用户名: 密码: 验证码:
基于表面微织构刀具的钛合金绿色切削冷却润滑技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刀具快速磨损依然是制约难加工材料高速高效加工的关键问题,在未彻底实现陶瓷和超硬材料的高硬度和高韧性完美结合的情况下,利用刀具材料革新实现钛合金、高温合金等难加工材料切削速度进一步提高仍难有本质上的突破。目前钛合金切削加工刀具仍以硬质合金刀具为主,通过改善刀/工表面摩擦接触状态以降低切削力、切削温度和抑制刀具磨损是提高钛合金加工效率的一种有效方式。当前仿生摩擦学的研究发现,高性能的表面织构可以实现良好的减摩、抗黏附和提高耐磨性,这给刀工接触表面状态减摩带来了新的研究方向。为此,本文针对钛合金切削摩擦磨损问题,对表面微织构刀具在钛合金切削加工中的应用进行了探索性研究。主要研究工作包括:
     (1)通过对传统常规表面刀具在冷却润滑条件下的切削试验,研究了干切削、低温冷风、MQL、低温MQL以及静电环境对钛合金高速切削摩擦状况以及刀具磨损的影响,并结合切削物理仿真试验,分析了冷却润滑介质在刀工副摩擦过程中的作用机理。
     (2)研究刀具表面微织构的设计与制造,利用有限元技术分析表面微坑/微沟槽织构参数对刀具应力、变形的影响,以指导刀具表面微坑或微沟槽的设计。在此基础上,利用激光加工与电解加工技术对刀具表面微织构进行加工,对比分析两种加工技术的优缺点,为刀具表面微织构的加工提供依据。
     (3)进行硬质合金/钛合金摩擦副的摩擦磨损试验,通过与传统光滑表面试样的对比,研究了表面微织构的减摩性能,试验结果表明,微织构可以有效地降低摩擦副的摩擦因数,相对于微坑深度,微坑直径对摩擦因数影响程度较大,而微沟槽的减摩效果优于微坑。
     (4)正交切削TC4的试验结果表明,微坑与微沟槽类型的表面微织构均可以有效地降低硬质合金切削钛合金时的切削力与切削温度,有限元仿真结果表明微沟槽的置入可以延长刀屑接触长度,增大切削力的同时扩大了刀具表面热传导面积,降低了切削变形程度,从而降低切削温度。通过对不同织构类型表面织构刀具切削钛合金时形成的切屑形貌的研究,分析了刀具表面微沟槽对切屑变形的影响。
     (5)通过TC4钛合金车削试验,分析了干切削、MQL以及低温MQL条件下表面微织构硬质合金刀具在高速切削钛合金时的主要磨损形式和刀具耐用度。结果表明表面微织构刀具的刀具寿命明显高于传统光滑无织构刀具,在干切削、MQL和低温MQL条件下,微沟槽织构刀具分别降低刀具后刀面平均磨损5.0%、7.7%、12.3%。通过对表面微沟槽织构刀具的减摩抗粘结机理以及磨损破损机理的分析,表面微沟槽织构的置入可以降低刀具的粘结磨损。微沟槽的强度对沟槽破损有重要影响,在粘结撕裂和切屑冲击的作用下沟槽间的硬质合金会发生破损。
Rapid wear of the tool is still the key issues for high speed machining of difficult-to-cut materials.It is difficult to further enhance the cutting speed of difficult-to-cut materials before perfectcombination of high hardness and toughness of circumstances ceramics and superhard materials.Cemented carbide are mainly used for titanium alloy and it is an effective way to increase themachining efficiency of titanium alloy by improving frictional contact state of tool/workpiece toreduce cutting force, cutting temperature and tool wear. Currently biomimetic tribology study arefound that high-performance surface texture has the effects of good anti-friction, anti-adhesion andimproving the wear resistance, which gives a new research direction that surface texture will beapplied to the surface of cutting tool. In this paper, aiming at friction and wear problems in theprocessing of titanium alloy, the exploratory research was conducted on the application of surfacemicro-textured cutting tool for titanium alloy. The major works are included as follows:
     (1) The cutting tests for the traditional tools were carried out under the cooling and lubricatingconditions, such as dry cutting, cold air, MQL, cryogenic MQL, static environment, and the influenceof cooling/lubricating medium on friction states and tool wear of high-speed machining of titaniumalloy were studied. Combined with cutting physical simulation experiment, the action mechanism ofcooling/lubricating medium in the friction process of tool/workpiece friction pair was analyzed.
