用户名: 密码: 验证码:
绿僵菌多菌灵抗性评价与罗伯茨绿僵菌组氨酸激酶及腺苷酸环化酶的生物学功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于绿僵菌的真菌杀虫剂被广泛用于如蝗虫等重要农业害虫的防治。作为有效成份为分生孢子或菌丝侵染体的绿僵菌制剂,在田间应用中常遭受高温、阳光紫外辐射、化学杀菌剂施用等环境和人为胁迫因素的影响,使侵染体活力降低乃至失活而影响真菌制剂杀虫效果的稳定性。基于此,本研究以30株野生绿僵菌对苯并咪唑类杀菌剂一一多菌灵抗性的评价为起点,通过微管蛋白的化学诱变和定点突变,探讨金龟子绿僵菌多菌灵抗性的成因;通过分别构建金龟子绿僵菌近缘种一一罗伯茨绿僵组氨酸激酶和腺苷酸环化酶的基因敲除株、回补株并进行一系列表型及其关联基因转录水平的分析,揭示了两种酶调控该菌生长发育、产孢、不同抗逆性状及毒力的生物学功能。所获结果摘要如下:
     绿僵菌的多菌灵抗性及其协变抗逆性状分析对寄主和地理来源不同的21株金龟子绿僵菌Metarhizium anisopliae.8株蝗绿僵菌M. acridum和1株金龟子绿僵菌大孢变种M. anisopliae var. majus的多菌灵抗性水平测定的结果,仅1株金龟子绿僵菌(Man456)表现低抗,抑制99%菌落形成的最低浓度MIC为5.76μg/mL,而其余29株对多菌灵都表现为敏感,平均MIC仅为2.47(1.14~4.98)μg/mL。以Man456为出发菌株进行亚硝酸钠的化学诱变并在提高的多菌灵胁迫下进行选择,获得11株高抗多菌灵的突变株,MIC均大大超过1000μg/mL,其中5株的ECso(抑制50%菌落形成的多菌灵浓度)也超过1000μg/mL,另6个突变株的EC50介于24~447μg/mL。伴随着多菌灵抗性的大幅提高,所有突变株分生孢子对48℃湿热胁迫的耐受力均大幅或显著下降,且对UV-B辐射的耐受力也发生显著变化。从出发菌株及其11个高抗诱变株中克隆出各自的α-微管蛋白和β-微管蛋白基因序列,经比对分析,发现在α-微管蛋白和p-微管蛋白的序列中分别存在共同的氨基酸残基点突变S231L和S144G。采用基因重叠延伸(SOE)法,对野生菌株Man456实施两种微管蛋白公共敏感位点的定点突变,所获定点突变株aT-S231L和βT-S144G对多菌灵的抗性也显著提高,而且孢子耐受热胁迫和UV-B辐射的能力也发生相应变化。然而,两种微管蛋白公共敏感位点的定点突变后多菌灵抗性的变化,不足以解释大多数化学诱变株对多菌灵的超常高抗性,即绿僵菌对多菌灵的高抗性可能存在微管蛋白突变以外的机制。
     组氨酸激酶调节绿僵菌系列生物学性状的功能分析组氨酸激酶histidine kinase(HK)位于高渗甘油代谢途径(HOG pathway)的上游,一般认为会参与真菌抗逆性状及生长发育的调控。罗伯茨绿僵菌(M. robertsii)的组氨酸激酶(mhkl)与已知的99种真菌HK的序列同源性为74-100%,属于Group III HK。运用农杆菌介导法对mhkl基因成功地实施敲除和回补,用所获敲除株Δmhkl与回补株Δmhk1/mhk1及野生株进行一系列表型变化的实验和分析,发现mhkl敲除后的主要表型变化包括:(1)敲除株在常规培养条件下的产孢量提高50~67%;(2)菌落生长对NaC1、KC1、葡萄糖和蔗糖的高渗透压胁迫的耐受力提高13-46%;(3)菌落生长对甲萘醌氧化胁迫表现为敏感性升高,而对H202氧化胁迫表现为耐受力增强;(4)分生孢子对48℃湿热胁迫的耐受力提高27-37%;(5)分生孢子中甲酸可抽提的孢壁蛋白含量提高41~51%;(6)分生孢子对UV-B辐射的耐受力下降约6%;(7)分生孢子对黄粉虫三龄幼虫的侵染力下降约25%。实时定量PCR(qRT-PCR)检测各菌株中18个表型相关基因的转录水平,发现敲除株中HOG途径中的3个关键蛋白激酶基因mapkkk、 mapkk及mapk的表达上调3.7~8.5倍,2个产孢相关基因flbC和hymA的表达分别上调4.7和1.6倍,3种过氧化氢酶(cAT)基因的表达上调1.6~15.1倍,而3种超氧化物歧化酶(SOD)的表达则下调67~89%,而其余的CAT和SOD基因表达则无显著变化。这些结果显示,mhkl在罗伯茨绿僵菌产孢、多胁迫响应及侵染力的调控中起着重要作用,但不参与二甲酰亚胺类杀菌剂一一菌核净的抗性调控。
     腺苷酸环化酶调节绿僵菌生长与抗逆性状的功能分析真菌的腺苷酸环化酶adenylate cyclase (ACY)能将ATP催化成cAMP,使生成的cAMP诱导cAMP依赖型蛋白激酶protein kinase (PKA)的表达,因而是细胞cAMP-PKA信号传导途径中的关键酶。罗伯茨绿僵菌ACY(记为macy)与已知的98种真菌ACY的序列同源性介于23~94%之间。用农杆菌介导法对macy基因予以敲除和回补,同回补株Δmacy/macy及野生株相比,敲除株Δmacy发生了一系列显著的表型变化:(1)在正常条件下的菌落生长速率和产孢量大幅下降;(2)盐渗透压胁迫对其菌落生长的抑制作用小于野生株和回补株,而糖渗透压胁迫能促进其菌落生长;(3)10mM甲萘醌氧化胁迫完全抑制菌落生长,而100mM H2O2氧化胁迫大幅促进其菌落生长;(4)cu2+、Mg2+、 Mn2+和Ca2+等金属离子对其菌落生长表现为不同程度的抑制作用,而Fe3+表现为促进菌落生长;(5)在查氏平板上,菌落生长对碳源的利用,以蔗糖最佳,以半乳糖最差;而NH4Cl和NaNO2都能大大促进菌落生长;(6)分生孢子的耐热力、甲酸可抽提孢壁蛋白含量和耐UV-B紫外辐射的能力均下降;(7)分生孢子对黄粉虫三龄幼虫的侵染力下降22~29%。例外地,菌核净对各菌株的抑制作用仅在高浓度下略有差异。用qRT-PCR方法检测各菌株中17个表型相关基因的转录水平,发现敲除株cAMP-PKA信号通路中的pka基因的表达量上调3.93倍,微循环产孢基因mmc的表达下调82%,cat1和cat3的表达分别上调4.2和11.6倍,sod4、 sod、和sod6的表达下调87~89%,其余受检的产孢相关基因、CAT基因和SOD基因的表达则无显著变化。这些结果表明,罗伯茨绿僵菌的腺苷酸环化酶参与生长发育、多胁迫响应及侵染力等重要生物学性状的调控,但同样与菌核净的抗性调控无关。
Metarhizium-based mycoinsecticides have been widely applied in the control of insect pests, such as locusts and grasshoppers. As the active ingredients of fungal formulations, formulated fungal cells, such as conidia, are often exposed to environmental stresses including high temperatures, solar UV irradiation and fungicides applied for plant disease control in the field, suffering from some degree of viability loss that affects the field persistence and efficacy of a fungal application. This study started from evaluating the resistance of30wild-type Metarhizium strains to carbendazim (benzimidazole fungicide), followed by examining common site mutations in the tubulins of carbendazim-resistant mutants from chemical mutagenesis in order to probe the cause of the resistance, and constructing the knockout and complement mutants of Metarhizium robertsii histidine kinase (mhkl) and adenylate cyclase (macy) for various phenotypic analyses in order to reveal the roles of the two enzymes in regulating growth, development, sproulation, multi-stress responses and infectivity, respectively. The results are summarized below.
