用户名: 密码: 验证码:
德国小蠊抗高效氯氰菊酯相关蛋白及肠道菌群的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
德国小蠊(Blattella germanica)是一种危害日趋严重的世界性卫生害虫,控制其种群数量目前仍以化学杀虫剂为主,其中拟除虫菊酯类杀虫剂应用最为广泛,但抗药性已成为制约其持续使用的严重障碍,迫切需要对德国小蠊的抗药性机理进行更加深入系统的研究。本论文以在实验室筛选的抗高效氯氰菊酯品系德国小蠊为研究对象,从代谢酶活性、蛋白质组学、肠道菌群的组成变化等多个角度揭示德国小蠊的抗药性机理,并进一步探讨了抗药性对德国小蠊生物适合度及抗真菌感染的影响。获得了以下结果:
     1.利用单一杀虫剂高效氯氰菊酯在30%-50%的选择压下持续对德国小蠊敏感品系(Sensitive, S)进行筛选,经连续筛选11代后,获得抗药性系数为7.4,达到中度抗性的德国小蠊高效氯氰菊酯抗性品系(Resistant, R)。从R品系筛选过程来看,德国小蠊对高效氯氰菊酯抗药性的增长呈现出先慢后快的增长趋势,表明德国小蠊抗药性基因的纯合过程;交互抗性测定显示,R品系与其他拟除虫菊酯类杀虫剂(高效氯氟氰菊酯、氯氰菊酯、溴氰菊酯)具有明显的交互抗性,抗性系数分别为5.6、4.1、3.7,而与有机磷(毒死蜱)以及氨基甲酸酯类(残杀威)具弱的交互抗性,抗性系数仅为1.8和1.5。
     2.收集1ppm高效氯氰菊酯诱导前后的S品系以及R品系德国小蠊雄虫血淋巴,测定血淋巴中超氧化物歧化酶(SOD)、乙酰胆碱酯酶(AChE)和谷胱甘肽-S-转移酶(GSTs)三种酶活性的变化。结果发现,R品系SOD、AChE以及GST三种酶的活性均比S品系要高,酶活力分别高出4.9%±0.2%、2.9%±0.4%和30.3%±1.1%,其中GSTs活性差异达到极显著水平(P<0.01);经高效氯氰菊酯诱导后,两品系SOD和GSTs活性均有不同程度的升高,S品系和R品系SOD活性分别升高6.7%±0.3%和5.4%±0.6%,GSTs活性分别升高23.6%±0.8%和26.9%±1.6%,说明SOD和GSTs在德国小蠊高效氯氰菊酯抗性中可能起一定作用。
     3.以丙酮为溶剂对德国小蠊成虫进行脱脂处理,并利用TCA/丙酮、RIPA裂解液、Tris-HCl、1%SDS和裂解液五种蛋白提取液提取全虫蛋白,通过Bradford法测定蛋白浓度,SDS-PAGE电泳比较脱脂前后各种蛋白提取方法的提取效果。结果表明:脱脂处理有助于德国小蠊成虫蛋白的提取;五种蛋白提取方法中,RIPA裂解液对成虫蛋白提取效果最好,雌雄成虫蛋白浓度分别为14.2mg/ml和12.3mg/ml,电泳后蛋白条带分别为13条和16条,其次分别为SDS、Tris-HCl及裂解液,TCA/丙酮沉淀提取法效果最差,几乎无可见条带。进一步研究发现,S品系的雄虫全蛋白及血淋巴蛋白浓度均低于R品系,SDS-PAGE图谱上出现多条差异蛋白带,分子量主要集中在90KD-27KD之间,其中90KD、78KD及55KD等蛋白带在R品系中表达量异常增高,可能与抗性的形成有关;经1ppm高效氯氰菊酯诱导后,S品系蛋白浓度明显下降(P<0.05),R品系没有明显变化,可能与杀虫剂抑制了S品系部分蛋白的表达有关;SDS-PAGE图谱也出现多条差异蛋白带,主要集中在118KD及20KD附近,推测该差异蛋白多与德国小蠊对杀虫剂的应激性有关,部分可能参与抗性形成。
     4.分别对德国小蠊S品系及R品系血淋巴蛋白进行双向电泳(2D-PAGE),并对电泳图谱进行差异分析。结果表明:S品系及R品系血淋巴蛋白表达存在显著差异,共出现111个差异点,其中R品系中蛋白表达上调点有64个,表达下调点有47个。在2D图谱上挑取29个差异显著的蛋白质点(量值≥2)进行质谱鉴定,共成功鉴定出22个,主要为防御/免疫相关的蛋白质:一氧化氮合成酶(nitric oxide synthase, NOS),转铁蛋白(transferrin, Tf);营养/能量代谢相关的蛋白质:α-淀粉酶(alpha-amylase),磷酸丙糖异构酶(triosephosphate isomerase), Per a3,ATP-结合蛋白(ATP-binding protein),精氨酸激酶(arginine kinase, AK),以及其他功能未知蛋白。通过对电泳图谱以及质谱结果的分析,明确了部分差异蛋白的功能,并对其与德国小蠊高效氯氰菊酯抗性之间的关系进行了推测。
     5.对1ppm高效氯氰菊酯诱导后的德国小蠊S品系及R品系血淋巴蛋白同样进行了双向电泳(2D-PAGE)分析,结果表明:亚致死剂量高效氯氰菊酯诱导后引起两品系血淋巴蛋白的显著变化。两品系经诱导后,共出现203个差异点。S品系在诱导前后,出现148个差异点,其中蛋白表达上调点有67个,表达下调点有81个;R品系在诱导前后共出现65差异点,其中蛋白表达上调点有61个,表达下调点有4个;选取65个差异显著蛋白点(量值≥2)进行质谱鉴定,共鉴定出24个,按功能分为防御/免疫相关的蛋白质:热休克蛋白20(heat shock protein, hsp20)、一氧化氮合成酶(nitric oxide synthase, NOS),转铁蛋白(transferrin, Tf);解毒蛋白:谷胱甘肽-S-转移酶(Glutathione-S-transferases, GSTs);营养/能量代谢的蛋白质:Per a3,α-淀粉酶(alpha-amylase),精氨酸激酶(arginine kinase, AK),以及其他功能未知蛋白。
