用户名: 密码: 验证码:
载钯C5/C6烷烃异构化催化剂研究及工业应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C5/C6异构化是通过异构化反应将正构烃原料转化为相应的异构烃,提高汽油辛烷值,使汽油具有均匀的抗爆性能。异构化汽油不含硫、烯烃及芳烃,是最洁净的高辛烷值汽油组份。目前我国异构化油尚未真正形成生产能力,异构化技术今后将成为我国石化企业生产清洁汽油的最有效手段之一。
     异构化技术的核心是催化剂制造,目前世界上工业应用的异构化催化剂主要有低温及中温型两类,均以铂(Pt)作为活性金属组份,虽然中温催化剂活性略低于低温催化剂,但对原料要求不高,可再生,装置投资小,操作费用低,在我国具有广泛的应用前景。
     本文在国内外学者对中温异构化催化剂及工艺研究的基础上,以钯(Pd)作为金属组份,氢型丝光沸石(HM)作为酸性载体,系统研究了工业制备过程中各种因素对催化剂性能的影响,以及催化剂失活的原因及再生方法,进行了丝光沸石及催化剂的放大生产,并在10万吨/年工业装置上考察了催化剂的稳定性,为制备载Pd异构化催化剂及工业应用提供了重要依据。
     丝光沸石对催化剂活性有较大影响,试验结果表明:以水玻璃为主要原料,加入晶种可缩短晶化时间,合成的丝光沸石具有较高的比表面积及小晶粒大孔径结构,经铵交换及酸交换后适于制备异构化催化剂。
     采用混捏法载钯制备的Pd/HM催化剂比离子交换法具有更高的异构化性能,异构化反应按正碳离子机理进行,Pd提供加氢脱氢中心,HM提供酸性中心,在Pd含量0.25-0.5%范围内,催化剂具有较好稳定性,C5异构化率>62%,C6异构化率>82%,C6选择性>18%。
     采用微反-在线色谱活性评价、X-RF、X-RD、FT-IR、BET、NH3-TPD及元
    
    素分析等手段,研究了催化剂的失活原因及再生方法,对催化剂的孔结构、晶相及表面酸性进行了表征。结果表明:结焦是造成Pd/HM催化剂失活的主要原因, 焦炭在Pd中心及酸性中心上的沉积不仅使B酸及L酸数量减少,而且覆盖催化剂表面,使微孔数量减少;而硫是造成Pd/HM催化剂中毒的主要毒物,原料中的硫与Pd结合,覆盖催化剂活性中心,使催化剂活性下降。失活催化剂在550℃烧焦再生,活性可基本恢复。再生温度高于550℃,催化剂比表面、孔容及晶胞常数减少,金属颗粒增大,分散度降低,酸中心数量减少。
    工业放大生产的0.5%Pd/HM催化剂具有较好的稳定性及抗硫性能,寿命试验结果表明,以含硫近50ppm的工业重整拔头油为原料,运行1000小时催化剂活性没有下降。
    Pd/HM是世界上首次进行工业放大及应用的载钯中温型异构化催化剂,成本比Pt/分子筛催化剂低40万元/吨,具有广泛的应用前景。
    10万吨/年工业装置运转结果表明,Pd/HM催化剂具有比较好的活性、稳定性及抗水性能,累积运行4个多月,一次通过辛烷值(RON)达到80-82,提高8-10个单位,异构化油产品RON达83-85,已作为调合组份掺入汽油,取得了明显的经济和社会效益。
C5/C6 isomerization process is used to convert normal paraffin feedstock into corresponding iso-paraffins so as to improve the octane number of gasoline and make gasoline have uniform antiknock performance. Isomerized gasoline is the cleanest high-octane gasoline component, which is free of sulfur, olefin and aromatics. There is no actual ability of producing isomerized oil up to now, but the isomerization technology will become the most effective means of producing clean gasoline for our petrochemical enterprise.
    The core of isomerization technology is catalyst production. The commercialized catalysts in the world are divided into two groups, i.e. low-temperature and moderate temperature types, with Pt as their active metal components. Although the activity of moderate temperature catalyst is less than that of low temperature catalyst, it demands not too much on feedstock and can be regenerated. This catalyst can find wide application in China since both the investment of plant and its operation cost are low.