     Metarhizium resistance to carbendazim and associated changes in response to multiple stresses. Thirty wild-type strains consisting of21Metarhizium anisopliae, eight M. acridum and one M. anisopliae var. majus with different host and geographic origins were assayed for their sensitivities to carbendazim (methyl2-benzimidazole carbamate, MBC herein) using a gradient-concentration system. Of those, only one M. anisopliae strain (Man456) showed low resistance due to the minimal inhibition concentration (MIC) of5.76μg/ml for99%inhibition of colony formation while all other29strains were sensitive to the fungicide with the mean MIC of2.47(1.14-4.98)μg/ml. The selected strain, Man456, was subjected to NaNO2-induced mutagenesis, generating11mutants highly resistant to MBC. The MICs of all mutants exceeded1000μg/ml. Five of mutants even had the EC50(an MBC concentration suppressing50%colony fomation) of>1000μg/ml and the rest mutants had the EC50from24to447μg/ml. Accompanied by the enhanced MBC resistance, conidial tolerance to wet-heat stress at48℃was reduced for all the mutants and their UV-B resistance also changed. Two genes encoding a-tubulin and (3-tubulin were cloned separately from the wild-type strain and the MBC-resistant mutants by means of the technique of splicing-by-overlap extension (SOE), followed by online analysis of their protein sequences. As a result, the common site mutations S231L and S144G were found in the a-tubulin and β-tubulin sequences of all mutants, respectively. The same site-directed mutations were constructed in the wild-type strain, yielding mutants αT-S231L and βT-S144G. Both mutants showed higher resistance to MBC than wild-type, lower tolerance to the wet-heat stress and altered UV-B resistance. However, the changes in the MBC resistance of the two site-directed mutants are not enough to elucidate the extraordinarily high MBC resistance in the mutants from chemical mutagenesis. This suggests other mechanism(s) likely involved in the high MBC resistance of M. anisopliae.
     Characterized functions of M. roberstii histidine kinase (mhkl). The role of M. robertsii Group III histidine kinase(mhkl) in regulating various phenotypes of the fungal entomopathogen and the transcripts of the genes encoding three mitogen-activated protein (MAP) kinases in HOG-pathway and13proteins possibly associated with the phenotypes were probed by constructing Amhkl and Amhkl/mhkl mutants via Agrobacterium-mediated transformation. All examined Amhkl phenotypes except no change in fungicide (dimethachlon) sensitivity differed significantly from those of wild-type and Amhkl/mhkl, which were similar or close to each other in all phenotypic parameters. Significant main phenotypic changes in Amhkl included50-67%increases in conidial yield on two normal media,13-46%increases in osmotolerance to salts and sugars,27-37%increases in conidial thermotolerance at48℃,41-51%increases in formic-acid-extractable protein content relating to the thermotolerance,~6%reduction in conidial UV-B resistance, and-25%decrease in virulence to Tenebrio molitor larvae. Quantitative real-time RT-PCR (qRT-PCR) indicated that the mhkl disruption caused3.7-8.5-fold up-regulation of three MAP kinase genes(mapkkk, mapkk and mapk),1.6-4.7-fold up-regulation of two conidiation-related genes (flbC and hymA),1.6-15.1-fold up-regulation of three catalase (CAT) genes, and67-89%down-regulation of three superoxide dismultase (SOD) genes, but little change in the transcriptional expression of other CAT and SOD genes examined. The results provide new insights into the crucial role of mhkl in regulating the downstream genes and associated phenotypes important for the fungal biocontrol potential.