     6.比较德国小蠊S品系和R品系在产卵荚率、卵夹脱落率、孵化率、雌雄虫比例(雄/雌)、幼虫生长历期以及雌雄虫重量等方面的差异,并计算抗性品系的相对适合度变化。结果表明,R品系德国小蠊卵荚脱落率降低50%±1.7%,幼虫孵化率降低30%±0.85%,生长历期延长7d,雄虫/雌虫增加36%±1.02%,雌虫寿命缩短6.5d,雄虫成虫体重减轻0.0037±0.0004g,雌虫体重减轻0.0063±0.0006g。差异均达到极显著水平。德国小蠊R品系相对生物适合度仅为0.26,与S品系相比,显示出明显的适合度缺陷。
     7.剖取羽化后7~8d两品系雌性德国小蠊卵巢,利用TCA/丙酮法提取卵巢蛋白,进行双向电泳,并进行差异蛋白点分析。结果发现:S品系和R品系卵巢蛋白在双向凝胶图谱中具有明卵巢蛋白在2D图谱上具有明显差异,共检测到64个差异蛋白点,有18个蛋白质点表达上调,46个蛋白点表达量下调,其中有24个蛋白质点差异达到显著水平(量值≥2);对差异显著蛋白点进行质谱鉴定,共成功鉴定出17个,其中有5个为卵黄蛋白(vitellogenin);1个为热休克蛋白(heat shock protein, hsp),1个核糖体蛋白(Stubarista, sa),1个昆虫表皮蛋白(putative cuticular protein, ICPG),1个转铁蛋白(transferrin, Tf),1个肌激酶(adenylate kinase, adkl),1个醛脱氢酶(aldehyde dehydrogenase),其他为未知功能蛋白。通过对卵巢蛋白质组的分析,初步明确了部分蛋白极有可能在降低德国小蠊生物适合度降低机制中起到重要作用。
     8.利用孢子接种试验,比较了德国小蠊S品系和R品系对昆虫病原真菌-白僵菌(Beauveria bassiana)的易感性,并对两品系可培养肠道菌群的组成进行了初步分析。结果表明:德国小蠊S品系和R品系对白僵菌的易感程度存在明显差异,相比较S品系,R品系德国小蠊更容易受白僵菌感染(P<0.05);可培养的肠道菌群组成也发生变化,从S品系德国小蠊肠道中共培养出29株菌,经生理生化指标鉴定,分别属于肠杆菌科(9株)、假单胞菌科(6株)、链球菌科(5株)、芽孢杆菌科(4株)、奈瑟氏球菌科(2株)、微球菌科(2株)及乳杆菌科(1株);与S品系相比,R品系分离到的肠道菌株数较少,共分离出25株菌,其中肠杆菌科,芽孢杆菌科均少1株,假单胞杆菌科少2株。
     9.利用平板抑制法对德国小蠊抗病原真菌肠道菌进行筛选,共获得3株对白僵菌具有明显抑制作用的菌株。通过其生理生化指标以及16S rDNA序列信息,构建系统发育树,发现3株菌分别为枯草芽孢杆菌(Bacillus subtilis)、萎缩芽孢杆菌(Bacillus atrophaeu)以及Pseudomonas reactanS。3株菌均可明显的抑制白僵菌的生长,其中枯草芽孢杆菌对白僵菌的抑制效果最强,抑菌圈直径达32mm;进一步研究发现,细菌发酵液可以显著降低体外白僵菌孢子的发芽率(发芽率降低14.5%,P<0.05),并抑制真菌菌丝的生长,造成菌丝出现空泡状畸形,最终从空泡处破溃引起原生质外流,引发真菌死亡。用甲醇粗提细菌发酵液并饲喂德国小蠊,背板点滴法接种真菌孢子,引起德国小蠊发病时间明显延长,死亡率降低,并且随着孢子浓度越低,粗提物保护作用越明显,当孢子浓度为4×108CFU/ml时,对照组第20d的累计死亡率达62.3%±1.3%,处理组仅为49.5%±1.85%,降低了12.8%,差异达到极显著水平,该研究不仅表明德国小蠊肠道菌可能在抗病原真菌感染中起到一定的作用,还提示研究者今后可在昆虫肠道这一特殊环境中寻找具有潜在药用价值的细菌菌株用以防治真菌病。
German cockroach (Blattella germanica) is a globally common insect associated with human habitation which increasingly serious harm to people. Chemical pesticides are still the main means that control the population of German cockroach, especially pyrethroid insecticides which is the most widely used, but the pesticide-resistance has become a serious obstacle which limits its continued use. It is urgent for further study on the mechanism of the resistance of the German cockroach to pyrethroid insecticides. The thesis reveals the mechanism of Beta-cypermethrin resistance in German cockroach bred in the laboratory from multiple aspects as follows: metabolic enzyme activity, proteomics and changes in the composition of the intestinal flora. Further more, the impacts of resistance on biological fitness and anti-fungal infections in German cockroach was also studied and the following results were obtained:
