] Golunski S, Rajaram R, Catalysis at lower temperatures, Cattech, 2006, 6(1):30-37
    [207] Perez-Alonso F J, Granados M L, Ojeda M, Terreros P, Rojas S, Herranz T, Fierro J L G, Gracia M, Gancedo J R, Chemical structures of coprecipitated Fe-Ce Mixed Oxides, Chem. Mater., 2005, 17:2329-2339
    [208] Li G S, Smith R L, Inomata H, Synthesis of nanoscale Ce1-xFexO2 Solid solutions via a low-temperature approach, J. Am. Chem. Soc., 2001, 123:11091-11092
    [209] Twagirashema I, Engelmann-Pirez M, Frere M, Burylo L, Gengembre L, Dujardin C, Granger P, An in situ study of the NO+H2+O2 reaction on Pd-LaCoO3 based catalysts, Catal. Today, 2007, 119:100-105
    [210] Machida M, Uto M, Kurogi D, Kijima T, MnOx-CeO2 binary oxides for catalytic NOx sorption at low temperatures. Sorptive removal of NOx, Chem. Mater., 2000, 12:3158-3164
    [211] Fu Q, Saltsburg H, Flytzani-Stephanopoulos M, Active nonmetalic Au and Pt on ceria based catalysts for water-gas shift, Science, 2003, 301:935-938
    [212] Li Y, Zhang B C, Tang X L, Xu Y D, Shen W J, Hydrogen production from methane decomposition over Ni-CeO2 catalysts, Catal. Commun., 2006, 7:380-386
    [213] Perez-Alonso F J, Melian-Cabrera I, Granados M L, Kapteijn F, Fierro J L G, Synergy of FexCe1-xO2 mixed oxides for N2O decomposition, J. Catal., 2006, 239:340-346
    [214] Picasso G, Gutierrez M, Pina M P, Herguido J, Preparation and characterization of Ce-Zr and Ce-Mn based oxides for n-hexane combustion: Application to catalytic membrane reactors, Chem. Engin. J., 2007, 126:119-130
    [215] Ma Z, Liang C D, Overbury S H, Dai S, Gold nanoparticles on electroless -deposition-derived MnOx/C: Synthesis, characterization, and catalytic CO oxidation, J. Catal., 2007, 252:119-126
    [216] Merino N A, Barbero B P, Grange P, Cadus L E, La1-xCaxCoO3 perovskite-type oxides- preparation, characterisation, stability, and catalytic potentiality for the total oxidation of propane, J. Catal., 2005, 231:232-244
    [217] Badlani M, Wachs I E, Methanol: A“smart”chemical probe molecule, Catal. Lett., 2001, 75(3-4):137-149
    [218] Finnocchio E, Busca G, Lorenzelli V, Willey R J, The activation of hydrocarbon C-H bonds over transition metal oxide catalysts: A FTIR study of hydrocarbon catalytic combustion over MgCr2O4, J. Catal., 1995, 151:204-215
    [219] Ulla M A, Lombardo E A, Handbook on the physics and chemistry of rare earths, 2000, 29:75
    [220] Szailer T, Kwak J H, Kim D H, Szanyi J, Wang C M, Peden C H F, Effects of Ba loading and calcination temperature on BaAl2O4 formation for BaO/Al2O3 NOx storage and reduction catalysts, Catal. Today, 2006, 114:86-93
    [221] Casapu M, Grunwaldt J D, Maciejewski M, Wittrock M, Gobel U, Baiker A, Formation and stability of barium aluminate and cerate in NOx storage-reduction catalysts, Appl. Catal. B, 2006, 6:232-242
    [222] Li X G, Meng M, Lin P Y, Fu Y L, Hu T D, Xie Y N, Zhang J, A Study on the properties and mechanisms for NOx storage Over Pt/BaAl2O4/Al2O3 catalyst, Top. Catal., 2003, 22(1-2)111-115
    [223] Zhou G, Luo T, Gorte R J, An investigation of NOx storage on Pt-BaO-Al2O3, Appl. Catal. B, 2006, 64:88-95
    [224] Decker S, Klabunde K J, Enhancing effect of Fe2O3 on the ability of nanocrystalline calcium oxide to adsorb SO2, J. Am. Chem. Soc., 1996, 118:12465-12466
    [225] Carnes C L, Klabunde K J, Unique chemical reactivities of nanocrystalline metal oxides toward hydrogen sulfide, Chem. Mater., 2002, 14:1806-1811
    [226] Jiang Y, Decker S, Mohs C, Klabunde K J, Catalytic solid state reactions on the surface of nanoscale metal oxide particles, J. Catal., 1998, 180:24-35