     Characterized functions of M. roberstii adenylate cyclase. Fugnal adenylate cyclase (ACY) enables to catalyze ATP into cAMP to activate cAMP-dependent protein kinase (PKA), thereby acting as a crucial enzyme in the pathway of cAMP-PKA signaling transduction. The sequence of M. roberstii ACY (macy) showed23-94%identity to98ACY sequences of other fungi. The macy gene was successfully disrupted and complemented via Agrobacterium-mediated transformation. Compared to Δmacy/macy, and WT, the disruptant Δmacy had significant phenotypic changes. These included:(1) reduced colony growth and greatly decreased sporulation capacity under normal conditions;(2) colony growth less suppressed by the osmotic stress of KC1or NaCl but facilitated by the osmotic stress of glucose or sucrose;(3) colony growth inhibited by10mM menadione but greatly facilitated by100mM H2O2;(4) colony growth facilitated by Fe3+but suppressed by Cu2+, Mg2+, Mn2+and Ca2+in medium;(5) colony growth less sppressed by sucrose than galactose as a mere carbon source but greatly facilitated by NH4CI or NaNO2as a mere nitrogen source;(6) significant dicreases in conidial thermotolerance, formic-acid-extractable conidial protein content and conidial UV-B tolerance;(7)22-29%reduction in conidial infectivity to T. molitor larvae. Exceptionally, the Amacy sensitivity to dimethachlon had little change at the concentration of200μg/ml. The qRT-PCR analyses indicated that the macy knockout resulted in3.93fold up-regulation of pka gene in the cAMP-PKA pathway,82%down-regulation of a gene (mmc) associated with microcycle conidiation,4.2and11.6fold up-regulation of two CAT genes (catl and cat3), and87-89%down-regulation of three SOD genes (sod4, sod5and sod6) but little change in the transcript levels of other10genes, including flbC, hymA, five CAT genes and three SOD genes. The results provided the first overview to the crucial role of macy in regulating the growth, development, sporulation, multi-stress responses and infectivity of M. robertsii.
引文
陈夕军,王艳,童蕴慧,纪兆林,徐敬友.2009.灰葡萄孢抗二甲酰亚胺类杀菌剂研究进展.植物保护35:16-19.
    方允中,郑荣梁.2002.自由基生物学的理论与应用.北京:科学出版社,pp.143-147.
    黄亚丽,潘玮,蒋细良,郭平,田云龙,李记鹏,朱昌雄.2007.根癌农杆菌介导丝状真菌遗传转化的研究进展.生物技术通报3:111-114.
    李钧.2009.金龟子绿僵菌耐夏季高温能力的种内变异、一新孢壁蛋白的基因克隆及功能鉴定.浙江大学博士学位论文.
    农向群,张泽华,金正俊.2005.昆虫病原真菌抗紫外保护剂的筛选和评价.植物保护学报32:402-406.
    祁之秋,王建新,陈长军,周明国.2006.现代杀菌剂抗性研究进展.农药45:655-659.
    宋婷婷.2011.害虫生防真菌多药抗药性机理与毒力菌株筛选策略研究.浙江大学博士学位论文.
    唐杰,曹传平,简一平,毛高平.2001.cAMP依赖的蛋白激酶PKA RIA亚基在胃癌细胞中的表达及8-溴-环核苷酸对其表达及细胞增殖的影响,空军总医院学报17:203-208.
    唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社,2007.
    杨长得,刘刚,郑易之,邢苗.2006.根癌农杆菌在丝状真菌转化中的应用.生物技术通讯17:784-787.
    俞佳,冯明光.2006.基于分生孢子热胁迫反应的球孢白僵菌耐热菌株筛选.菌物学报25:278-283.
    张承来,欧晓明.2000.植物病原物对杀菌剂的抗药性机制概述.湖南化工30:7-10.
    祝明亮,严金平,孙启玲,莫明和,张克勤.2005.植物病原真菌对二甲酰亚胺类杀菌剂的抗性分子机制.生物技术15:95-97.
    Albertini C, Gredt M, Leroux P.1999. Mutations of the beta-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pesticide Biochemistry and Physiology 64:17-31.
    Angelova MB, Pashova SB, Spasova BK, Vassilev SV, Slokoska LS.2005. Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycological Research 109:150-158.
    Bak J, Fisker EN, Kooyman C.2007. Evaluating the importance of residual effects from previous years' treatment on the efficiency of different strategies for control of Sahelian grasshoppers with Metarhizium anisopliae var. acridum. Biocontrol Science and Technology 17:413-422.
    Baker DA, Kelly JM.2004. Structure, function and evolution of microbial adenylyl and guanylyl cyclases. Molecular Microbiology 52:1229-1242.
    Baraldi E, Mari M, Chierici E, Pondrelli M, Bertolini P, Pratella GC.2003. Studies on thiabendazole resistance of Penicillium expansum of pears:pathogenic fitness and genetic characterization. Plant Pathology 52:362-370.
    Beever RE, Laracy EP.1986. Osmotic adjustment in the filamentous fungus Aspergillus nidulans. Journal of bacteriology 168:1358-1365.
    Belshe RB, Smith MH, Hall CB, Betts R, Hay AJ.1988. Genetic basis of resistance to rimantadine emerging during treatment of influenza virus infection. Journal of Virology 62:1508-1512.
    Bernier L, Cooper RM, Charnley AK, Clarkson JM.1989. Transformation of the entomopathogenic fungus Metarhizium anisopliae to benomyl resistance. FEMS Microbiology Letters 60:261-265.
    Bischoff JF, Rehner SA, Humber RA.2009. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 101:512-530.
    Braga GU, Flint SD, Miller CD, Anderson AJ, Roberts DW.2001a. Both solar UV-A and UV-B radiation impair conidial culrurability and delay germination in the entomopathogenic fungus Metarhizium anisopliae. Photochemistry and Photobiology 74:734-739.
    Braga GU, Flint SD, Miller CD, Anderson AJ, Roberts DW.2001b. Variability in response to UV-B among species and strains of Metarhizium isolated from sites at latitudes from 61 degrees N to 54 degrees S. Journal of Invertebrate Pathology 78:98-108.
    Braga GU, Flint SD, Messias CL, Anderson AJ, Roberts DW.2001c. Effect of UV-B on conidia and germlings of the entomopathogenic hyphomycete Metarhizium anisopliae. Mycological Research 105:874-882.