     1. The susceptible strains of the German cockroach (Sensitive, S) were continuously selected using a single insecticide (Beta-cypermethrin) in30%to50%of the selection pressure. After11generations of continuous selection, the moderate Beta-cypermethrin resistant strains (Resistant, R) of German cockroach were obtained which the resistance ratio reached7.4.
     From the process of the R strain selection, the trend of resistance ratio of Beta-cypermethrin in German cockroach showed slow first and fast succedent, suggesting the resistant genes of German cockroach were gradually homozygous; R strains showed significant cross-resistance with pyrethroid insecticides (lambda-cyhalothrin, cypermethrin, deltamethrin), the resistance ratios were5.6,4.1,3.7;but showed weak cross-resistance with organophosphorus (chlorpyrifos) and carbamate (propoxur) which the resistance ratios was only1.8and1.5respectively.
     2. The blood hemolymph of male S strain and R strain German cockroach was collected after1ppm Beta-cypermethrin induced and the activity of three metabolic enzymes such as superoxide dismutase (SOD), acetylcholinesterase (AChE) and glutathione-S-transferase enzymes (GSTs) were test. It showed that the three enzymes activity (SOD, AChE and GSTs) in R strain were all higher than the S strain (4.9%±0.2%,2.9%±0.4%and30.3%±1.1%, respectively) and the activity of GSTs differences reached a very significant level (P<0.01); after induced by Beta-cypermethrin, the activity of SOD and GSTs increased in different levels in both S strain and R strain. SOD activity increased6.7%±0.3%and5.4%±0.6%, GSTs activity increased23.6%±0.8%and26.9%±1.6%, respectively, suggesting that SOD and GSTs played a certain role in Beta-cypermethrin resistance of the German cockroach. The adults of German cockroach were defatted by acetone and five methods (TCA/acetone, RIPA, Tris-HCl,1%SDS and lysate) were used for extraction of protein. The protein concentration was measured with Bradford methods and the characters of protein were analyzed by SDS-PAGE. It showed that defatting was beneficial to the extraction of protein from German cockroach; in five protein extraction methods, RIPA lysate was most effective, and the protein concentrations of male and female adults were14.2mg/ml and12.3mg/ml respectively.
     The results of SDS-PAGE showed that the protein bands of female and male were13and16respectively, followed by SDS, Tris-HCl, and lysate, TCA/acetone was the worst.
