用户名: 密码: 验证码:
碳纳米管和石墨烯的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于碳单质和化合物组成的多样性,碳及其化合物一直是材料、物理和化学领域的研究重点之一。特别近三十年来,随着C60、碳纳米管(CNTs)、石墨烯(Graphene)等明星材料的相续发现,逐次将碳材料的研究推向高潮。一种材料要实现其应用,其前提是具有优异或不可替代的性能并能够规模化制备和可控化制备,这也是碳纳米管和石墨烯两个新型碳纳米材料的研究重点。鉴于此,本文提出并研究了一种超快、规模化制备石墨烯的方法——熔融含碳合金旋淬碳析出法;提出并设计制备多种碳纳米管特别结构的方法。在此基础上,研究了碳纳米管与本文所发现的Al-Sn产氢合金复合得到的Al-Sn/CNTs复合材料的产氢性能,以及采用熔融合金旋淬碳析出法制备的附着有石墨烯复合膜的Ni合金条带的抗腐蚀性能,得到了如下的结果:
     研究了浮动催化方法制备碳纳米管的工艺条件,制备了能满足本论文实验所需的碳纳米管阵列和薄膜;通过对Al-Sn合金进行轧制,开发了一种在室温下能够与水直接快速反应产生氢气的新型产氢合金。研究了合金成分对产氢速度和产氢量的影响,发现铝含量在27%时,此时合金中铝锡的体积相当,氢气析出速率最快:在铝含量在45%时,氢气产量最大,达到2.3L/cm3(0.2g/cm3),此高于传统储氢合金,能够与金属氢化物相媲美;通过高温超高压方法制备了含有碳纳米管的Al-Sn合金复合材料,研究发现,随着复合材料中碳纳米管量的增加,Al-Sn合金复合材料产氢量和产氢速度增加,而在碳纳米管含量相同的情况下,含有单壁碳纳米管的Al-Sn合金复合材料产氢量和产氢速度比含有多壁碳纳米管的Al-Sn合金复合材料更大;结合理论研究,说明水分子在单壁碳纳米管中的流动速度远高于多壁碳纳米管,从而增加了水分子进入合金内部与Al-Sn合金反应的几率,进而提升了该种复合材料与水直接反应制备氢气的能力。
     利用阳极氧化铝(AAO)为模板,通过对已经制备了碳纳米管或金属纳米线的AAO模板管壁再次扩孔,并再次生长碳纳米管或纳米线的新方法,获得了银纳米线轴向与碳纳米管连接,径向被碳纳米管包裹的接触面更大的异质结构;利用AAO模板,通过调节AAO模板中已经获得的Ag纳米线的热处理温度及随后生长碳纳米管的温度,使AAO管壁上附着Ag纳米颗粒,改变AAO内壁的形貌。由于碳纳米管生长过程中复制AAO内壁的形貌,获得了管壁带有凹陷或窗口的新型碳纳米管结构;基于此,实现铂纳米颗粒镶嵌在碳纳米管管壁内,而不是附着在碳纳米管管壁外或管内的、铂纳米颗粒与碳纳米管的新型异质结构。这些结构为本文首先获得,丰富了碳纳米管的形貌和结构,并可能拥有新的性能而在能源、药物传输和纳米电子器件中发挥特殊的作用。
     开发一种超快、规模化制备石墨烯的新方法,其特点是采用制备非晶条带的单辊旋淬设备,将Ni/C合金喷射到高速旋转的铜辊之上,瞬间(0.2秒)获得了宽几毫米、长几米的连续均匀的、表面附着石墨烯的合金条带,本文称之为熔融合金旋淬碳自析法。通过对条带形貌定性的描述和EDS半定量的分析,研究了碳在镍中的含量和铜辊的转速对膜层生长的影响,发现:碳含量低于0.2wt%时,不能得到石墨烯,碳含量越高,在合金条带表面碳含量越高,得到的石墨烯面积越大,当碳含量高于0.6wt%时,石墨烯复合膜就会覆盖整个合金带材,为了得到少层石墨烯膜,碳含量控制范围在0.6-0.3wt%之间;同时发现转速越快,条带越薄,冷却速率越大,析出越多,膜层在带面的覆盖率越大,为了控制膜层厚度,转速可在4000-6000rpm之间。研究了该方法生长石墨烯的机理:不同于普通的CVD方法中碳在固体内渗碳析碳,该方法中碳的扩散主要在熔融Ni合金中,扩散速度和深度增加,因此能够以CVD方法不可比拟的速度生长石墨烯。熔融碳镍合金旋淬时的冷却速率达到104-106K/s,极大的温度梯度变化和化学位梯度造成的碳原子的快速扩散超过了急冷凝固对碳原子的扩散速度大幅降低的影响,仍然表现为大量的碳原子的析出;同时,快速冷却造成晶粒细化,为碳原子的析出提供了更多的扩散点,提高了扩散效率,进一步加速了碳原子析出,因而在镍合金条带表面形成了大量的石墨烯和少层石墨烯。
     研究了采用该法制备的合金条带的抗腐蚀性能,通过对比覆盖有不同面积石墨烯复合膜的样品的极化曲线,发现完全包覆有石墨烯复合膜的Ni合金条带的腐蚀电位明显高于纯镍样品,其腐蚀电流也比纯镍的低了两个数量级,说明完全包覆石墨烯复合膜的样品的抗腐蚀性明显提升;包覆石墨烯复合膜的面积越大,则合金条带的耐腐蚀性能越好。这种石墨烯复合膜能够提高金属抗腐蚀性能的原因在于石墨烯复合膜起到了离子阻挡层的作用,从而降低了金属Ni与离子反应的几率而起到降低腐蚀速度的作用。
Due to the structural diversity of the element carbon and compounds, carbon and its compounds have been one of the research focuses in the fields of materials, physics, chemistry. Especially in recent three decades, as the star materials of C60, carbon nanotubes (CNTs), graphene (Graphene) were continuously found, the study of carbon material is never ever so prosperous. To achieve its application of a material, the premise is that the material needs to be excellent and irreplaceable, it carried out large-scale preparation and controllable preparation as well, this is also the research focus of two new carbon nanomaterials, carbon nanotubes and graphene. In view of this, this thesis proposes a new method for the ultra-fast, large-scale preparation of graphene, which named molten carbon-containng alloy quenched carbon slfe-segregation (MQCS); Some fabrication methods of several kinds of carbon nanotubes with special structures have been proposed and designed. On basis of these works, research on the hydrogen generation performance of Al-Sn/CNTs composites which was produced by the carbon nanotube and the Al-Sn hydrogen-generation alloys firstly was presented by the thesis, as well the corrosion resistance performance of Ni alloy strip coated by graphene composite films which was produced by the method of molten carbon-containng alloy quenched carbon slfe-segregation, have been inverstgated. And the following results have been obtained:
     The process conditions of preparing carbon nanotubes by a floating catalyst method are studied, and the carbon nanotubes arrays and films required in experiments of this thesis were prepared. By rolling of Al-Sn alloy, a novel hydrogen-generation alloy was developed that can react with water directly and quickly and produce hydrogen at room temperature. The influence of alloying elements on the hydrogen generation rate and yield are studied, it waas found that the alloy with the aluminum content of27wt%, the volumes of Al and Sn in the alloy were at the same, hydrogen evolution rate was the highest. While if the alloy has the aluminum content of45wt%, the hydrogen yield reached maximum,2.3L/cm3(0.2g/cm3), which is superior than that of the traditional hydrogen storage alloy and can be compared with the metal hydride. Through the high temperature high pressure process, the Al-Sn alloy composite materials containing carbon nanotubes were prepared. The studies show that, with the increase of the amount of carbon nanotubes in the composite material, the hydrogen yield and hydrogen evolution rate of the composite material increased. While, When the carbon nanotube content was same in the composite, the hydrogen yield and hydrogen evolution rate of the composite containing single-walled carbon nanotubes are greater than those of composite containing multi-walled carbon nanotubes. Combined with other theoretical researches and the experimental phenomena here, we guess that the above phenomenon can be explained as the followings. The flow of water molecules in the inner of single wall carbon nanotubes is far higher than that in the multi-walled carbon nanotubes, which increases the probability of water molecules into the alloy and the reaction between Al-Sn alloy and water, thereby increases the reaction rate of the composite with water directly and the capacity for generating hydro gen.