     (2) The design and manufacturing technology of the tool surface micro-texture was studied. Byfinite element analysis the influence of micro-pit/groove parameters on the tool surface stress anddeformation was analyzed, which guided the design of the tool surface micro-pit/groove. The surfacemicro-textures were processed using laser machining and electrochemical machining technology, andadvantages and disadvantages of the two processing techniques were comparative analyzed, whichprovided a reference value for manufacturing technology of the tool surface micro-texture.
     (3) Friction and wear test of Ti6Al4V/WC-Co were carried out by comparison with traditionalsmooth surface, and anti-friction properties of micro-textured surface were studied. Test resultsshowed that micro-texture could effectively reduce the friction coefficient of friction pair. Theinfluence of micro-pit diameter on the friction coefficient was greater than micro-pit depth, andmicro-groove had better anti-friction effect than the micro-pit.
     (4) The orthogonal cutting tests were conducted for the surface micro-textured cutting tool, and thecutting forces and cutting temperatures were measured. The results showed that both the micro-pitsand micro-grooves could effectively reduce the cutting force and cutting temperature under lubricantcondition, and texture types had a greater impact on the cutting performace of tools. Finite elementmodel of orthogonal cutting titanium alloy with surface micro-textured cutting tool was created, andsimulation results showed that the micro-grooves could extend the tool/chip contact length, increasecutting force while widen the heat transfer surface area of the tool, decrease the cutting deformation,thus reduce the cutting temperature. The chip morphologies of titanium alloy were observed and theimpact of micro-grooves on the chip formation was analyzed.
     (5) Turning tests with surface micro-textured cutting tool were carried out and the results showedthat the surface micro-grooved cutting tool had higher tool life than the traditional smooth surfacecutting tool. In dry, MQL and cryogenic MQL conditions, micro-grooved cutting tool decreased theaverage flank wear of5.0%,7.7%,12.3%. Wear and damage mechanism of surface micro-grooved cutting tool was analyzed. It was found that surface micro-grooves could reduce adhesion wear of tooland cemented carbide between micro-grooves would damage in the action of adhesion and impact ofchip.
引文
[1] Grzesik W. High Performance and High Efficiency Machining. Advanced Machining Processesof Metallic Materials,(2008):259~278.
    [2] Byrne G, Dornfeld D, Denkena B. Advancing Cutting Technology. CIRP Annals-ManufacturingTechnology,2003,52(2):483~507.
    [3]艾兴.高速切削加工技术.北京:国防工业出版社,2003:1~6.
    [4] Schulz H, Moriwaki T. High speed machining. Annal of the CIRP,1992,41/2:638~639.
    [5] Ai X, Li Z Q, Deng J X. Development and perspective of advanced ceramic cutting toolmaterials. Key Engineering Materials,1995,(108-110):53~66.
    [6]刘战强,万熠,周军.高速切削刀具材料及其应用.机械工程材料,2006,30(5):1~4.
    [7] Gringel H M. Machine Tool Design Requirements for High-Speed Machining. CIRP Annals-Manufacturing Technology,1996,45(1):389~392.
    [8]何宁.难加工材料高效切削理论与应用研究,[博士学位论文].南京:南京航空航天大学,1997.
    [9]刘战强,艾兴.高速切削刀具磨损寿命的研究.工具技术,2001,35(12):3~7.
    [10] Ribeiro M V, Moreira M R V, Ferreira J R. Optimization of titanium alloy (6Al–4V)machining. Journal of Materials Processing Technology,143–144(2003):458~463.
    [11] Lei S T, Liu W J. High-speed machining of titanium alloys using the driven rotary tool. Inter. J.of Machine Tools&Manufacture,42(2002):653~661.
    [12] Wang Z G, Rahman M, Wong Y S. Tool wear characteristics of binderless CBN tools used inhigh-speed milling of titanium alloys. Wear,258(2005):752~758.
    [13]刘战强,万熠,周军.高速切削刀具材料及其应用.机械工程材料,2006,30(5):1~4.
    [14]袁人炜,陈明.高速切削加工中刀具材料的选用.机械工艺师,2002,3:12~14.