    Braga GU, Rangel DE, Flint SD, Anderson AJ, Roberts DW.2006. Conidial pigmentation is important to tolerance against solar-simulated radiation in the entomopathogenic fungus Metarhizium anisopliae. Photochemistry and Photobiology 82:418-422.
    Butters JA, Devi KU, Mohan CM, Sridevi V.2003. Screening for tolerance to bavistin, a benzimidazole fungicide containing methyl benzimidazol-2-yl carbamate (MBC), in Beauveria bassiana: Sequence analysis of the beta-tubulin gene to identify mutations conferring tolerance. Mycological Research 107:260-266.
    Cantone FA, Vandenberg JD.1999. Genetic Transformation and mutagenesis of the entomopathogenic fungus Paecilomyces fumosoroseus. Journal of Invertebrate Pathology 74:281-288.
    Catlett NL, Yoder OC, Turgeon BG.2003. Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryotic Cell 2:1151-1161.
    Chang C, Stewart RC.1998. The two-component system:Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant physiology 117:723-731.
    Chang L, Karin M.2001. Mammalian MAP kinase signalling cascades. Nature 410:37-40.
    Chen CJ, Wang JX, Luo QQ, Yuan SK, Zhou MG.2007. Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (wheat scab). Pest Management Sci ence 63:1201-1207.
    Choi GJ, Lee HJ, Cho KY.1996. Lipid peroxidation and membrane disruption by vinclozolin in dicarboximide-susceptible and-resistant isolates of Botrytis cinerea. Pesticide Biochemistry and Physiology 55:29-39.
    Choi W, Dean RA.1997. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973-1983.
    Clemons GP, Sisler HD.1971. Localization of the site of action of a fungitoxic benomyl derivative. Pesticide Biochemistry and Physiology 1:32-43.
    Cooper DMF.2003. Regulation and organization of adenylyl cyclases and cAMP. Biochemical Journal 375:517-529.
    Crisan EV.1973. Current concepts of thermophilism and the thermophilic fungi. Mycologia 65:1171-1198.
    Cui W, Beever RE, Parkes SL, Templeton MD.2004. Evolution of an osmosensing histidine kinase in field strains of Botryotinia fuckeliana(Botrytis cinerea) in response to dicarboximide fungicide usage. Phytopathology 94:1129-1135.
    Cui W, Beever RE, Parkes SL, Weeds PL, Templeton MD.2002. An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana(Botrytis cinerea). Fungal Genetics and Biology 36:187-198.
    Daboussi MJ, Djeballi A, Gerlinger C, Blaiseau PL, Bouvier I, Cassan M, Lebrun MH, Parisot D, Brygoo Y.1989. Transformation of seven species of filamentous fungi using the nitrate reductase gene of Aspergillus nidulans Current Genetics 15:453-456.
    Davidse LC.1973. Antimitotic activity of methyl benzimidazol-2-yl carbamate (MBC) in Aspergillus nidulans. Pesticide Biochemistry and Physiology 3:317-325.
    Davidse LC.1986. Benzimidazole fungicides:mechanism of action and biological impact. Annual Review of Phytopathology 24:43-65.
    Davidse LC, Flach W.1977. Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans. Journal of Cell Biology 72:174-193.
    de Faria MR, Wraight SP.2007. Mycoinsecticides and mycoacaricides:a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control 43: 237-256.
    de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG.1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology 16:839-842.
    Deising HB, Reimannl S, Pascholati SF.2008. Mechanisms and significance of fungicide resistance. Brazilian Journal of Microbiology 39:286-295.
    Dixon KP, Xu JR, Smirnoff N, Talbot NJ.1999. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant Infection by Magnaporthe grisea. Plant Cell 11:2045-2058.
    Dongo A, Bataille-Simoneau N, Campion C, Guillemette T, Hamon B, Iacomi-Vasilescu B, Katz L, Simoneau P.2009. The Group III two-component histidine kinase of filamentous fungi is involved in the fungicidal activity of the bacterial polyketide ambruticin. Applied and Environmental Microbiology 75:127-134.
    dos Reis MC, Fungaro MHP, Duarte RTD, Furlaneto L, Furlaneto MC.2004. Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana. Journal of Microbiological Methods 58:197-202.
    Duarte RTD, Staats CC, Fungaro MHP, Schrank A, Vainsten MH, Furlaneto-Maia L, Nakamura CV, de Souza W, Furlaneto MC.2007. Development of a simple and rapid Agrobacterium tumefaciens-mediated transformation system for the entomopathogenic fungus Metarhizium anisopliae var. acridum. Letters in Applied Microbiology 44:248-254.
    Elad Y, Shabi E, Katan T.1988. Negative cross resistance between benzimidazole and N-phenylcarbamate fungicides and control of Botrytis cinerea on grapes. Plant Pathology 37:141-147.
    Fang WG, Pava-ripoll M, Wang S, St. Leger R.2009. Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fungal Genetics and Biology 46:277-285.
    Fang WG, Pei Y, Bidochka MJ.2007. A regulator of a G protein signalling (RGS) gene, cag8, from the insect-pathogenic fungus Metarhizium anisopliae is involved in conidiation, virulence and hydrophobin synthesis. Microbiology-SGM 153:1017-1025.
    Fang WG, Zhang Y, Yang X, Zheng X, Duan H, Li Y, Pei Y.2004. Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. Journal of Invertebrate Pathology 85:18-24.
    Fang WG, Pei Y, Bidochka MJ.2006. Transformation of Metarhizium anisopliae mediated by Agrobacterium tumefaciens. Canadian Journal of Microbiology 52:623-626.
    Feng MG, Poprawski TJ, Khachatourians GG. 1994. Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control:current status. Biocontrol Science and Technology 4:3-34.
    Fernandes EK, Rangel DE, Moraes AM, Bittencourt VR, Roberts DW.2007. Variability in tolerance to UV-B radiation among Beauveria spp. isolates. Journal of invertebrate pathology 96:237-243.