     Using anodic aluminum oxide (AAO) as the template, though a new method that expands again the pores of AAO where the carbon nanotubes or nanowires were prepared, and carbon nanotubes or nanowires are grown again then, a heterostructure with a larger contact surface when the silver nanowire is connected to the carbon nanotube in axial direction, but in the radial direction is wrapped by carbon nanotube is obtained. A new structure of carbon nanotubes with depressions or windows in their walls was fabricated using the AAO template by adjusting the heat treatment temperature of the Ag nanowires having been obtained in the AAO pores and the temperature of growth of carbon nanotubes, which lets the Ag nanoparticles dispersed on the walls of AAO pores and thus changes the morphology of the walls of AAO pores and lets the carbon nanotubes copy this morphology in their growth process. On this basis, a new heterostructure with platinum nanoparticles embedded in the carbon nanotube wall, other than attached on the inner or outer surfaces of the carbon nanotubes is prepared. The above structures are firstly obtained in this these, which enrich the morphology and structure of carbon nanotubes, and may have some new performances and play special roles in fields of energy, drug delivery, nanoelectronic devices and so on.
     A novel method for large-scale preparation of graphene, which called the molten carbon-containng alloy quenched carbon slfe-segregation (MQCS) in the thesis was developed. This method is characterized by using preparation amprphous alloy strips with of single-roller melt-spinning equipment, jetting molten Ni/C alloy to high-speed rotating copper roller, obtained instantaneously (less than0.2seconds) the a continuous alloy strip of a few millimeters wide several meters long with its surface coated graphene composite films.Through the qualitative description of strip morphology and the half quantitative analysis of x-ray energy dispersive spectrum (EDS), the effects of carbon content in nickel alloy and the rotation speed of copper roller on the growth of graphene film were studied. It is found that:if the carbon content is less than0.2wt%, the graphene can not be gotten. The higher the content of carbon in the alloy, the higher the carbon content on alloy strip surface, the larger the graphene area it got. However, if the carbon content in the alloy is higher than0.6wt%, graphene will coat the alloy strip totally. In order to get thin graphene layer, the carbon content is better in the range of0.6-0.3wt%in present experimental condition; meanwhile, it is found that the faster coppor roller rotated, the thinner the strip was, the faster the cooling rate was, the more carbon segregated, the larger coverage the graphene films on the surface of the alloy strip had. In order to get thinner and more uniform graphene films, the appropriate speed should be at4000-6000rpra Studies on the growth mechanism of the graphene by the method is different from the carbon diffusion in the solid in the process of carburizing and depositio carbon in the common CVD method, in this method, the diffusion of carbon is mainly in melting of the Ni alloy, with the increased diffusion rate and depth, the graphene can be grown at a incomparable speed compared to the CVD method. The cooling rate ofthe quenching of melting Ni/C alloy is as high as104-106K/s, the fast diffusion of carbon Atomic caused by the great variation of temperature gradient and the chemical potential gradient is stronger than the affect of the decreasing diffusion speed due to the rapid solidification. Thus, the performace is still the precipitation of a large number of carbon atoms. At the same time, the rapid cooling causes grain refinement, provides more diffusion points of the precipitation of carbon atoms, improves the diffusion efficiency, further accelerates the carbon atoms precipitation. Therefore, a large quantities of graphene and few-layer graphene are formed on the surface of nickel alloy strips.