    Based on the studies of moderate temperature isomerization catalysts carried out by domestic and foreign researchers, the paper systematically discussed the influence of a variety of factors in process of commercial preparation on the performance of catalyst which applied Pd as its metal component and HM as its acid carrier. The paper also explored the deactivated reasons of catalyst and its regenerating measure. Preparation of mordenite and scaled up production of catalyst, stability of catalyst was demonstrated in a 100kt/a commercial plant. The findings provide important basis for preparing Pd isomerization catalyst and industrial application.
    Mordenite has a significant effect on the activity of catalyst, results of test showed: with soluble glass as main feedstock and addition of crystal precursor, the
    
    crystalization time can be reduced, and the synthesized mordenite has higher surface area and structure of small crystal particulate and big pore diameter. Through ion exchange with ammonium and acid, the synthesized mordenite is suitable to prepare isomerization catalyst.
    The Pd/HM catalyst prepared through mixed pinching method has higher isomerization feature. With the use of this kind of catalyst, the isomerization reaction is carried out as the mechanism of carbocation,because Pd offers site for hydrogenation and de-hydrogenation, HM provides acid site. Within the range of 0.25-0.5% Pd content, the catalyst has good stability, isomerization rates of C5 and C6 are >62% and >82%, and selectivity of C6 is >18%, respectively.
    Applying activity evaluation of micro-reaction test and online chromatography analysis, X-RF、X-RD、FT-IR、BET、NH3-TPD and element analysis, the deactivated reasons and regeneration method of the prepared catalyst were investigated, and the pore structure, crystal phase, surface acid were characterized. The results showed: coking was the main reason of deactivation of Pd/HM catalyst,the deposition of coke on Pd site and acid site not only reduced the quantities of Bronsted acid sites and Lewis acid sites,but also covered the surface of catalyst resulted in reduction of micropore;while sulfur was the main factor poisoning Pd/HM catalyst since the sulfur in the feedstock combined with Pd so that active site of catalyst was covered and causing the decrease of catalyst activity. The deactivated catalyst was regenerated at 550℃ by coke-burning,and its majority of activity could recover. If the regeneration temperature was over 550℃,the surface area, pore volume, cell constant of catalyst would decreased, and the metal particulate became bigger, dispersion and number of acid site were weaken.
    The 0.5%Pd/HM catalyst produced through commercial scale-up possesses have better stability and sulfur-resistant characteristics. Results of life test indicated that the activity had not decreased with reforming topped oil containing near 50ppm sulfur as feedstock after 1000 hours' operation.
    Pd/HM catalyst was the first moderate-temperature isomerization catalys
引文
1. 张汝存译,石油炼制译丛,1982,6:11
    2. Thomas C. Holcomk,"异构化-降低汽油含铅量的一种对策"(内参)