     Further studies showed that the male protein and haemolymph protein concentrations of S strains were lower than the R strain, a number of differences in protein band on SDS-PAGE gels, molecular weight mainly between90KD-27KD, of which90KD,78KD and55KD protein bands were abnormal increased in the R strain, may be related to the formation of resistance; After induction with1ppm Beta-cypermethrin, S strain protein concentration decreased significantly (P<0.05), R strains did not change significantly. It concluded that insecticides may inhibit the expression of some protein in S strain; a number of difference protein bands also appeared in SDS-PAGE gels, mainly around the molecular weight of118KD and20KD, it speculated that the differences in protein were mainly related the stress response to insecticides, some may be involved in resistance.
     4. Two-dimensional electrophoresis (2D-PAGE) was carried out on hemolymph proteins in S strain and R strain of German cockroach and the differences were analyzed. The results show that:the haemolymph protein in S strains and R strains were significant differences, a total of111different protein spots were observed, which64spots were up-regulated and47spots were down-regulated in R strains.29significantly different protein spots (magnitude>2) were identified by mass spectrometry and22spots were identified successfully. It was included defense/immune-related proteins:heat shock protein(hsp20),nitric oxide synthase (NOS), transferrin (Tf); nutrition/energy metabolism related proteins:alpha-amylase enzyme,triosephosphate isomerase, Per a3, ATP-binding protein, arginine kinase (AK), and the function of unknown proteins. Based on the results of2D-PAGE and mass spectrometry, some protein function was cleared and the relationship between Beta-cypermethrin resistances in German cockroach was speculated.
     5. Two-dimensional electrophoresis (2D-PAGE) was carried out on hemolymph proteins in S strain and R strain of German cockroach after1ppm Beta-cypermethrin induced and the differences were analyzed.The results showed that:sub-lethal doses of Beta-cypermethrin induction caused significant changes in hemolymph protein of two strains. After induction, a total of203protein spots were difference.148spots were up-regulated and67spots were down-regulated in S strains before and after induction;65spots were up-regulated and61spots were down-regulated in R strains before and after induction;65significantly different protein spots (magnitude>2) were identified by mass spectrometry, and24were identified successfully. It included defense/immune-related proteins:heat shock proteins (HSP20), nitric oxide synthase (NOS), transferrin (Tf); detoxification related protein:protein of glutathione-S-transferase (GSTs); energy metabolism:arginine kinase (AK), Per a3, alpha-amylase and the function of unknown proteins.
     6. The S strain and R strain of German cockroach was compared on oothecal production, ootheca drop-out rate, nymphal hatching rate, nymphal development period, adults longevity, the proportion of male and female adults (male/female) as well as the weight of the male and female adults, and the relative fitness of R strains was calculated. The results showed that the ootheca drop-out rate of R strain of German cockroach was lower50%±1.7%, larvae hatching rate decreased by30%±0.85%, and nymphal development period delayed7d, male/female rate increased36%±1.02%and female adults longevity decreased6.5d, male adult weight loss0.0037±0.0004g, the females weight loss0.0063±0.0006g, the differences were extremely significant. R strain relative biological fitness was only0.26compared with the S strain and showed significant defective fitness.
     7. The ovary of female German cockroach in two strains was dissected after molting7-8d and the proteins was extracted with TCA/acetone; two-dimensional electrophoresis was carried out for the analysis of protein spots. The results showed that:the S and R strains ovarian protein were significant different in the two-dimensional gels, a total of64protein spots were different,18protein spots were up-regulated and46protein spots were down-regulated in which24protein spots reach significant difference level (magnitude≥2);24protein spots were identified by mass spectrometry,17spots were successfully identified, including5for yolk protein (vitellogenin);1for identification as heat shock proteins (heat shock protein hsp), ribosomal protein (Stubarista sa) the insect epidermis protein (putative cuticular protein ICPG), transferrin (transferrin, Tf), myokinase (adenylate kinase, adkl) an aldehyde dehydrogenase (aldehyde dehydrogenase), other proteins were unknown function. The proteome analysis of ovary revealed that some protein may play an important role in the mechanism of defective biological fitness in German cockroach.