    [15]戚正风,任瑞铭.国内外刀具材料发展现状.金属热处理,2008,33(01):15~20.
    [16]韩荣第,吴健.绿色切削技术探讨.工具技术,2006,40(12):8~10.
    [17]李新龙,何宁,李亮.绿色切削中的MQL技术.2005,航空精密制造技术,41(2):24~35.
    [18] Astakhov V P. TRIBOLOGY OF METAL CUTTING. TRIBOLOGY AND INTERFACEENGINEERING SERIES, Elsevier Ltd,2006.
    [19] Grzesik W. Experimental investigation of the influence of adhesion on the frictional conditions inthe cutting process. Tribology International,1999,32(1):15~23.
    [20]石淼森.切削中的摩擦与切削液.北京:中国铁道出版社,1994:14~20.
    [21]安庆龙.低温喷雾射流冷却技术及其在钛合金机械加工中的应用,[博士学位论文].南京:南京航空航天大学,2006
    [22]温诗铸.摩擦学原理.北京:清华大学出版社,1990.
    [23] Tasdelena B, Thordenberg H, Olofsson D. An experimental investigation on contact lengthduring minimum quantity lubrication (MQL) machining. Journal of materials processingtechnology,2008,(203):221-231.
    [24]刘俊岩.水蒸汽作绿色冷却润滑剂的作用机理及切削试验研究,[博士学位论文].哈尔滨:哈尔滨工业大学,2005.
    [25] Dhar N R, Kamruzzaman M, Ahmed M. Effect of minimum quantity lubrication (MQL) on toolwear and surface roughness in turning AISI-4340steel. Journal of Materials Processing Tech.,2006,172(2):299-304.
    [26] Li X P, Seah K H W. A pressured air jet approach to tool wear minimization in cutting of metalmatrix composites. Wear,2003,255:1352~1358.
    [27] Barnett-Ritcey D, Elbestawi M A. Tool performance in high speed finish milling of Ti6Al4V.Proceedings of IMECE2002ASME international mechanical engineering congress&exposition, New Orleans: Louisiana,2002:211~219.
    [28]任家隆.切削中绿色射流冷却工艺的研究.中国机械工程,2000,11(7):738~740.
    [29]任家隆,邱炎保,王波,等.车削加工中射流冷却机理的探讨.华东船舶工业学院学报,1999,13(4):49~52.
    [30]赵威.基于绿色切削的钛合金高速切削机理研究,[博士学位论文].南京:南京航空航天大学,2006.
    [31] Cakir O, Kiyak M, Altan E. Comparison of gases applications to wet and dry cuttings in turning.Journal of Materials Processing technology,2004,153-154:35~41.
    [32] Ezugwu E O, Dasilva R B, Bonney J, et al. The effect of argon-enriched environment inhigh-speed machining of titanium alloy. Tribology Transactions,2005,48:18~23.
    [33] Yamazaki T, Miki K, Sato U, et al. Cooling air cutting of Ti-6Al-4V alloy. Journal of JapanInstitute of Light Metals,2003,53(10):416~420.
    [34]杨颖.低温冷风在绿色加工中应用的若干问题研究,[博士学位论文].重庆:重庆大学,2004.
    [35] He N, Li L, L i X L. A New Cooling Gas Generator and Experiments of High Speed Milling of TiAlloy. Materials science forum,471-472(2004):140~143.
    [36]安庆龙.低温喷雾射流冷却技术及其在钛合金机械加工中的应用,[博士学位论文].南京:南京航空航天大学,2006.
    [37]Kim S W, Lee D W, Kang M C, et al. Evaluation of machinability by cutting environments inhigh-speed milling of difficult-to-cut materials. Journal of Materials Processing Technology,2001,111:256~260.
    [38]刘存祥,胡荣生.空气涡流制冷及其在切削冷却中的应用.制造技术与机床,1997,1:30~31.
    [39]李新龙,何宁,李亮.绿色切削中的MQL技术.航空精密制造技术,2005,41(2):24~28.
    [40]裴宏杰,张春燕,张巍巍,林立峰,王贵成. MQL加工的微量冷却润滑系统.中国制造业信息化,2007,36(19):136~142.
    [41] Wakabayashi T, Inasaki I, Suda S, et al. Tribological characteristics and cutting performance oflubricant esters for semi-dry machining. Annals of the CIRP,2003,52(1):61~64.