    3. 石油化工动态,1989,20:3
    4. 我国车用燃料标准现状及发展趋势,北京石科院,2000年
    5. 创新炼油技术推动21世纪我国炼油工业的发展,侯芙生,2001年石油炼制大会,南京
    6. 加入WTO对我国炼油企业的影响,吴辉,2001年石油炼制大会,南京
    7. 沈宏孚译,石油炼制译丛,1986,4:5
    8. 钱伯章. 石油化工, 1991,8:5751
    9. C5/C6异构化技术的发展及其应用,聂晶,中国石化金陵分公司情报处,2001年12月
    10. C5、C6烷烃异构化技术,北京石科院,2000年中国石化清洁燃料会议资料,北京
    11. L.F. O'Keefe, Total Isomerization Process(TIP) Innovations, AM-88-48
    12. N.A. Cusher, Isomerization for Future Gasoline Requirment, AM-90-35
    13. C5 /C6异构化-Penex工艺,UOP1985年交流资料,1985
    14. C5 /C6烷烃全异构化工艺过程研究,金陵石化公司炼油厂,1994
    15. 正构烷烃的异构化,石油化工对外技术交流,1991,12
    16. P.D. Fernandez, UOP'S new once-through hydrogen PENEX technology, AM-88-45
    17. 石油化工快报,1990,17:5
    18. 石油化工动态,1987,14:5
    19. 郭藩欣,C5 /C6异构化工艺及催化剂,金陵石油化工,1993,3:34
    20. Michael J. Cleveland, Make Linght Paraffin Isomerization Work for You, NPRA, AM99-29
    21. 黄国雄、李承烈.《烃类异构化》,中国石化出版社,1992
    22. R.J. Schmidt, Catalyst-key to low-cost isomerization, Oil & Gas, May 27, 1985
    23. R.G. Mcclung, Chloride based catalyst provides regeneration paraffin isomerization process, NPRA, AM-90-12
    24. 马利加尔夫[苏],石油化学加工过程理论基础,石油工业出版社,1980
    25. 低温C5 /C6异构化催化剂及工艺,南京炼油厂研究所,1992
    26. 吴之仁,洛阳石化公司炼制所内部资料,1986
    27. 黄国雄、李承烈,《石油化工学会第二届石化催化会议资料》,1983
    
    
    28. 黄国雄、李承烈,"C5 /C6轻质烷烃异构化研究工作汇报"(内参),1984
    29. 重整拨头油异构化及其卤化型分子筛催化剂的研究,石油炼制,1987,
    30. 黄国雄."铂重整催化剂的新应用"(内部资料),1983
    31. 苏虎,催化重整通讯,2002,2:62
    32. C5/C6异构化催化剂研究总结,金陵石化公司炼油厂,1990
    33. C5/C6异构化催化剂研究总结,金陵石化公司炼油厂,1990
    34. C5/C6异构化催化剂研究总结,金陵石化公司炼油厂,1990
    35. C5/C6全异构化工艺过程研究,金陵石化公司炼油厂,1994
    36. C5/C6全异构化中试装置开发设计,中国石化北京设计院,1994
    37. C5/C6全异构化中试总结,金陵石化公司炼油厂,1994
    38. C5/C6正异构烃吸附分离试验,金陵石化公司炼油厂,1994
    39. C4-C7在5A分子筛上的吸附分离热力学研究,华东理工大学,1994
    40. C5/C6正异构烃吸附分离用分子筛吸附剂研制,金陵石化公司炼油厂,1994
    41. C5/C6正异构烃吸附分离中试开发设计总结,中国石化北京设计院,1994
    42. C5/C6正异构烃吸附分离中试总结,金陵石化公司炼油厂,1994
    43. 低温C5 /C6异构化固体超强酸催化剂的研制,北京石科院,1992
    44. 王瑞英等,石油炼制,1991,12:15
    45. Molecular Sieves-11,James R. Katzer ACS Symposium Series 40.504,1977
    46. ibid,515,1977
    47. ACS Monograph 171,737,1976
    48. Catalysis by zeolites,319,1980 Elsevier Scientific Co
    49. Carbanioganic activity of zeolites,P24,125,185,214,1977, Elesevier Scientific Publishing Co
    50. US 3,507,931
    51. US 4,018,711
    52. US 4,665,272
    53. US 4,735,929
    54. WO 91/00851
    55. Preprints-simposia, 36(4),832,1991
    56. US 4,734,539
    57. Preprints-simposia, 36(4),848,1991
    58. 李国宝,华东化工学院硕士论文,1981
    59. 南京炼油厂,铂/丝光沸石烷烃异构化催化剂的研制,1984
    60. Eberly P.B. etal., J catl 22 1971 P419
    61. Hopper, J.R. etal., I.E.C.P.R.D., 11, 1972, 294
    
    
    62. Chem. Eng. Progr. 67(4), 1971
    63. 黄国雄等,C5/C6轻质烷烃异构化催化剂研究(一),1986
    64. 祝敬民,华东化工学院学报,11(2), 1985:139
    65. Karl Kochloefl, Chemie Technik, 4(12), 443(1975)
    66. 李承烈等,华东化工学院学报,1981,2:19
    67. Saha, N.C. and D.S. Mathur, J of Chromatography, 81(2), 207(1973)
    68. Harrison, D.P., J.W. Hall, H.F. Rase, I.E.C., 57(1),18(1965)
    69. 石油化工,1982,11
    70. Breck,D.W., "Zeolite Molecular Sieves",Wiley,New York,1974
    71. 大连化学物理研究所,沸石分子筛