     The corrosion resistance of the alloy strip prepared by the present method has been investigated. Through the comparison of the samples'polarization curves covered with different areas of graphene composite films, it was found that corrosion potential of the Ni alloy strip fully coated with graphene composite film is significantly higher than that of pure nickel, the corrosion current is two orders of magnitude lower than that of the pure nickel. It showed that the corrosion resistance of the alloys strips with fully graphene composite film coated is far better than the pure nickel samples; and the larger the coated graphene composite films area is, the better he corrosion resistant performance of the alloy strip is. The graphene composite films can improve the corrosion resistance of the metal, because the graphene composite film plays a role as the barrier layer of ion. And by reducing the chance of reaction ofNi metal and ion, the corrosion rate is lowered.
引文
[I]Cheng Hiiming. Carbon Nanotubes Synthes, Microstructrues, Properties andApplications[M], Beijing:Chemical Industry Press,2002
    [2]沈海军,刘根林.新型碳纳米材料—碳富勒烯[M].北京:国防工业出版社,2010
    [3]Kroto H W, Heath J R, O'Brien S C,et at C60:Buckminsterfullerene[J]. Nature,1985,318: 162-163
    [4]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354,56-58
    [5]Novoselov K S, GeimA K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306:666-669
    [6]X L, Yan Q B, Ye F, et al. T-Carbon:A Novel Carbon Allotrope[J].Physical Review Letters,2011,106,155703
    [7]Noorden R V.The trails of new carbon[J]. Nature,2011,469:14-16
    [8]Michael F L, De "Volder, Tawfick R H, et al. Carbon Nanotubes:Present and FutureCommercial[J] Applications. Science,2013,339:535-539
    [9]Iijima S. Growth of carbon nanotubes[J]. Materials Science and Engeering B,1993,19(1-2):172-180
    [10]Lu JP, Han J. Carbon nanotubes and nanotube-based nanodevices[J]. International Journal of High Speed Electronics and Systems,1998,9(1):101-123
    [11]Garg A, Han J, Sinnott SB.Interactions of carbon-nanotubule proximal probe tips with diamond and grapheme[J]. Physical Review Letters,1998,81(11):2260-2263
    [12]Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature,1996,381(6584):678-680
    [13]Wong EW, Sheehan PE, Lieber CM. Nanobeam:elasticity, strength, and toughness of nanorods and nanotubes [J]. Science,1997,277:1971-1974
    [14]Krishnan A, Dujardin E, Ebbesen TW. Young's modulus of single-walled nanotubesfJ]. Physical Review B,1998,58(20):14013-14019
    [15]Salvetat JP, Briggs AD, Bonard JM, et al. Elastic and shear moduli of single-walled carbon nanotube ropes [J]. Physical Review Letters,1999,82(5):944-947
    [16]Zhu HW, Xu CL, Wu DH. Direct synthesis of long single-walled carbon nanotube atrands[J]. Science,2002,296(5569):884-886
    [17]Peng B, Locascio M, Zapol P, et al. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced corsslinking inprovements[J].Nature Nanotechnology,2008,3(10):626-631
    [18]Shang Y Y, He X D, Li Y B, et al. Super-Stretehable Spring-Like Carbon Nanotube Ropes[J]. Advanced Materials.2012,24(21)2896-2900
    [19]Niu Z Q, Ma W J, Li J Z,et al. High-Strength Laminated Copper Matrix Nanocomposites Developed from a Single-Walled Carbon Nanotube Film with Continuous Reticulate Architecture[J]. Advanced Functional Materials,2012,22(24):5209-5215
    [20]Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters,2000,84(20):4613-4616
    [21]Pop E, Mann D, Wang Q, Goodson K, Dai H J. Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature[J]. Nano Letters,2006,6:96-100
    [22]O'Connell MJ, Bachilo SM, Huffman CB. Band Gap Fluorescence from Individual Single-walled Carbon Nannotubes[J]. Science,2002,297(5581):593-596
    [23]Lefebvre J, Fraser JM, Homma Y, Finnie P. Photo luminescence from single-walled carbon nanotubes:a comparison between suspended and micelle-encapsulated nanotubes[J], Applied Physics A,2004,78:1107-1110
    [24]Bonard JM, Stockli T, Maier F, et al. Field-emission-induced luminescence from carbon nanotubes[J]. Physical Review Letters,1998,81(7):1441-1444
    [25]Wei BQ, Vajtai R, Ajayan PM. Reliability and current carrying capacity of carbon nanotubes[J]. Physical Review Letters,2001,79(8):1172-1174
    [26]Wei JQ, Zhu HW, Wu DH. Carbon nanotubes filaments in household light bulbs[J]. Applied Physical Letters,2004,84(24):4869-4871
    [27]Saito R, Fujita M, Dresselhaus G, Dresselhaus M S. Electronic structure and growth mechanism of carbon tubules[J]. Materials Science and Engineering: B,1993,19(1-2):185-191
    [28]Fischer J E, Dai H, Thess A, et al. Metallic resistivity in crystalline ropes of single-wall carbon nanotubes[J], Physics Review B,1997,55(8):4921-4924