    [42] Min S, Inasaki I, Fujimura S, et al. A study on tribology in minimal quantity lubrication cutting.Annals of the CIRP,2005,54(1):105~108.
    [43] Kamata Y, Obikawa T, Shinozuka J. Analysis of mist flow in MQL cutting. Key EngineeringMaterials,2004,257-258:339~344.
    [44] Heinemann R, Hinduja S, Barrow G, et al. Effect of MQL on the tool life of small twist drills indeep-hole drilling. International Journal of Machine Tools&Manufacture,2006,46:1~6.
    [45] Suda S, Yokota H, Inasaki I, et al. A synthetic ester as an optimal cutting fluid for minimalquantity lubrication machining. Annals of the CIRP,2002,51(1):95~98.
    [46] Suda S, Wakabayashi T, Inasaki I, et al. Multifunctional application of a synthetic ester tomachine tool lubrication based on MQL machining lubricants. Annals of the CIRP,2004,53(1):61~64.
    [47] Weinert K, Inasaki I, Sutherland J W, et al. Dry machining and minimum quantity lubrication.Annals of the CIRP,2004,53(2):511~537.
    [48] Hanyu H, Kamiya S, Murakami Y, et al. Dry and semi-dry machining using finely crystallizeddiamond coating cutting tools. Surface and Coatings Technology,2003,173-174:992~995.
    [49] Dhar N R, Islam M W, Islam S, et al. The influence of minimum quantity of lubrication (MQL)on cutting temperature, chip and dimensional accuracy. Journal of Materials ProcessingTechnology,2006,171(1):93~99.
    [50] Obikawa T, Kamata Y, Shinozuka J. High-speed grooving with applying MQL. InternationalJournal of Machine Tools&Manufacture,2006,46(14):1854~1861.
    [51] Rahman M, Kumar A S, Salam M. Evaluation of Minimal Quantities of Lubricant in End Milling.International Journal of Advanced Manufacturing Technology,2001,18:235~241.
    [52] Itoigawa F, Childs T H C, Nakamura T, et al. Effects and mechanisms in minimal quantitylubrication machining of an aluminum alloy. Wear,2006,260(3):339~344.
    [53] Attanasio A, Gelfi M, Giardini C, et al. Minimal quantity lubrication in turning: Effect on toolwear. Wear,2006,260(3):333~338.
    [54] Lopez de Lacalle L N, Angulo C, Lamikiz A, et al. Experimental and numerical investigation ofthe effect of spray cutting fluids in high speed milling. Journal of Materials ProcessingTechnology,2006,172(1):11~15.
    [55] Hassan A, Ya o Z Q. Minimum lubrication milling of titanium alloys. Materials Science Forum,2004,471-472:87~91.
    [56]张震华,何曙.低温冷风切削技术浅谈.工具技术,2002,36(006):32~33.
    [57] Ko T J, Kim H S, Chung B G. Air-Oil Cooling Method for Turning of Hardened Material. TheInternational Journal of Advanced Manufacturing Technology,1999,15(7):470~477.
    [58]李新龙.基于低温氮气和微量润滑技术的钛合金高速铣削技术研究,[硕士学位论文].南京:南京航空航天大学,2004.
    [59]苏宇.新型低温MQL装置的研制与难加工材料低温高速切削机理研究,[博士学位论文].南京:南京航空航天大学,2007.
    [60]卞容.基于低温微量润滑的PH13-8Mo高速铣削试验研究,[硕士学位论文].南京:南京航空航天大学,2009.
    [61]田佳.低温微量润滑切削环境空气质量研究,[硕士学位论文].南京:南京航空航天大学,2009.
    [62]韩荣第,胡广义.用水蒸气作冷却润滑剂的切削试验研究.现代制造工程,2003(2):12~13.
    [63]刘俊岩.水蒸汽作绿色冷却润滑剂的作用机理及切削试验研究,[博士学位论文].哈尔滨,哈尔滨工业大学,2005.
    [64] Hong S Y, Ding Y, Jeong W. Friction and cutting forces in cryogenic machining of Ti-6Al-4V.International Journal of Machine Tools and Manufacture,2001,41(15):2271~2285.
    [65] Wang Z Y, Rajurkar K P. Cryogenic machining of hard-to-cut materials. Wear,2000,239:168~175.