    72. Meier, W.M., "Zeolite Molecular Sieves",P10-27,Society of Chemical Industry,London,1968
    73. Mcdaniel, C.V., and P.K. Maher, in J.A. Rabo(ed.),"Zeolite Chemistry and Catalysis", P285,Ameican Chemical Society, Washington,1976
    74. 丝光沸石的合成,南京石油化工厂,广东化学所,1977
    75. Jacobs, P.A.,"Carboniogenic Activity of Zeolites",Elsevier,Amsterdam,P48,1977
    76. Eberly,Jr.,P.E., Kimberlin,Jr., C.N. and Voorhies, Jr., A.,J.Catal., 22,419(1971)
    77. Karge,H.G.,Z. Phys. Chem., Neue Folge,16,133(1971),95,241(1975)
    78. Ghosh, A.K. and Curthoys, G., J.Chem.Soc., Faraday Trans. I, 8099(1984)
    79. 张红浪,李全芝,薜志元,催化学报,9,165(1989)
    80. Ha,B.H., Guldot, J. and Barthomeuf, D.,J. Chem.Soc.,Faraday Trans.I,75,1245,2366(1979)
    81. Tppchieva,K.V.,et al, "Molecular Sioves"(Ed:Uytterchoeven,J.B.),351(1973)
    82. Kasai,P.H.,Bishop,Jr.,R.J.,"Zeolite Chemistry and Catalyst"(Ed:Rabo,J.A.),ACS Monograph 171,350,(1976)
    83. "Molecular Sieve",1967,P78
    84. "石油化工",1975,第2期
    85. 丝光沸石合成的中间试验,太原工学院化工系
    86. 丝光沸石合成及其性质研究报告,太原工学院教育处,72.10
    87. 丝光沸石合成,南京石油化工厂、中科院广东化学所,1976年2月
    88. D Domine and J Quolex, Synthesis of mordenite, Molecular Sieve, 1967, P78
    89. Domold W Breck, Zeolite Molecular Sieves, P333
    90. Domme. D. and Quolex. T., Synthesis of mordenite, Moleculer Sieve, 1967, P78
    91. 复旦大学化学系催化教研组,石油炼制,3,1979
    92. Sand L.B., Molecular Sieve, 71, 1967
    93. USP 3932554
    
    
    94. USP 4182269
    95. USP 3836597
    96. [日]白奇高保,藤堂尚三编,催化剂制造
    97. 新试验化学讲座8,P1321
    98. 触媒,Vol.19, No5, 1977, P334
    99. 李承烈,催化剂失活研究,1989
    100. BP 1189850
    101. Eberly Jr. P.Z., Kinberlin Jr. C.N., J. Catal., 23, 1971, P419
    102. 邓景发,催化剂作用原理导论,1984,P349
    103. Ribeiro,F.R., Nato Advanced Study Institute on Zeolites Science and technology, Alcabideche Portugal, 1983:545
    104. Symoniak,M.F.,Upgrade Naphtha to Fuels and Feedstocks, Hydrocarbon Processing, May 1980
    105. 李大东,催化剂寿命和"催速"稳定性试验方法,石油化学通讯,3,1983,P10
    106. Weisz P.B., Adwances in Catalysis, 13, 1963, P137
    107. Ribeiro. F.R., Hydroisomerization of n-Hexane on Platinum Zeolites, J. Catal., 78(2)1982:267
    108. Christoffel,E.G.:Activity and Selectivity of Bifunctional Platinum Catalysts in Hydrocarbon Reactions,J.Catal.,73(1),1982:30
    109. 林世雄,《石油加工工程》下册,石油工业出版社,1990
    110. USP 3932554
    111. USP 4709117
    112. Lijimak Izume Y., Intern. Chem. Eng., 1964, Vol.4
    113. Myers C.G., Ind. Eng. Chem., 1961, 4:299
    114. Haldeman,R.G. and Botty, M.C.(1959), J. Phys. Chem. 63,489
    115. Amenconiya, J., J. Phys. Chem., 1964, 68:521
    116. Mills,G.A.,Boedeker,E.R. and Oblad,A.G.(1950).J.Amer.Chem.Soc.72,1554
    117. Robo J.A., Picket P.Z., Ind. Eng. Chem., 53(1961), P733
    118. Delmon B. and Froment G.F., Catalyst Deactication, P179
    119. Bartholomew C.H. etal, Advances in Catalysis, 31(1983) P136
    120. F.Wolf and H.John,Chem.Tech.(Leipzig),25,736(1973)
    121. M.M.Dubinin, G.M.Fedorova, D.M.Plavnik,L.I.Piguzova, and E.N.Prokofeva,Izv.Akad.Nauk SSSR,Ser.Khim.,2429(1968)
    122. 柴章民,华东化工学院博士论文,1989
    123. C.Naccache, M.Primet and M.V.Mathieu, ibid.,266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700