    [29]Patel, V Global carbon nanotubes market Industry beckons. Nanowerk Spotlight 2013. Accessed on Jan 10,2013:http//www.nanowerk.com/spotlight/spotid=23118.php
    [30]Yacaman MJ, Yoshido MM, Rendon L, Santiesteban J G. Catalytic growth of carbon microtubles withfullerene structure[J]. Applied Physics Letters,1993,62(2)202-204
    [31]Kong J, Cassell AM, Dai HJ. Chemical vapor deposition of methane for single-walled carbon nanotubes[J]. Chemical Physics Letters,1998,292(4-6):567-574
    [32]Fan SS, Chaplin MG, Franklin N R, et al. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties [J]. Science,1999,283(5401):512-514
    [33]Hata K, Futaba DN, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J]. Science,2004,306(5700):1362-1364
    [34]Sen R, Govindaraj A, Rao CNR. Carbon nanotubes by the metalloceneroute[J]. Chemical Physics Letters,1997,267(3-4)276-280
    [35]Cheng HM, Li F, Sun X, et al. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons [J]. Chemical Physics Letters,1998,289(5-6):602-610
    [36]Xiang R, Luo GH, Qian W Z, Wang Y,Wei F, Li Q. Large Area Growth of Aligned CNT Arrays on Spheres:Towards Large Scale and Continuous Production[J]. Chemical Vapor Deposition,2007,13(10):533-536
    [37]LupoF, Rodri guez-ManzoJA,ZamudioA, Kim Y A Pyrorytic synthesis of long strands of large diametersingle-walled carbon nanotubes at atmospheric pressurein the absence of sulphur and hydrogen[J]. Chemical Physics Letters,2005,410(4-6):384-390
    [38]Li YL, Zhang LH, Zhang XH, et al, Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions. Nanotechnology,2007,18(22),225604
    [39]Masuda H, Fukuda K Ordered Metal Nanohole Arrays Made By A 2-Step Replication Of Honeycomb Structures Of Anodic Alumina. Science,1995,268:1466-1468
    [40]Parthasarathy RV PhaniKLN, Martin CR.Template synthesis of graphitic nanotubes[J]. Advanced Materials,1995,7(11):896-897
    [41]Jung S S, Jin S L. Highly ordered two-dimensional carbon nanotube arrays[J]. Applied Physics Letters,1999,75(14)2047-2049
    [42]Kyotani T, Tsai LF, Tomita A Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film[J]. Chemistry of Materials,1996,8(8)2109-2113
    [43]Yang Y, Hu Z, Wu Q, Lu Y N, Wang X Z, Chen Y. Template-confined growth and structuralcharacterization of amorphous carbon nanotubes [J]. Chemical Physics Letters,2003,373(5-6):580-585
    [44]Yilmazoglu O, Popp A, DimitriosP, Jorg J S. Flexible field emitter arrays with adjustable carbon nanotube distances and bundle generation[J].Journal of Vacuum Science & Technology B,2010,28(2):268-272
    [45]Yuan Z H, Huang H, Dang H Y, et al. Field emission property of highly ordered monodispersed carbon nanotube arrays [J]. Applied Physics Letters,2001,78 (20):3127-3129
    [46]Suh J S, Lee J S, Kim H, Linearly joined carbon nanotubes [J]. Synthetic Metals,2001,123(3): 381-383
    [47]Li J, Papadopoulos C, XuJ.Nanoelectronics:Growing Y-junction carbon nanotubes[J]. Nature,1999,402253-254
    [48]Lee J S, Gu G H, Kim H,Jeong K S, Bae J, Suh J S. Growth of carbon nanotubes on anodic aluminum oxide template:fabrication of a tube-in-tube and linearly joined tube[J]. Chemistry of Materials,2001,13(7),2387-2391
    [49]Kim L, Yoon S M, Kim J, Suh J S. Controllable fabrication of tube-in-tubes using anodic aluminum oxide templates[J].Synthetic Metals,2004,140(2-3):135-138
    [50]Luo J, Huang Z P, Zhao Y G, Zhang L, Zhu J. Arrays of heterojunctions of Ag nanowires and amorphous carbon nanotubes. Advanced Materials2004,16(17):1512-1515
    [51]Shaijumon M M, Ou F S, Ci L J, Ajayan P M. Synthesis of hybrid nanowires arrays and their application as high power supercapacitor electrodes[J]. Chemical Communications,2008, 20:2373-2375
    [52]Meng G W, Han F M, Zhao X L, et al. A general synthetic approach to interconnected nanowire/nanotube and nanotube/nanowire/nanotube heterojunctions with branched topology[J].AngewandteChemie,2009,121(39):7302-7306
    [53]WallaceP R, The band theory of graphite[J]. Physical Review,1947,71(9),622-634
    [54]Morozov S V, Novoselov K S, Schedin F, et al. Two-dimensional electron and hole gases at the surface of graphite[J]. Physical Review B,2005,72(20),201401
    [55]Zhang Y, TanY W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature,2005,438:201-204
    [56]Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K. The electronic properties of graphene[J]. Reviews of Modern Physics,2009,81:109-162
    [57]Geim A K, Novoselov K S, The rise of graphene[J]. Nature Materials,2007,6:183-191
    [58]Lee C G, Wei X D, Kysar J W, Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science,2008,321(5887):385-388
    [59]Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J], Nature,2006,442:282-286
    [60]Nair R, Blake P, Grigorenko A,Novoselov K S,et al. Fine structure constant defines visual transparency of graphene[J]. Science,2008,320(5881):1308.