    [66]刘飞,陈庄,徐宗俊.高硬度石材的超低温切割加工.机械工程学报,1993,29(6):48~51.
    [67]么炳唐.静电冷却干切技术.制造技术与机床,2003,(1):66~68.
    [68]康亚琴.静电冷却干式切削装置的设计研究,[硕士学位论文].沈阳:沈阳航空工业学院,2007.
    [69]蒋骏,理有亲,张中元等.钛合金零件制造技术.北京:国防工业出版社,1991.
    [70] Hong S Y, Ding Y C, Jeong W. Friction and cutting forces in cryogenic machining of Ti-6Al-4V.International Journal of Machine Tools&Manufacture,2001,41:2271~2285.
    [71] Hong S Y, Markus I, Jeong W. New cooling approach and tool life improvement in cryogenicmachining of titanium alloy Ti-6Al-4V. International Journal of Machine Tools&Manufacture,2001,41:2245~2260.
    [72] Hong S Y, Ding Y C. Cooling approaches and cutting temperatures in cryogenic machining ofTi-6Al-4V. International Journal of Machine Tools&Manufacture,2001,41:1417~1437.
    [73] Houry M, Driver N, Mativenga PT. Chip morphology and cutting forces in high speed endmilling of titanium6Al-4V Alloy. Proceedings of the34th International MATADORConference, Hinduja, S.(Ed.),2004:119~125.
    [74] Leigh E P, Smith S, Schueller J K, et al. Advanced Machining Techniques on Titanium RotorParts. American Helicopter Society56Annual Forum, Virginia Beach, Virginia, May2-4,2000:235~253.
    [75] Barnett-Ritcey D, Elbestawi M A. Tool Performance in High Speed Finish Milling of Ti6Al4V.Proceedings of IMECE2002,ASME international mechanical engineering congress&exposition, new Orleans,Louisiana,2002:211~219.
    [76] Barnett-Ritcey D, Hachmoller R, Elbestawi M A. Milling of Titanium Alloy Using DirectedThrough Spindle Coolant. SME Technical Report,2001, MR01-257:1~8.
    [77] Mazurkiewics M, Kubala Z, Chow J. Metal Machining with High-Pressure Water-jet CoolingAssistance-A New Possibility. ASME Journal of Engineering for Industry,1989,111:7~12.
    [78] Lindeke R R, Schonig F C, Khan A K, et al. Machining of Titanium with Ultra-high PressureThrough the Insert Lubrication/Cooling. Transactons of NAMRI/SME,1991,19:154~161.
    [79] Kovacevic R, Cherukuthota C, Mohan R. Improving Milling Performance with High PressureWater juct-assisted Cooling/Lubrication. ASME Journal of Engineering for Industry,1995,117:331~339.
    [80]韩志武,任露泉,刘祖斌.激光织构仿生非光滑表面抗磨性能研究.摩擦学学报,2004,24(4):289~93.
    [81]任露泉,杨卓娟,韩志武.生物非光滑耐磨表面仿生应用研究展望.农业机械学报,2005,36(07):144~147.
    [82]丛茜,任露泉,吴连奎.几何非光滑生物体表形态的分类学研究.农业工程学报,1992,8(2):7~12.
    [83]丁淳.表面织构(surface texture).机械工业标准化与质量,2006,(7):35.
    [84] Hamilton D B, Walowit J A, Allen C M A. Theory of Lubrication by Micro asperities,ASME J.Basic Eng,1966,88(l):177~185.
    [85] Menezes P, Kailas S. Influence of surface texture on coefficient of friction and transfer layerformation during sliding of pure magnesium pin on080M40(EN8) steel plate. Wear,2006,261:578~591.
    [86]邓宝清,任露泉,苏岩,等.模拟活塞缸套摩擦副的仿生非光滑表面的摩擦学研究.吉林大学学报,2004,34(1):79~84.
    [87] Jong D, Jason T, David F J, et al. Effect of surface texturing on CPT friction sleevemeasurements. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(2):158~168.
    [88] Ronen A, Etsion I, Kligerman Y. Friction-reducing surface-texturing in reciprocating automotivecomponent. Trib. Trans.,2001,44(3):359~366.
    [89]刘一静,袁明超,王晓雷.表面织构对发动机活塞/缸套摩擦性能的影响.中国矿业大学学报,2009,38(6):866~871.