     8. The susceptibility of the German Cockroach S strain and R strain to entomopathogenic fungus (Beauveria bassiana) was compared with spore inoculation test and the composition of culturable intestinal flora was investigated. The results show that:Obvious differences in the sensitivity of the S strain and R strain of the German cockroach to Beauveria bassiana, compared to the S strain the R strain German cockroach was more susceptible to Beauveria bassian infection (P<0.05); the composition of cultured intestinal flora was different in the S strains and R strains.29bacteria strains of S strains were identified by physiological and biochemical characters, belonging to Enterobacteriaceae (9), Pseudomonas (6), Streptococcus (5), Bacillus (4), Neisseria (2), Micrococcus (2) and Lactobacillus (1). Compared with S strain, the bacteria strains were fewer (25strains) and short of Enterobacteriaceae (1), Bacillus (1) and Pseudomonas (2).
     9. The intestinal bacteria were tested with anti-entomopathogenic fungus Assay. A total of three strains showed significantly inhibited activity to Beauveria bassian. The phylogenetic tree was generated based on the morphology, physiological, biochemical characters and the sequence of16S rDNA. It was showed three strains were Bacillus subtilis, Bacillus atrophaeu and Pseudomonas reactans. Three bacteria all could inhibit the growth of B. bassiana significantlyin which Bacillus subtilis showed strongest inhibition activity, inhibition zone diameter of32mm; further study showed that vesicles were observed in B. bassiana hyphae on the edge of the inhibition zone. Fermentation of BGI-1reduced the conidial germination rate by12%. Further studies demonstrated that B. bassiana infections in German cockroaches orally treated with the extracts of BGI-1fermentation were significantly weakened. Cumulative mortality rate was49.5%in the treatment group at the20d, while that of the control group was62.3%. The study intends to understand the relationship between the intestinal flora and the cockroach. Those microbes with anti-entomopathogenic fungi activity might contribute to resisting the infection of pathogenic fungi. It also hinted that the bacterial strains with potential medicinal value for control fungal disease may be found in the special environment of the insect gut.
引文
[1]吴福祯,郭予元.中国小蠊属蜚蠊种类及其分布、生活习性和经济意义[J].昆虫学报,1984,27(4):430-438.
    [2]Arlian L.G. Arthropod allergens and human health [J]. Annual Review of Entomology,2002,47:395-433.
    [3]Pai H.H., Ko Y.C.,Chen E.R. Cockroaches (Periplaneta americana and Blattella germanica) as potential mechanical dissemination of Entamoeba histolytica. [J].Acta Tropica,2003,87(3):355-359.
    [4]Pai H.H., Wu S.C., Hsu, E.L. Insecticide resistance in German cockroach(Blattella germanica) from hospitals and households in Taiwan.International Journal of Environmental[J].Health Research,2005,15(1): 33-40.
    [5]李朝品主编.医学昆虫学[M].北京:人民军医出版社,2007:343-344.
    [6]阎炳申等.蜚蠊及其防制[J].医学动物防制,2002,18:66-69.
    [7]Ladonni H., Sadegheyani S. Permethrin toxicity and synergistic effect of piperonyl butoxide in the first nymphal stage of Blattella germanica (Dictyoptera:Blattellidae) [J]. Iranian Journal Public Health,1998, 27:44-50.
    [8]Limoee M., Ladonni H., Enayati A.A., et al. Detection of pyrethroid resistance and cross-resitance to DDT in seven field collected strains of the German cockroach Blattella germanica (L.)(Dictyoptera:Blattellidae)[J].Journal of Biological Sciences,2006,6(2):382-387.
    [9]Mallis A. Handbook of Pest control [M].5th Eds. MacNair-Dorland Co.NY,1954:1594.
    [10]Heal R.E.,Nash K.B.,williams M. An insecticide resistanced strain of the German cockraock from corpus chriati Texas. Journal of Economic Entomology,1953,46:385-386.
    [11]Bennett G.W.,Spink W.T. Insecticide resistance of German cockroaches from various of Louisiana [J]. Journal of Economic Entomology,1968,61:426.
    [12]Cochran D.G. Further studies on cross-resistance in the German cockroach [J]. Bulletin World Health Organization,1961,24:557-61.
    [13]Atkinson T.H., Wadleigh R.W., koehler P.G. et al. Pyrethroid resistance and synergism in a field strain of the German cockroach (Dictyoptera:Blattellidae) [J]. Journal of Economic Entomology,1991, 84:1247-50.
    [14]Hemirtgway J., Small G.J., Mono A.G. Possible mechanisms of Organophosphorus and Carbarnate insecticide resistance in German Cockroaches (Dictyoptera:BiatteLdae) from different geographical areas[J]. Journal of Economic Entomology,1993,86(6):1623-30.
    [15]Scharf M.E., Kaakeh W., Bennett G.W. Changes in an insecticide resistant field-population of German cockroach following exposure to an insecticide mixture[J].Journal of Economic Entomology 1997,90:38-48.