    Fridovich I.1978. The biology of oxygen radicals. Science 201:875-880.
    Fujimura M, Ochiai N, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I.2000. Fungicide resistance and osmotic stress sensitivity in os mutants of Neurospora crassa. Pesticide Biochemistry and Physiology 67:125-133.
    Furukawa K, Katsuno Y, Urao T, Yabe T, Yamada-Okabe T, Yamada-Okabe H, Yamagata Y, Abe K, Nakajima T.2002. Isolation and functional analysis of a gene, tcsB, encoding a transmembrane hybrid-type histidine kinase from Aspergillus nidulans. Applied and Environmental Microbiology 68:5304-5310.
    Gao Q, Jin K, Ying SH, Zhang YJ, Xiao GH, Shang YF, Duan ZB, Hu X, Xie XQ, Zhou G, Peng GX, Luo ZB, Huang W, Wang B, Fang WG, Wang SB, Zhong Y, Ma LJ, St Leger RJ, Zhao GP, Pei Y, Feng MG, Xia YX, Wang C.2011. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genetics 7: e1001264.
    Gelvin SB.2000. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual Review of Plant Physiology and Plant Molecular Biology 51:223-256.
    Gold S, Duncan G, Barrett K, Kronstad J.1994. cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes & Development 8:2805-2816.
    Gonzalez-Parraga P, Hernandez JA, Arguelles JC.2003. Role of antioxidant enzymatic defences against oxidative stress H2O2 and the acquisition of oxidative tolerance in Candida albicans. Yeast 20: 1161-1169.
    Grebe TW, Stock JB.1999. The histidine protein kinase superfamily. Advance in Microbial Physiology 41:139-227.
    Griffiths HR, Mistry P, Herbert KE, Lunec J.1998. Molecular and cellular effects of ultraviolet light-induced genotoxicity. Critical Reviews in Clinical Laboratory Sciences 35:189-237.
    Hallsworth JE, Magan N.1999. Water and temperature relations of growth of the entomogenous fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus. Journal of Invertebrate Pathology 74:261-266.
    Hari M, Wang Y, Veeraraghavan S, Cabral F.2003. Mutations in alpha-and beta-tubulin that stabilize microtubules and confer resistance to colcemid and vinblastine. Molecular Cancer Therapeutics 2: 597-605.
    Hastie AC.1970. Benlate-induced instability of Aspergillus diploids. Nature 226:771.
    Howard RJ, Aist JR.1977. Effects of MBC on hyphal tip organization, growth, and mitosis of Fusarium acuminatum, and their antagonism by D2O. Protoplasma 92:195-210.
    Huang BF, Feng MG.2009. Comparative tolerances of various Beauveria bassiana isolates to UV-B irradiation with a description of a modeling method to assess lethal dose. Mycopathologia 168: 145-152.
    Hwang CS, Rhie GE, Oh JH, Huh WK, Yim HS, Kang SO.2002. Copper-and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology-SGM 148:3705-3713.
    Ignoff CM, Garcia C.1992. Influence of conidial color on inactivation of several entomogenous fungi (Hyphomycetes) by simulated sunlight. Environmental Entomology 21:913-917.
    Inglis GD, Goettel MS, Johnson DL.1995. Influence of ultraviolet light protectants on ersistence of the entomopathogenic fungus, Beauveria bassiana. Biological Control 5:581-590.
    Izumitsu K, Yoshimi A, Kubo D, Morita A, Saitoh Y, Tanaka C.2009. The MAPKK kinase ChStell regulates sexual/asexual development, melanization, pathogenicity, and adaptation to oxidative stress in Cochliobolus heterostrophus. Current Genetics 55:439-448.
    Jacob RA, Ph.D., F.A.C.N.1995. The integrated antioxidant system. Nutrition Research 15:755-766.
    James CE, Hudson AL, Davey MW.2009. Drug resistance mechanisms in helminths:is it survival of the fittest? Trends in Parasitology 25:328-335.
    James SW, Silflow CD, Stroom P, Lefebvre PA.1993. A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii confers resistance to anti-microtubule herbicides. Jornal of Cell Science 106:209-218.
    Jeong JH, Kwon ES, Roe JH.2001. Characterization of the manganese-containing superoxide dismutase and its gene regulation in stress response of Schizosaccharomyces pombe. Biochemical and Biophysical Research Communations 283:908-914.
    Jiang Q, Ying SH, Feng MG.2007. Enhanced frequency of Beauveria bassiana blastospore transformation by restriction enzyme-mediated integration and electroporation. Journal of Microbiological Methods 69:512-517.
    Jin K, Zhang Y, Luo Z, Xiao Y, Fan Y, Wu D, Pei Y.2008. An improved method for Beauveria bassiana transformation using phosphinothricin acetyltransferase and green fluorescent protein fusion gene as a selectable and visible marker. Biotechnology Letters 30:1379-1383.
    Jones CA, Greer-Phillips SE, Borkovich KA.2007. The response regulator RRG-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fertility, osmotic stress, and fungicide resistance in Neurospora crassa. Molecular Biology of the Cell 18: 2123-2136.
    Joseph-Horne T, Hollomon DW, Wood PM.2001. Fungal respiration:a fusion of standard and alternative components. Biochimica et Biophysica Acta 1504:179-195.
    Josepovits G, Gasztonyi M, Mikite G.1992. Negative cross-resistance to N-phenylanilines in benzimidazole-resistant strains of Botrytis cinerea, Venturia nashicola and Venturia inaequalis. New York:John Wiley & Sons, pp.237-242.
    Jung MK, Wilder IB, Oakley BR.1992. Amino-acid alterations in the bena (beta-tubulin) gene of Aspergillus nidulans that confer benomyl resistance. Cell Motility and the Cytoskeleton 22:170-174.
    Jurick WM II, Rollins JA.2007. Deletion of the adenylate cyclase (sacl) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum. Fungal Genetics and Biology 44:521-530.