    [90] Ryk G, Etsion I. Testing piston rings with partial laser surface texturing for friction reduction.Wear,2006,261:792~796.
    [91] Pettersson U, Jacobson S. Influence of surface texture on boundary lubricated sliding contacts.Tribology International,2003,36:857~864.
    [92]卓娟,韩志武,任露泉.激光处理凹坑形仿生非光滑表面试件的高温摩擦磨损特性研究.摩擦学学报,2005,25(4):374~377.
    [93]宋起飞,周宏,李跃,等.仿生非光滑表面铸铁材料的常温摩擦磨损性能.摩擦学学报,2006,26(1):24~27.
    [94] Pettersson U, Jacobson S. Textured surfaces for mi-proved lubrication at high pressure and lowsliding speed of roller/piston in hydraulic motors. Tribology International,2007,40:355~359.
    [95] Andersson P, Koskinen J, Varjus S, et al. Microlubrication effect by laser-textured steel surfaces.Wear,2007,262:369~379.
    [96]王再宙,韩志武,任露泉.激光处理非光滑凸包表面的耐磨性试验.吉林大学学报,2002,32(2):45~48.
    [97] Wang X L, Kato K, Adachi K, etal. Optimization of the surface texture for silicon carbide slidingin water. Applied Surface Science,2006,253:1282~1286.
    [98]汪家道,陈大融,孔宪梅.规则凹坑表面形貌润滑研究.摩擦学学报,2003,23(l):52~55.
    [99] Ranjan R, Lambeth D N, Tromel M, et al. Laser Texturing for Low Flying Height Media. JApplied Physics,1991,69(8):5745~5747.
    [100] Ogihara H. Technology for Reducing Engine Rubbing Resistance by Means of SurfaceImprovement. HONDAR&D Technical Review,2000,12(2):93~98.
    [101] Bechert D W, Bruse M, Hage W. Experiments with three-dimensional riblets as an dealizedmodel of shark skin. Experiments in Fluids,2000,(28):403~412.
    [102]韩鑫,张德远.鲨鱼皮复制工艺研究.中国科学(E辑:技术科学),2008,(1):9~15.
    [103] Kawasegi N, Sugimori H, Morimoto H, et al. Development of cutting tools with microscale andnanoscale textures to improve frictional behavior. Precision Engineering,2009,33(3):248~254.
    [104] Sugihara T, Enomoto T. Development of a cutting tool with a nano/micro-texturedsurface-Improvement of anti-adhesive effect by considering the texture patterns. PrecisionEngineering,2009,33(4):425~429.
    [105] Lei S T, Devarajan S, Chang Z H. A study of micropool lubricated cutting tool in machining ofmild steel. journal of materials processing technology,2009,209(3):1612~1620.
    [106]刘战强,黄传真,万熠,艾兴.切削温度测量方法综述.工具技术,2002,36(8):3~6.
    [107]李福山,汪金龙.热电偶测温的冷端温度补偿技术及其实现.郑州工学院学报.1995,16(4):15~18.
    [108]张发英,沈锡祥.用自然热电偶法测量切削温度时寄生电动势的补偿.华南工学院学报,1979,7(2):43~53.
    [109]郑明亮,尹贺成.自然热电偶法测定切削温度时寄生热电势的消除.吉林工业大学学报,1991,(3):115~118.
    [110]刘献礼,陈波,孟安,杨春,严复钢,李振加.具有温度补偿的自然热电偶法测量切削温度的原理及计算方法.工具技术,1998,32(10):36~38.
    [111]舒畅.高速铣削钛合金的切削温度研究,[硕士学位论文].南京:南京航空航天大学,2005.
    [112] Li L, Chang H, Wang M, et al. Temperature Measurement in High Speed Milling Ti6Al4V. KeyEngineering Materials,2004,259-260:804~808.
    [113]李亮.钛合金高速铣削机理及其工艺研究,[博士学位论文].南京:南京航空航天大学.2004.
    [114] Nordin M, Sundstr M R, Selinder T I, et al. Wear and failure mechanisms of multilayered PVDTiN/TaN coated tools when milling austenitic stainless steel. Surface&Coatings Technology,2000,133:240~246.
    [115]刘明,谢常青,王从舜,等.微细加工技术.北京:化学工业出版社,2004.