    [16]Valles S.M., Dong K, Brenner R.J.. Mechanisms responsible for cypermethrin resistance in a strain of German cockroach, Blattella germanica (L.)[J].Pesticide Biochemistry and Physiology 2000,66:195-205.
    [17]Limoee M., Ladonni H., Enayati A.A. et al. Detection of pyrethroid resistance and cross-resitance to DDT in seven fieldcollected strains of the German cockroach Blattella germanica (L.)(Dictyoptera:Blattellidae) [J].Journal of Biological Sciences,2006,6(2):382-387.
    [18]Choo L.E.W.C, Tang, C.S., Pang, F.Y. et al. Comparison of two bioassay methods for determining deltamethrin resistance in German cockroach (Blattodea:Blattellidae) [J]. Journal of Economic Entomology,2000,93(3):905-910.
    [19]Yuping W., Arthur G.A., William M.J. et al. Pyrethroid resistance and cross-resistance in the German cockroach, Blattella germanica (L.) [J].Pest Managment Science,2001,57:1055-1059.
    [20]Chai R.Y., Lee C.Y. Insecticide resistance profiles and synergism in field populations of the German cockroach (Dictyoptera:Blattellidae) from Singapore. Journal of Economic Entomology,2010, 103:460-471.
    [21]何上虹,梁铁麟,王士珍.蜚蠊抗性测试初报[J].医学动物防制,1986,2(4):106-1071.
    [22]傅桂明,王伟,杨天赐等.德国小蠊抗药性及防制措施[J].中华卫生杀虫药械,2006,13(5):391-3931.
    [23]杨晓,胡龙飞,李文江.德国小蠊对DDVP的抗性研究[J].中国国境卫生检疫杂志,1995,E01(18):10-12.
    [24]林立丰,卢文成,蔡松武.广东省德国小蠊对杀虫剂的抗药性调查[J].中国媒介生物学及控制杂志,2000,16(1):32-34.
    [25]王学军,赖世宏,赵志刚等.山东省德国小蠊对5种杀虫剂的抗药性调查研究[J].中华卫生杀虫药械,2012,23(4):332-335
    [26]孙晨熹,张咏梅,李培羽等.天津市德国小镰对6种杀虫剂抗药性测定结果.[J].医学动物防制,1999,4(15):172-174.
    [27]王伟,吴彤宇,张咏梅等.天津市德国小蠊对常用杀虫剂的抗药性测定.[J].中国媒介生物学及控制杂志,2011,22(6):567-569.
    [28]张文吉.拟除虫菊酯的结构与害虫抗药性的关系[J].昆虫学报,1992,35(1):22-26.
    [29]姜家良,陈巧云,侯能俊.不同敌百虫抗性淡色库蚊幼虫中谷胱甘肽和谷胱甘肽转移酶的比较[J].昆虫学报,1984,27(3):248-253.
    [30]Rawlings P. Field measurement of the effective dominance of an insecticide resistance in anopheline mosquitos [J]. Bulletin World Health Organization,1981,59:631-640.
    [31]张朝远.增效剂对抗苄呋菊酯淡色库蚊的再观察和非菊酯类杀虫剂的交互抗性[J].昆虫学研究集刊,1986,6:109-114.
    [32]Cao Z., Shafer T.J., Crofton K.M. et al. Additivity of pyrethroid actions on sodium influx in cerebrocortical neurons in primary culture [J]. Environ Health Perspect,2011,119(9):1239-1246.
    [33]吴文君,罗万春.农药学[M],北京,中国农业出版社,2008:12-15.
    [34]李海屏.世界化学杀虫剂新品种开发进展及特点[J].农业科学技术,2003,5:32-33.
    [35]王东.烟碱型乙酰胆碱受体(nAChR)及其在杀虫剂创制中的作用[J].农药研究与应用,2009,2:6-9
    [36]孙锋.苏云金杆菌的发展和应用[J];安徽农业科学;2005,33(12):2402-2403
    [37]郭耀武,瞿胜,汪斌和.毒力岛杀灭德国小蠊效果观察[J].中国卫生杀虫药械,2001,7(4):43-44
    [38]Pachamuthu P., Kamble S. T. In vivo study on combined toxicity of Metarhizium anisopliae strain ESC-1 with sublethal doses of chlorpyrifos, propetamphos,and cyfluthrin against German cockroach[J]. Journal of economic entomology,2000,93(1):60-70.
    [39]Scott J. G. Insecticide resistance in insects. Handbook of pest management in agriculture [M], CRC Press, Boca Raton,1991, (2):663.