    [61]Ni Z H, Wang H M, Kasim J,et al. Graphene Thickness Determination Using Reflection and Contrast Spectroscopy[J]. Nano Letters,2007,7(9)2758-2763
    [62]Bolotina K I, Sikesb K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J], Solid State Communications,2008,146(9-10):351-355
    [63]Chen J H, Jang C, Xiao S,et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology,2008,3,206-209
    [64]Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457:706-710
    [65]Balandin A A, Ghosh S, Bao W,et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8:902-907
    [66]MoserJ, Barreiro A, Bachtold A Current-induced cleaning of graphene[J]. Applied Physics Letters,2007,91(16):163513-163513-3.
    [67]Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors[J]. Nano letters,2008, 8(10):3498-3502
    [68]Blake P, Hill E W, Castro Neto A H,et al. Making graphene visible[J].Applied Physics Letters,2007,91,063124
    [69]Chae S J, Gu'nes F,Kim K K, et al. Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition:Wrinkle Formation[J],Advanced Materials,2009, 21(22):2328-2333
    [70]Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters,2009,9(l):30-35
    [71]Hernandez Y, Nicolosi V, Lotys M, et al. High-yield profuction of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology,2009,3(9):563-568
    [72]Ferrari A C, Meyer J C, Scardaci V, et al. Raman Spectrum of Graphene and Graphene Layers[J]. Physical Review Letters,2006,97,187401
    [73]Lui C H, Liu L, Mak K F, et al. Ultraflat graphene[J]. Nature,2009,462:339-341
    [74]Eizenberg M, Blakely J M. Carbon monolayer phase condensation on Ni(111)[J].Surface Science,1979,82 (1)228-236
    [75]Eizenberg M, Blakely J M-Carbon interaction with nickel surfaces:Monolayer formation and structural stability[J]. Journal of Chemical Physics,1979,71 (8):3467-3477
    [76]Lu X K, Yu M F, Huang H, et al. Tailoring graphite with the goal of achieving single sheets[J]. Nanotechnology,1999,10(3)269-272
    [77]Zhang Y, Small J P, Pontius W V, et al. Fabrication and Electric Field Dependent Transport Measurements of Mesoscopic Graphite Devices [J]. Applied Physics Letters,2005,86 (7), 073104
    [78]Ci L J.Song L, Jariwala D, etal.Graphene Shape Control by Multistage Cutting and Transfer[J]. Advanced Materials,2009,21 (44):4487-4487
    [79]LiangX G, ChangA S P, ZhangYG, et al, Electrostatic Force Assisted Exfoliation of Prepatterned Few-Layer Graphenes into Device Sites[J]. Nano Letters,2008,9 (1):467-472
    [80]Liang X Q Fu Z L, Chou S Y Graphene Transistors Fabricated via Transfer-Printing In Device Active-Areas on Large Wafer[J]. Nano Letters,2007,7 (12)3840-3844
    [81]Brodie B C.Sur le poidsatomique du graphite[J]. Annales de Chimie et de Physique,1860,59: 466-472
    [82]Hummers W S, Offeman R E, Preparation of Graphitic Oxide[J]. Journal of the American Chemical Society,1958,80 (6):1339-1339
    [83]Staudenmaier L.VerfahrenzurDarstellung der Graphitsaure[J]. Berichte der deutschenchemischenGesellschaft,1898,31 (2),1481-1487
    [84]Stankovich S,Piner R D, Chen X Q, et al.Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)[J]. Journal of Materials Chemistry,2006,16:155-158
    [85]Jung I, Pelton M, PinerR,et al. Simple Approach for High-Contrast Optical Imaging and Characterization of Graphene-Based Sheets[J]. Nano Letters,2007,7,3569-3575
    [86]S. Park and R. S. Ruoff. Chemical methods for the production of graphenes [J].Nature Nanotechnology,2009,4 (4):217-224
    [87]Berger C, Song Z, Li T,et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics[J]. The Journal of Physical Chemistry B,2004, 108:19912-19916
    [88]Emtsev KV, Bostwick A, Horn K, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nature Materials,2009,8:203-207
    [89]Aizawa T, Souda R, Otani S, et al.Bond softening in monolayer graphite formed on transition-metal carbide surfaces[J].Physical Review B,1990,42 (18):11469-11478
    [90]Sutter P W, Flege J I, Sutter E A Epitaxial graphene on ruthenium[J]. Nature Materials,2008, 7:406-411
    [91]Coraux J, NDiaye A T, Busse C, et al. Structural coherency of graphene on Ir (111)[J]. Nano Letters,2008,8(2):565-570
    [92]Starr D E, Pazhetnov E M, Stadnichenko A I, et al. Carbon films grown on Pt (111) as supports for model gold catalysts[J]. Surface Science,2006,600(13)2688-2695
    [93]Loginova E, Bartelt N C, FeibelmanP J, et aLEvidence for graphene growth by C cluster attachment[J]. New Journal of Physics,2008,10,093026
    [94]Loginova E, Bartelt N C, Feibelman P J, et al. Factors influencing graphene growth on metal surfaces. New Journal of Physics,2009,11,063046
    [95]McCarty K F, Feibelman P J, Loginova E, et al. Kinetics and thermodynamics of carbon segregation and graphene growth on Ru(0001)[J], Carbon,2009,47(7):1806-1813
    [96]Edwards R S, Coleman K S. Graphene Film Growth on Polycrystalline Metals[J]. Rccounts of Chemical Research,2013,46(1)23-30
    [97]Obraztsov A N, Obraztsova E A, TyurninaA V, et aLChemical vapor deposition of thin graphite films of nanometer[J]. Carbon,2007,45 (10)2017-2021