    Kawchuk. LM, Hutchison. LJ, Verhaeghe. CA, Lynch. DR, Bains. PS, Holley. JD.2002. Isolation of the (β-tubulin gene and characterization of thiabendazole resistance in Gibberella pulicaris. Canadian Journal of Plant Pathology 24:233-238.
    Khang CH, Park SY, Lee YH, Kang S.2005. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genetics and Biology 42:483-492.
    Kiso T, Fujita K, Ping X, Tanaka T, Taniguchi M.2004. Screening for microtubule-disrupting antifungal agents by using a mitotic-arrest mutant of Aspergillus nidulans and novel action of phenylalanine derivatives accompanying tubulin loss. Antimicrobial Agents and Chemotherapy 48:1739-1748.
    Klass JI, Blanford S, Thomas MB.2007. Use of a geographic information system to explore spatial variation in pathogen virulence and the implications for biological control of locusts and grasshoppers. Agricultural and Forest Entomology 9:201-208.
    Klimpel A, Gronover CS, Williamson B, Stewart JA, Tudzynski B.2002. The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Molecular Plant Pathology 3:439-450.
    Koenraadt H, Somerville S, Jones A.1992. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology 82:1348-1354.
    Krappmann S.2006. Tools to study molecular mechanisms of Aspergillus pathogenicity. Trends in Microbiology 14:356-364.
    Leclerque A, Wan H, Abschutz A, Chen S, Mitina G, Zimmermann G, Schairer H.2004. Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana Current Genetics 45:111-119.
    Li J, Feng MG 2009. Intraspecific tolerance of Metarhizium anisopliae conidia to the upper thermal limits of summer with a description of a quantitative assay system. Mycological Research 113: 93-99.
    Li J, Katiyar SK, Edlind TD.1996. Site-directed mutagenesis of Saccharomyces cerevisiae beta-tubulin: interaction between residue 167 and benzimidazole compounds. FEBS Letters 385:7-10.
    Lin CH, Chung KR.2010. Specialized and shared functions of the histidine kinase-and HOG1 MAP kinase-mediated signaling pathways in Alternaria alternata, a filamentous fungal pathogen of citrus. Fungal Genetics and Biology 47:818-827.
    Linder JU, Schultz JE.2003. The class III adenylyl cyclases:multi-purpose signalling modules. Cell Signal 15:1081-1089.
    Liu J, Cao Y, Xia Y.2010. Mmc, a gene involved in microcycle conidiation of the entomopathogenic fungus Metarhizium anisopliae. Journal of Invertebrate Pathology 105:132-138.
    Liu Q, Ying SH, Feng MG, Jiang XH.2009. Physiological implication of intracellular trehalose and mannitol changes in response of entomopathogenic fungus Beauveria bassiana to thermal stress. Antonie Van Leeuwenhoek 95:65-75.
    Liu WW, Leroux P, Fillinger S.2008. The HOG 1-like MAP kinase Sakl of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bosl and is not involved in dicarboximide- and phenylpyrrole-resistance. Fungal Genetics and Biology 45:1062-1074.
    Livak KJ, Schmittgen TD.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408.
    Livera. G, Xie. F, Garcia. MA, Jaiswal. B, Chen. J, Law. E, Storm. DR, Conti. M.2005. Inactivation of the mouse adenylyl cyclase 3 gene disrupts male fertility and spermatozoon function. Molecular Endocrinology 19:1277-1290.
    Luxford C, Dean R, Davies M.2002. Induction of DNA damage by oxidised amino acids and proteins. Biogerontology 3:95-102.
    Luz C, Netto MC, Rocha LF.2007. In vitro susceptibility to fungicides by invertebrate-pathogenic and saprobic fungi. Mycopathologia 164:39-47.
    Ma ZH, Michailides TJ.2005. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection 24:853-863.
    Ma ZH, Yan LY, Luo Y, Michallides TJ.2007. Sequence variation in the two-component histidine kinase gene of Botrytis cinerea associated with resistance to dicarboximide fungicides. Pesticide Biochemistry and Physiology 88:300-306.
    Ma ZH, Yoshimura MA, Michailides TJ.2003. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California. Applied and Environmental Microbiology 69:7145-7152.
    Madronich S, McKenzie RL, Bjorn LO, Caldwell MM.1998. Changes in biologically active ultraviolet radiation reaching the Earth's surface. Journal of Photochemistry and Photobiology Biology 46:5-19.
    Maeda T, Mochizuki N, Yamamoto M.1990. Adenylyl cyclase is dispensable for vegetative cell growth in the fission yeast Schizosaccharomyces pombe. Proceedings of the National Academy of Sciences 87:7814-7818.
    Marina A, Waldburger CD, Hendrickson WA.2005. Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein. EMBO Journal 24:4247-4259.
    Mates JM, Sanchez-Jimenez F.1999. Antioxidant enzymes and their implications in pathophysiologic processes. Frontiers in Bioscience 4:D339-345.
    Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF.2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics 48:1-17.
    Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF.2008. Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nature Protocols 3:1671-1678.
    Miller CD, Rangel DE, Braga GU, Flint S, Kwon SI, Messias CL, Roberts DW, Anderson AJ.2004. Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-UV irradiation. Canadian Journal of Microbiology 50:41-49.
    Miller TK, Renault S, Selitrennikoff CP.2002. Molecular dissection of alleles of the osmotic-1 locus of Neurospora crassa. Fungal Genetics and Biology 35:147-155.
    Mishra NC, Tatum EL.1973. Non-Mendelian inheritance of DNA-induced inositol independence in Neurospora. Proceedings of the National Academy of Sciences 70:3875-3879.
    Moon YS, Donzelli BG, Krasnoff SB, McLane H, Griggs MH, Cooke P, Vandenberg JD, Gibson DM, Churchill AC.2008. Agrobacterium-mediated disruption of a nonribosomal peptide synthetase gene in the invertebrate pathogen Metarhizium anisopliae reveals a peptide spore factor. Applied and Environmental Microbiology 74:4366-4380.