    [227] Decker S P, Klabunde J S, Khaleel A, Klabunde K J, Catalyzed destructive adsorption of environmental toxins with nanocrystalline metal oxides. Fluoro-, chloro-, bromocarbons, sulfur, and organphosophorus compounds, Environ. Sci. Technol., 2002, 36:762-768
    [228] Decker S, Lagadic I, Klabunde K J, Moscovici J, Michalowicz A, EXAFS observation of the Sr and Fe site structural environment in SrO and Fe2O3-coated SrO nanoparticles used as carbon tetrachloride destructive adsorbents, Chem. Mater., 1998, 10:674-678
    [229] Lucas E, Decker S, Khaleel A, Seitz A, Fultz S, Ponce A, Li W, Carnes C, Klabunde K J, Nanocrystalline metal oxides as unique chemical reagents/sorbents, Chem. Eur. J., 2001, 7(12)2505-2510
    [230] Klabunde K J, Stark J, Koper O, Mohs C, Park D G, Decker S, Jiang Y, Lagadic I, Zhang D, Nanocrystals as stoichiometric reagents with unique surface chemistry, J. Phys. Chem. B, 1996, 100:12142-12153
    [231] Epling W S, Campell L E, Yezerets A, Currier N W, Park J E, Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts, 2004, 46(2)163-245
    [232] Centi G, Arena G E, Perathoner S, Nanostructured catalysts for NOx storage–reduction and N2O decomposition, J. Catal., 2003, 216:443-454
    [233] Hodjati S, Bernhardt P, Petit C, Pitchon V, Kiennemann A, Removal of NOx: Part II. Species formed during the sorption-desorption processes on barium aluminates, Appl. Catal. B, 1998, 19:221-232
    [234] Rohr F, Gobel U, Kattwinkel P, Kreuzer T, Muller W, Philipp S, Gelin P, New insight into the interaction of sulfur with diesel NOx-storage catalysts, Appl. Catal. B, 2007, 70(1-4):189-197
    [235] Rohr F, Peter S D, Lox E, Kogel M, Sassi A, Juste L, Rigaudeau C, Belot G, Gelin P, Primet M, On the mechanism of sulphur poisoning and regeneration of a commercial gasoline NOx-storage catalyst, Appl. Catal. B, 2005, 56:201-212
    [236] FindIT Program for the Inorganic Crystal Structure Database
    [237] Olsson L, Fridell E, The Influence of Pt oxide formation and Pt dispersion on the reactions NO2=NO+ O2 over Pt/Al2O3 and Pt/BaO/Al2O3, J. Catal., 2002, 210:340-353
    [238] Liu X S, Korotkith O, Farrauto R, Selective catalytic oxidation of CO in H2: structural study of Fe oxide-promoted Pt/alumina catalyst, Appl. Catal. A, 2002, 226:293-303
    [239] Sakamoto Y, Higuchi K, Takahashi N, Yokota K, Doi H, Sugiura M, Effect of the addition of Fe on catalytic activities of Pt/Fe/γ-Al2O3 catalyst, Appl. Catal. B, 1999, 23:159-167
    [240] Szanyi J, Kwak J H, Hanson J, Wang C, Szailer T, Peden C H F, Changing morphology of BaO/Al2O3 during NO2 uptake and release, 2005, 109:7339-7344
    [241] Szanyi J, Kwak J H, Kim D H, Burton S D, Peden C H F, NO2 adsorption on BaO/Al2O3: The nature of nitrate species, J. Phys. Chem. B Lett., 2005, 109:27-29
    [242] Broqvist P, Panas I, Gronbeck H, Toward a realistic description of NOx storage in BaO: The aspect of BaCO3, J. Phys. Chem. B, 2005, 109:9613-9621
    [243] Piacentini M, Maciejewski M, Baiker A, NOx storage-reduction behavior of Pt–Ba/MO2 (MO2 = SiO2, CeO2, ZrO2) catalysts, Appl. Catal. B, 2006, 72:105-117
    [244] Strobel R, Krumeich F, Pratsinis S E, Baiker A, Flame-derived Pt/Ba/CexZr1-xO2: Influence of support on thermal deterioration and behavior as NOx storage-reduction catalysts, J. Catal., 2006, 243:229-238
    [245] Strobel R, Madler L, Piacentini M, Maciejewski M, Baiker A, Pratsinis S E, Two-nozzle flame synthesis of Pt/Ba/Al2O3 for NOx storage, Chem. Mater., 2006, 18:2532-2537
    [246] Morandi S, Prinetto F, Ghiotti G, Livi M, Vaccari A, FT-IR investigation of NOx storage properties of Pt/Mg(Al)O and Pt/Cu–Mg(Al)O catalysts obtained from hydrotalcite compounds, Micropor. Mesopor. Mater., 2008, 107:31-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700