    [98]Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters,2009,9(1):30-35
    [99]Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature,2009,457:706-710
    [100]Reina A, Thiele S, Jia X T, et aLGrowth of Large-Area Single-and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces[J]. Nano Research,2009,2(6): 509-516
    [101]Li X S, Cai W W, An J H,et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils[J]. Science,2009,324(5932):1312-1314
    [102]Li X S, Cai W W, RuoffR S, et al. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling[J]. Nano Letters,2009,9(12):4268-4272
    [103]Bhaviripudi S, Jia X T, DresselhausM S, et aLRole of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst[J]. Nano Letters,2010,10 (10),4128-4133
    [104]Li X S, Magnuson C W,Venugopal A, et aLGraphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process[J]. Nano Letters,2010,10 (11):4328-4334
    [105]Gao L B, RenW C, Xu H L, et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum[J]. Nature communications,2012,3,699
    [106]Geng D C, Wu B, Guo Y L, et al. Uniform hexagonal graphene flakes and films grown on liquid copper surface[J]. PANS,2012,109(21):7992-7996
    [107]Bae S, Kim H, Lee Y B, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology,2010,5:574-578
    [108]Amini S, Garay J, Liu GX, Balandin AA, Abbaschian R. Growth of large-area graphene films from metal-carbon melts [J]. Journal of Applied Physics,2010,108(9):094321-094321-7
    [109]Huang L, Chang QH, Guo G L, et al. Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition[J]. Carbon,2012,50(2):551-556
    [110]Toshiyuki K, Masashi B, Nozomi K, et al.Production of a 100-m-long high-quality graphene transparent conductivefilm by roll-to-roll chemical vapor deposition and transfer process[J]. Applied Physics Letters,2013,102,023112
    [111]Zhang Q, Huang J Q, Zhao M Q, et ai Carbon Nanotube Mass Production:Principles and Processes[J].ChemSusChem,2011,4(7):864-889
    [112]BauhoferW, KovacsJ Z. A review and analysis of electrical percolation in carbon nanotube polymer composites [J]. Composites Science and Technology,2009,69(10):1486-1498
    [113]Chou T W, Gao L, Thostenson E T, et al. An assessment of the science and technology of carbon nanotube-based fibers and composites [J]. Composites Science and Technology,2010, 70(1):1-19
    [114]Bakshi S R,Agarwal A, An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites[J]. Carbon,2011,49(2):533-544
    [115]BeigbederA, Degee P, Conlan S L,et al. Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings[J]. Biofouling,2008,24(4)291-302
    [116]Sun D M, Timmermans M Y, Tian Y, et al. Flexible high-performance carbon nanotube integrated circuits[J].NatureNanotechnology,2011,6(3):156-161
    [117]Gabor N M, Zhong Z H, Bosnick K, Park J, et al.Extremely Efficient Militiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes[J]. Science,2009,325(5946):1367-1371
    [118]Dai L, ChangD W,Baek J B, Lu W. Carbon Nanomaterials for Advanced Energy Conversion and Storage[J]. Small2012,8(8):1130-1166
    [119]Goff AL, Artero V, Jousselme B, et al,From Hydrogenases to Noble Metal-Free Catalytic Nanomaterials for H2 Production and Uptake[J]. Science,2009,326(5958),1384-1387
    [120]Gogotsi Y, Simon P.True Performance Metrics in Electrochemical Energy Storage[J]. Science,2011,334(6058):917-918
    [121]Zuttel A. Hydrogen storage methods[J]. Nature,2004,91(4):157-172
    [122]毛宗强.氢能-21世纪的绿色能源[M].北京:化学工业出版社,2005
    [123]Das D, "Veziroglu T N. Hydrogen production by biological processes:a survey of literature[J]. International Journal of Hydrogen Energy,2001,26(1):13-28
    [124]Goltsov V A,Veziroglu T N. From hydrogen economy to hydrogen civilization[J]. International Journal of Hydrogen Energy,2001,26(9):909-915
    [125]Jacobson MZ, Colella WG, Golden DM. Cleaning the air and improving health with hydrogen fuel-cell vehicles[J]. Science,2005,24(308):1901-1905
    [126]Zhou L. Progress and problems in hydrogen storage methods[J]. Renewable and Sustainable Energy Reviews,2005,9(4)395-408
    [127]Muktepavel FO, Upit GP. The embrittlement of Sn-Al eutectic alloy in water vapor[J]. Journal of Materials Science,1984,19(2):599-606
    [128]Muktepavela F, Vasylyev M, Czerwinski A, et aL Investigation of hydrogen embrittlement of Sn-Al alloy during contact with water vapor[J]. Journal of Solid State Electrochemistry,2003, 7(2):83-86
    [129]Kravchenko OV Semenenko KN, Bulychev BM, et al. Activation of aluminum metal and its reaction with water[J]. Journal of Alloys and Compounds,2005,397(1-2):58-62
    [130]Shealy JR, Woodall JM. A new technique for gattering oxygen and moisture from gases used in semiconductor processing[J]. Applied Physics Letters,1982,41(l):88-90
    [131]Woodall JM, Ziebarth J, Allen CR. The science and technology of Al-Ge alloys as a material for energy storage, transport and splitting water. Proceedings of 2nd energy nanotechnology international conference ENIC 2007, Santa Clara, California, ENIC2007-45014.