    [116] Schaller T, Bohn L, Mayer J, et al. Microstructure grooves with a width of less than50μm cutwith ground hard metal micro end mills. Precision Engineering,1999,(23):229~235.
    [117] Ehmann K F, Bourell D. WTEC Panel Report on International Assessment of Research andDevelopment in Micro-manufacturing. USA: WTEC,2005:59~163.
    [118] Fofonoff T A, Martel S M, Hatsopoulos N G, et al. Microelectrode Array Fabrication byElectrical Discharge Machining and Chemical Etching. IEEE TRANSACTIONS ONBIOMEDICAL ENGINEERING,2004,51(6):10~14.
    [119] Takahata K, Gianchandani Y B. Batch Mode Micro-EDM for High-density and High-thoughputmicromachining. Journal of Microelectro mechanical Systems,2002,11(4):72~75.
    [120]李勇,王显军,周兆英.微细电火花加工关键技术研究.清华大学学报(自然科学版),1999,39(8):45~48.
    [121]王振龙,赵万生,狄士春.微细电火花加工技术的研究进展.中国机械工程,2002,13(10):894~898.
    [122] Kozak J, P.Rajurkar K. Selected problems of micro-electrochemical machining. Journal ofMaterials Processing Technology,2004,14:426~431.
    [123] Bhattacharyya B, Munda J. Experimental investigation into electrochemical micromachining(EMM) process. Journal of Materials Processing Technology,2003,140:287~291.
    [124] McGeough J A, Pajak P T, De Silva A K M, et al. Recent research and developments inelectrochemical machining. International Journal of Electrical Machining,2003,(8):1~14.
    [125] Kurita T, Chikamori K, Kubota S, et al. A study of three-dimensional shape machining with anECUM system. International Journal of Machine Tools&Manufacture,2005,12:481~488.
    [126] Xie X D, Berner Z, Albers J, et al. Electrochemical Behavior and Analytical Performance of anIridium-Based Ultra microelectrode Array (UMEA) Sensor. Microchim Acta,2005,150:137~145.
    [127]朱荻,张朝阳.微细电化学加工技术的研究与发展.2005年中国机械工程学会年会论文集,重庆:中国机械工程学会,2005:46~54.
    [128] Ehrfeld W, Otter J G, Lo-we H, et al. Materials for LIGA technology. Microsystem Technologies,1999,(5):105~112.
    [129] Petkovsek R, Babnik A, Diaci J. Optodynamic monitoring of the laser drilling of through-holesin glass ampoules. Measurement Science&Technology,2006,17(10):2828~2834.
    [130] Eppes T A, Milanovic I M, Shetty D. Laser percussion drilling modeling utility. Journal of LaserApplications,2009,21(2):102~109.
    [131] Cheng J, Perrie W, Sharp M, et al. Single-pulse drilling study on Au, Al and Ti alloy by using apicosecond laser. Applied Physics A-Materials Science&Processing,2009,95(3):739~746.
    [132] Kacar E, Mutlu M, Akman E, et al. Characterization of the drilling alumina ceramic using Nd:YAG pulsed laser. Journal of Mateirals Processing Technology,2009,209(4):2008~2014.
    [133] Wang X D, Michalowski A, Walter D, et al. Laser drilling of stainless steel with nanoseconddouble-pulse. Optics and Laser Technology,2009,41(2):148~153.
    [134] Yu M R, Kim H S, Blick R H. Laser drilling of nano-pores in sandwiched thin glass membranes.Optics Express,2009,17(12):10044~10049.
    [135]巴瑞璋,张晓兵.激光加工密集群孔技术.航空制造技术,2003,7:68~71.
    [136] Schreck S, Zum G. Laser-assisted structuring of ceramic and steel surfaces for improvingtribological properties. Applied Surface Science2005,247(1-4):616~622.
    [137]王光强.金属薄板微小群孔阵列结构的微细电解加工技术研究,[硕士学位论文].南京航空航天大学,2007.
    [138]张弘弢.金属切削过程中剪切角、切削力的预报及切屑折断机理研究,[博士学位论文].大连:大连理工大学,1988.
    [139] Rode S. A mixed friction model for dynamically loaded contacts with application to piston ringlubrication. Proe. of the7th Leeds-Lyon Symposium on Tribology, Lyon,1980.
    [140]《工程材料实用手册》编辑委员会编.工程材料实用手册钛合金分册.北京:中国标准出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700