    [40]Wang C., Scharf M.E., Bennett G.W. Behavioral and physiological resistance of the German cockroach to gel baits (Blattodea:Blattellidae) [J].Journal of Economic Entomology,2004,97(6):2067-2072.
    [41]Prapanthadara L., Hemingway J., Ketterman A.J. DDT-resistance in Anopheles gambiae Giles from Zanzibar Tanzania,based on increased DDT dehydrochlorin-ase activity of glutathione S-transferases[J]. Bulletin of Entomological Research.1995,85:267-274.
    [42]Ralf N.,Natascha S.. Fluorometric microplate assay to measure glutathione-S-transferase activity in insects and mites using monoclorobimane [J].Analytical Biochemistry.2002,303:194-198.
    [43]Cui F., Lin Z., Wang H.S., et al. Two single mutations commonly cause qualitative change of nonspecific carboxylesterases in insects [J].Insect Biochemistry and Molecular Biology,2011,41(1):1-8.
    [44]Matsumura F., Brown A.W.A. Biochemistry of malathion resistance in Culex tarsalis [J]. Journal of Economic Entomology 1961.54:11-76.
    [45]陈巧云姜家良林国芳等.淡色库蚊对敌百虫抗性的研究-水解酶同敌百虫抗性关系[J].昆虫学报.1980.23(4):350-357.
    [46]林永丽,孙锦程,郝蕙玲等.德国小蠊乙酰胆碱酯酶和羧酸酯酶活力与抗药性的关系[J].医学动物防制,2000,16(11):569-573.
    [47]Steven M.V., Charles A.S., A Microsomal Esterase Involved in Cypermethrin Resistance in the German Cockroach Blattella germanica [J]. Pesticide Biochemistry and Physiology,2001,71.56-67.
    [48]Chai R.Y., Lee C.Y. Insecticide resistance profiles and synergism in field populations of the German cockroach (Dictyoptera:Blattellidae) from Singapore [J]. Journal of Economic Entomology,2010, 103(2):460-471.
    [49]Mohan M.,Gujar G.T. Local variation in susceptibility of diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes [J].Crop Protection,2003,22:495-504.
    [50]Sarfraz M., Dosdall L.M., Keddie B.A. Diamondback moth-host plant interactions:implications for pest management [J]. Crop Protection,2006,25,625-639.
    [51]Lumjuana N., McCarrolla L., Prapanthadara L. et al. Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector,Aedes aegypti[J]. Insect Biochemistry and Molecular Biology,2005,35(8):861-871.
    [52]Vontas J.G., Small G.J., Hemingway J. et al. Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens [J].Biochemical Journal,2002,362(2):329-337.
    [53]何林,谭仕禄,曹小芳等.朱砂叶螨抗药性选育及其解毒酶活性研究[J].农药学学报,2003,5(4):23-29.
    [54]盂和生,王开运,姜兴印等.桔全爪靖的抗药性选育及其解毒酶活力变化[J].昆虫学报,2002,45(1):58-62.
    [55]Habes D., Morakchi S., Aribi N. et al. Boric acid toxicity to the German cockroach, Blattella germanica: Alterations in midgut structure, and acetylcholinesterase and glutathionen S-transferase activity [J].Pesticide Biochemistry and Physiology,2006,84:17-24.
    [56]Strode C, Wondji C.S., David J.P. et al. Genomic analysis of detoxification genes in the mosquito Aedes aegypti [J]. Insect Biochemistry and Molecular Biology,2008,38(1):113-123.
    [57]朱昌亮,李建民,田海生等.淡色库蚊细胞色素P450抗性相关基因克隆与初步鉴定[J].中国寄生虫学与寄生虫病杂志,2000,18(5):263-268.
    [58]公茂庆,顾燕,胡小邦等.淡色库蚊细胞色素P450基因的克隆、序列分析及表达差异的鉴定[J].中国病原生物学杂志,2007,2(1):62-66.
    [59]Hemingway J, Small GJ, Mono AG:Possible mechanisms of Organophosph-orus and Carbamate insecticide resistance in German Cockroaches (Dictyoptera:Blattelidae) from different geographical areas. J. Econ. Entomol,1993,86(6):1623.
    [60]张大羽,程家安,陆永华.杭州市区德国小蠊抗药性及增效剂的作用[J].中国媒介生物学及控制杂志.1997,8(2):114-118.
    [61]Pridgeon J.W., Zhang L., Liu N. Overexpression of CYP4G19 associated with a pyrethroid-resistant strain of the German cockroach, Blattella germanica (L.) [J].Gene,2003,314:157-163.