    [132]Fan MQ, Xu F, Sun LX. Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water[J]. International Journal of Hydrogen Energy, 2007,32(14)2809-2815
    [133]Liu JL, Sun JL, Xu M, et al. Research on mechanism of pure aluminum hydrolyzation(I): reason of hydrolyzation anafysis[J]. China Powder Science and Technology,2005,11(1):4-6
    [134]Fan MQ, Sun LX, Xu F, et al. Hydrogen generation by aluminum-water reaction[J]. Chinese Journalof Power Sources,2007,31(7):556-558
    [135]Mattia D, Gogotsi Y Review:static and dynamic behavior of liquids inside carbon nanotubes[J]. Microfluidics andNanofluidics,2008,5(3),289-305
    [136]Sholl DS, Johnson JK. Making high-flux membranes with carbon nanotubes[J]. Science,2006, 312:1003-1004
    [137]Gusev AA, Guseva O. Rapid mass transport in mixed matrix nanotube/polymer membrance[J]. Advanced Materials,2007,19(18)2672-2676
    [138]Holt JK. Carbon nanotubes and nanofiuidictransport[J]. Advanced Materials,2009, 21(35):3542-3550
    [139]Ackerman D M, Skoulidas AI,Sholl D S, Johnson J K Diffusivities of Ar and Ne in Carbon Nanotubes[J].Molecular Simulation,2003,29(10-11):677-684
    [140]Skoulidas A I, Sholl D S, Johnson J K. Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes [J]. Journal of Chemical Physics, 2006,124(5),054708
    [141]Ismail AF, Goh PS, Samp SM, Aziz M. Transport and separation properties of carbon nantube-mixed matrixmembrane[J]. Separation and Purification Technology,2009, 70(1):12-26
    [142]Holt JK, Park HG, Wang YM, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science,2006,312(5776):1034-1037
    [143]Majumder M, Chopra N, Andrews R, et al. Nanoscale hydrodynamics:Enhanced flow in carbon nanotubes[J]. Nature,2005,438:44
    [144]Thomas JA, McGaughey AJH. Reassessing fast water transport through carbon nanotubes[J]. Nano Letters,2008,8(9)2788-2793
    [145]Hummer G, Rasaiah JC, Noworyta JP. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature,2001,414:188-190
    [146]Hu X Y, Zhu G Z, Zhang Y J, et al. Hydrogen generation through rolling using Al-Sn alloy[J]. International Journal of Hydrogen Energy,2012,37(15):11012-11020
    [147]Vingradova O I. Drainage of thin liquid film confined between hydrophobic surfaces [J]. Langmuir,1995,11(6)2213-2220
    [148]Lee KH, Lee HY, Jeung WY, et al. Magnetic properties and crystal structures of self-ordered ferromagnetic nanowires by acelectro forming[J]. Journal of Applied Physics,2002,91(10):8513-8515
    [149]Lin SW, Chang SC, Liu RS, et al. Fabrication and magnetic properties of nickel nanowires [J]. Journal of Magnetism and Magnetic Materials,2004,28228-31
    [150]罗俊.一维金属/半导体轴向异质结的制备、表征与伏安特性[D].博士学位论文.北京:清华大学材料科学与工程系,2006
    [151]Lordi V, Yao N, Wei J. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst[J]. Chemistry of Materials,2001,13 (3):733-737
    [152]Shim M, Kam N W S, Chen R J. Functionalization of carbon nanotubes for biocompatibility and biomolecularrecognition[J]. Nano Letters,2002,2 (4)285-288
    [153]Xue B, P. Chen, Q. Hong, Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes[J]. Journal of Materials Chemistry,2001,11:2378-2381
    [154]Choi H C, Shim M, Bangsaruntip S, et al. Spontaneous reduction of metal Ions on the sidewalk of carbon nanotubes[J]. Journal of the American Chemical Society,2002,124 (31):9058-9059
    [155]Zhang L, Fang Z,Zhao G C, et al. Electrodeposited platinum nanoparticles on the multi-walled carbon nanotubes and its electrocatalytic for nitric oxide[J].International Journal of Electrochemical science,2008,3:746-770
    [156]Lin Y, Watson K A, Fallbach M J, et al. Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes[J]. ACS Nano,2009,3 (4):871-884
    [157]Wang Q, Geng B Y, Tao B. A facile room temperature chemical route to Ptnanocube/carbon nanotube heterostructures with enhanced electrocatalysis[J].Journal of Power Sources, 2011,196 (1):191-195
    [158]Hu X Y, Zhang Y J, Zhou H H et al. Fabrication of the carbon nanotubes with small pits or embedded by nanoparticles via template-assisted method[J]. Journal of Crystal Growth,2011, 33 (1):48-53