    Molnar A, Hornok L, Pesit M.1985. The high level of benomyl tolerance in Fusarium oxysporum is determined by the synergistic interaction of two genes. Experimental Mycology 9:326-333.
    Morjan WE, Pedigo LP, Lewis LC.2002. Fungicidal effects of glyphosate and glyphosate formulations on four species of entomopathogenic fungi. Environmental Entomology 31:1206-1212.
    Motoyama T, Kadokura K, Ohira T, Ichiishi A, Fujimura M, Yamaguchi I, Kudo T.2005. A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action. Fungal Genetics and Biology 42:200-212.
    Motoyama T, Ochiai N, Morita M, Iida Y, Usami R, Kudo T.2008. Involvement of putative response regulator genes of the rice blast fungus Magnaporthe oryzae in osmotic stress response, fungicide action, and pathogenicity. Current Genetics 54:185-195.
    Nathues E, Jorgens C, Lorenz N, Tudzynski P.2007. The histidine kinase CpHK2 has impact on spore germination, oxidative stress and fungicide resistance, and virulence of the ergot fungus Claviceps purpurea. Molecular Plant Pathology 8:653-665.
    Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P.2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews 64:548-572.
    Ochiai N, Fujimura M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I.2001. Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pest Management Science57:437-442.
    Orth AB, Sfarra A, Pell EJ, Tien M.1994. Characterization and genetic analysis of laboratory mutants of Ustilago maydis reistant to dicarboximide and aromatic hydrocarbon fungicides. Phytopathology 84:1210-1214.
    Orth AB, Rzhetskaya M, Pell EJ, Tien M.1995. A serine (threonine) protein kinase confers fungicide resistance in the phytopathogenic fungus Ustilago maydis. Applied and Environmental Microbiology 61:2341-2345.
    Oshima M, Fujimura M, Banno S, Hashimoto C, Motoyama T, Ichiishi A, Yamaguchi I.2002. A point mutation in the two-component histidine kinase BcOS-1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea. Phytopathology 92:75-80.
    Pereira HA Jr., Martinez-Rossi NM.1994. At least three genes are responsible for benomyl-resistance in Metarhizium anisopliae. New Microbiologica 17:45-50.
    Ramesh MA, Laidlaw RD, Durrenberger F, Orth AB, Kronstad JW.2001. The cAMP signal transduction pathway mediates resistance to dicarboximide and aromatic hydrocarbon fungicides in Ustilago maydis. Fungal Genetics and Biology 32:183-193.
    Rangel DE, Braga GU, Anderson AJ, Roberts DW.2005. Variability in conidial thermotolerance of Metarhizium anisopliae isolates from different geographic origins. Journal of Invertebrate Pathol ogy88:116-125.
    Rangel DE, Braga GU, Flint SD, Anderson AJ, Roberts DW.2004. Variations in UV-B tolerance and germination speed of Metarhizium anisopliae conidia produced on insects and artificial substrates. Journal of Invertebrate Pathology 87:77-83.
    Rangel DE, Anderson AJ, Roberts DW.2008. Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycological Research 112:1362-1372.
    Rangel DE, Butler MJ, Torabinejad J, Anderson AJ, Braga GUL, Day AW, Roberts DW.2006. Mutants and isolates of Metarhizium anisopliae are diverse in their relationships between conidial pigmentation and stress tolerance. Journal of Invertebrate Pathology 93:170-182.
    Rispail N, Di Pietro A.2010. The two-component histidine kinase Fhkl controls stress adaptation and virulence of Fusarium oxysporum. Molecular Plant Pathology 11:395-407.
    Roberts DW, St Leger RJ. 2004. Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Advances in Applied Microbiology 54:1-70.
    Robinson M, Sharon A.1999. Transformation of the bioherbicide Colletotrichum gloeosporioides f. sp. Aeschynomene by electroporation of germinated conidia. Current Genetics 36:98-104.
    Rocha. CRC, Schro"ppel. K, Harcus. D, Marcil. A, Dignard D, Taylor. BN, Thomas. DY, Whiteway. M, Leberer. E.2001. Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Molecular Biology of the Cell 12:3631-3643.
    Sanchez O, Navarro RE, Aguirre J.1998. Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzyme-mediated integration (REMI). Molecular and General Genetics MGG 258:89-94.
    Saito H, Tatebayashi K.2004. Regulation of the osmoregulatory HOG MAPK cascade in yeast. Journal of Biological chemisty 136:267-272.
    Sanjiv S, Alan P.1991. Characterization and generation of Escherichia coli adenylate cyclase deletion mutants. Journal of Bacteriology 173:3238-3242.
    Santos JL, Shiozaki K.2001. Fungal histidine kinases. Science STKE 2001:rel.
    Setlow B, Setlow P.1998. Heat killing of Bacillus subtilis spores in water is not due to oxidative damage. Applid and Environmental Microbiology 64:4109-4112.
    Shah PA, Pell JK.2003. Entomopathogenic fungi as biological control agents. Applied Microbiology and Biotechnology 61:413-423.
    Silvestre A, Cabaret J.2002. Mutation in position 167 of isotype 1 [beta]-tubulin gene of Trichostrongylid nematodes:role in benzimidazole resistance? Molecular and Biochemical Parasitology 120:297-300.
    Sismeiro O, Trotot P, Biville F, Vivares C, Danchin A.1998. Aeromonas hydrophila adenylyl cyclase 2: a new class of adenylyl cyclases with thermophilic properties and sequence similarities to proteins from hyperthermophilic archaebacteria. Journal of Bacteriology 180:3339-3344.
    Stafford H.2000. Crown gall disease and Agrobacterium tumefaciens:A study of the history, present knowledge, missing information, and impact on molecular genetics. The Botanical Review 66:99-118.
    Steffens JJ, Pell EJ, Tien M.1996. Mechanisms of fungicide resistance in phytopathogenic fungi. Current Opinion in Biotechnology 7:348-355.
    Stover RH.1977. Extranuclear inherited tolerance to benomyl in Mycosphaerella fijiensis vardifformis. Transactions of the British Mycological Society 68:122.