    [159]Teranishi T, Kurita R, Miyake M. Shape control of Ptnanoparticles[J] Journal of Inorganic and Organometallic Polymers,2000,10(3):145-156
    [160]Ahmadi T S, Wang Z L, Green T C,et al. Shape-controlled synthesis of colloidal platinum nanoparticles[J]. Science,1996,272 (5270):1924-1926
    [161]Slonczewski JC, Weiss PR. Band Structure of Graphite. Physical Review,1958,109(2): 272-279
    [162]Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5296):666-669
    [163]Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,2005,438:197-200
    [164]Bunch JS,Verbridge SS, Alden JS, et al. Impermeable Atomic Membranes from Graphene Sheets[J]. Nano Letters,2008,8(8):2458-2462
    [165]Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechnology,2008,3270-274
    [166]Wang HM, Zheng Z, Wang YY, et al. Fabrication of graphene nanogap with crystallographicalry matching edges and its electron emission properties[J]. Applied Physics Letters,2010,96,023106
    [167]Wang X, Zhi L J, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano letters,2008,8(1):323-327
    [168]Hou JB, Shao YY, Ellis MW, et al. Graphene-based electrochemical energy conversion and storage:fuel cells, supercapacitors and lithium ion batteries[J]. Physical Chemistry Chemical Physics,2011,13:15384-15402
    [169]Zhu YW, Murali S, Stoller MD, et al. Carbon-Based Supercapacitors Produced by Activation of Graphene[J]. Science,2011,332(6037):1537-1541
    [170]Fang M, Wang KG, Lu HB, et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites [J]. Journal of Materials Chemistry,2009,19: 7098-7105
    [171]Klement W, Willens RH, Duwez P. Non-crystalline structure in solidified gold-silicon alloys[J]. Nature,1960,187:869-870
    [172]Pond RB, Maddin R. A method of producing rapidly solidified filamentary castings[J]. Trans AIMEL,1969,245:2475
    [173]Liberman HH. Rapidly solidified alloys:Processes, structures, properties, applications materials[M]. New York:CRC Press,1993:254
    [174]Duwez P, Willens R H, Klement W. Continuousseries of metastable solid solutions in silver-cooper alloys[J]. Journal of Applied Physics,1960,31(6):1136-1137
    [175]陈光,傅恒志.非平衡凝固新型金属材料.北京:科学出版社,2004.
    [176]Chae SJ, Gu"nes F, Kim KK, et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition:wrinkle formation[J]. Advanced Materials,2009, 21:2328-2333
    [177]Yu Q K, Lian J, Li H, et al. Graphene segregated on Ni surfaces and transferred to insulators [J]. Applied Physics Letters,2008,93(11),113103-113103-3
    [178]Zhang Y, Gomez L,Ishikawa F, et aLComparison of Graphene Growth on Single-Crystalline and Polycrystalline Ni by Chemical Vapor Deposition[J]. Journal of physical chemistry letters, 2010,1,3101-3107
    [179]Liu N,Fu L,Dai B, et al. Universal Segregation Growth Approach to Wafer-Size Graphene from Non-Noble Metals[J]. Nano Letters,2011,11 (1)297-303
    [180]Baraton L, He ZB, Lee CS, et al. On the mechanisms of precipitation of graphene on nickel thin films. EPL 2011,96:46003
    [181]Stolyarova E, Stolyarov D, Bolotin K, et al. Observation of graphene bubbles and effective mass transport under graphene films[J]. Nano Letters,2012,9(1):332-337
    [182]Bunch JS, Verbridge SS, Alden JS, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters,2008,8(8)2458-2462
    [183]Leenaerts O, Partoens B, Peeters FM Water on graphene:hydrophobicity and dipole moment using density functional theory[J]. Physical Review B,2009,79(23),235440
    [184]Sreevatsa S, Banerjee A, Haim G. Graphene as a permeable ionic barrier[J]. ECS Meeting Abstracts,2009,901(38):1319
    [185]Chen S S, Brown L, Levendorf M, et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano,2012,5(2):1321-1327
    [186]Kirkland NT, Schiller T, Medhekar N, et al. Exploring graphene as a corrosion protection barrier[J]. Corrosion Science,2012,56:1-4
    [187]Prasai D, Tuberquia JC, Harl RR, et al. Graphene:corrosion-inhibiting coating[J]. ACS Nano,2012,6(2):1102-1108
    [188]Raman R K S, Banerjee P C, Lobo D E, et al. Protecting copper from electrochemical degradation by graphene coating[J]. Carbon,2012,50(11):4040-4045

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700