    Tellez-Sosa J, Soberon N, Vega-Segura A, Torres-Marquez ME, Cevallos MA.2002. The Rhizobium etli cyaC product:characterization of a novel adenylate cyclase class. Journal of Bacteriology 184: 3560-3568.
    Thomason P, Kay R.2000. Eukaryotic signal transduction via histidine-aspartate phosphorelay. Journal of Cell Science 113:3141-3150.
    Tzima A, Paplomatas EJ, Rauyaree P, Kang S.2010. Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen Verticillium dahliae. Fungal Genetics and Biology 47:406-415.
    Valadares-Inglis MC, Inglis PW.1997. Transformation of the entomopathogenic fungus, Metarhizium flavoviride strain CG423 to benomyl resistance. FEMS Microbiology Letters 155:199-202.
    Velasquez. VB, Carcamo. MP, Merino. CR, Iglesias. AF, Duran. JF.2007. Intraspecific differentiation of Chilean isolates of the entomopathogenic fungi Metarhizium anisopliae var. anisopliae as revealed by RAPD, SSR and ITS markers. Genetics and Molecular Biology 30:89-99.
    Viaud M, Fillinger S, Liu W, Polepalli JS, Le Pecheur P, Kunduru AR, Leroux P, Legendre L.2006. A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Molecular Plant-Microbe Interactions 19:1042-1050.
    Wang C, St Leger RJ.2007. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enable attachment to plants. Eukaryotic Cell 6:808-816.
    Wang F, Tao JH, Qian Z, You S, Dong H, Shen H, Chen XX, Tang SR, Ren SX.2009. A histidine kinase PmHHKl regulates polar growth, sporulation and cell wall composition in the dimorphic fungus Penicillium marneffei. Mycological Research 113:915-923.
    West AH, Stock AM.2001. Histidine kinases and response regulator proteins in two-component signaling systems. Trends in Biochemical Sciences 26:369-376.
    Wheeler MW, Park RM, Bailer AJ.2006. Comparing median lethal. Environmental Toxicology and Chemistry 25:1441-1444.
    Willoughby D, Cooper DM.2006. Ca2+stimulation of adenylyl cyclase generates dynamic oscillations in cyclic AMP. Journal of Cell Science 119:828-836.
    Wolanin PM, Thomason PA, Stock JB.2002. Histidine protein kinases:key signal transducers outside the animal kingdom. Genome Biology 3:Reviews3013.1-3013.8
    Wong. ST, Trinh. kK, Hacker. kB, Chan. GCK, Lowe. G, Gaggar. A, Xia. Z, Gold. GH, Storm. DR. 2000. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27:487-497.
    Wongwicharn A, McNeil B, Harvey LM.1999. Effect of oxygen enrichment on morphology, growth, and heterologous protein production in chemostat cultures of Aspergillus niger B1-D. Biotechnology and Bioengineering 65:416-424.
    Wraight SP, Ramos ME.2002. Application parameters affecting field efficacy of Beauveria bassiana foliar treatments against colorado potato beetle Leptinotarsa decemlineata. Biological Control 23: 164-178.
    Xie XQ, Wang J, Huang BF, Ying SH, Feng MG.2010. A new manganese superoxide dismutase identified from Beauveria bassiana enhances virulence and stress tolerance when overexpressed in the fungal pathogen. Applied Microbiology and Biotechnology 86:1543-1553.
    Yan LY, Yang QQ, Sundin GW, Li HY, Ma ZH.2010. The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Fungal Genetics and Biology 47:753-760.
    Yao SL, Ying SH, Feng MG, Hatting JL.2010. In vitro and in vivo responses of fungal biocontrol agents to the gradient doses of UV-B and UV-A irradiations. Biological Control 55:413-422.
    Ying SH, Feng MG.2004. Relationship between thermotolerance and hydrophobin-like proteins in aerial conidia of Beauveria bassiana and Paecilomyces fumosoroseus as fungal biocontrol agents. Journal of Applied Microbiology 97:323-331.
    Ying SH, Feng MG.2006. Novel blastospore-based transformation system for integration of phosphinothricin resistance and green fluorescence protein genes into Beauveria bassiana. Applied Microbiology and Biotechnology 72:206-210.
    Ying SH, Feng MG.2011. A conidial protein (CP15) of Beauveria bassiana contributes to the conidial tolerance of the entomopathogenic fungus to thermal and oxidative stresses. Applied Microbiology and Biotechnology 90:1711-1720.
    Yoshimi A, Kojima K, Takano Y, Tanaka C.2005. Group III histidine kinase is a positive regulator of Hogl-type mitogen-activated protein kinase in filamentous fungi. Eukaryotic Cell 4:1820-1828.
    Zhang HF, Liu KY, Zhang X, Song WW, Zhao Q, Dong YH, Guo M, Zheng XB, Zhang ZG.2010a. A two-component histidine kinase, MoSLNl, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Current Genetics 56:517-528.
    Zhang S, Fan YH, Xia YX, Keyhani NO.2010b. Sulfonylurea resistance as a new selectable marker for the entomopathogenic fungus Beauveria bassiana. Applied Microbiology and Biotechnology 87: 1151-1156.
    Zhang YJ, Zhao JH, Fang WG, Zhang JQ, Luo ZB, Zhang M, Fan YH, Pei Y.2009. Mitogen-activated protein kinase hogl in the entomopathogenic fungus Beauveria bassiana regulates environmental stress responses and virulence to insects. Applied and Environmental Microbiology 75:3787-3795.
    Zou G, Ying SH, Shen ZC, Feng MG.2006. Multi-sited mutations of beta-tubulin are involved in benzimidazole resistance and thermotolerance of fungal biocontrol agent Beauveria bassiana. Environmental Microbiology 8:2096-2105.
    Zupan J, Muth TR, Draper O, Zambryski P.2000. The transfer of DNA from agrobacterium tumefaciens into plants:a feast of fundamental insights. Plant Journal 23:11-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700