    [62]Guo G.Z., Geng Y.J., Huang D.N. et al. Level of CYP4G19 expression is associated with pyrethroid resistance in Blattella germanica [J].Journal of Parasitology Research,2010,2010:1-7.
    [63]Wei Y., Appel A.G., Moar W.J. et al. Pyrethroid resistance and cross-resistance in the German cockroach, Blattella germanica (L.) [J].Pesticide Science,2001,57(11):1055-1059.
    [64]Weill M., Fort P., Berthomieu A.et al. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non homologous to the ace gene in Drosophila [J]. Process Royal Society,2002, 269(1504):2007-2016.
    [65]Weill M., Malcolm C., Chandre F. et al. The unique mutation in ace-1 giving high insecticide is easily detectable in mosquito vector [J]. Insect Molecular Biology,2004,13(1):1-7.
    [66]Kwon D.H., Choi J.Y., Je Y.H. et al. The overexpression of acetylcholinesterase compensates for the reduced catalytic activity caused by resistance-conferring mutations in Tetranychus urticae [J]. Insect Biochemistry and Molecular Biology,2012,42(3):212-219.
    [67]Taskin V., Kence M..The genetic basis of malathion resistance in housefly (Musca domestica L.) strains from Turkey [J].Genetika,2004,40(11):1475-82.
    [68]Pridgeon J.W., Appel A.G., Moar W. J. et al. Variability of resistance mechanisms in pyrethroid-resistant German cockroaches (Dictyoptera:Blattellidae). [J].Pesticide Biochemistry Physiology 2002,73:149-156.
    [69]Kim J.I., Jung C.S., Koh Y.H. et al. Molecular, biochemical and histochemical characterization of two acetylcholinesterase cDNAs from the German cockroach Blattella germanica[J]. Insect Molecular Biology, 2006,15(4):513-522.
    [70]Revuelta L., Piulachs M.D., Belles X et al.RNAi of ace1 and ace2 in Blattella germanica reveals their differential contribution to acetylcholinesterase activity and sensitivity to insecticides [J]. Insect Biochemistry and Molecular Biology 2009,39(12):913-919.
    [71]Xu Q., Tian L., Zhang L. et al. Sodium channel genes and their differential genotypes at the L to F kdr locus in the mosquito Culex quinquefasciatus[J]. Biochemical and Biophysical Research Communication, 2011,407(4):645-649.
    [72]Harris A.F., Rajatileka S., Ranson H. Pyrethroid resistance in Aedes aegypti from Grand Cayman[J]. American Journal of Tropical Medicine and Hygiene,2010,83(2):277-284.
    [73]张晓龙等.北京地区德国小蠊对氯菊酯抗性相关的钠通道基因点突变的研究[J].寄生虫与医学昆虫学报,2004,11(4):230-234.
    [74]Dong K. A single amino acid change in the Para sodium channel protein is associated with knockdown-resistance [J]. Insect Biochemistry and Molecular Biology,1997,27(2):93-100.
    [75]Valles, S. M., Perera O. P. and Strong C. A. Relationship between the para-homologous sodium channel point mutation (g→c at nucleotide 2979) and knockdown resistance in the German cockroach using multiplex polymerase chain reaction to discern genotype [J]. Journal of Economic Entomology,2003, 96:885-891.
    [76]Wondji C.S., Dabire R.K., Tukur Z. et al.Identification and distribution of a GABA receptor mutation conferring dieldrin resistance in the malaria vector Anopheles funestus in Africa [J]. Insect Biochemistry and Molecular Biology,2011,41(7):484-491.
    [77]Brooke B.D., Hunt R.H., Matambo T.S. et al. Dieldrin resistance in the malaria vector Anopheles gambiae in Ghana [J]. Medical of Veterinary Entomology,2006,20(3):294-299.
    [78]Roush R.T., Mckenzie J.A. Ecological genetics of insecticide and acaricide resistance [J]. Annual Review of Entomology,1987,32:361-380.
    [79]Fang L., Tadashi M., Zu Jian W. et al.Effects of temperature on fitness costs, insecticide susceptibility and heat shock protein in insecticide-resistant and -susceptible Plutella xylostella [J].Pesticide Biochemistry and Physiology,2008,91:45-52.
    [80]Shanfeng L., Hong Z., Runjie Z.Effect of fenvalerate on the reproduction and fitness costs of the brown planthopper,Nilaparvata lugens and its resistance mechanism[J].Pesticide Biochemistry and Physiology,2011,101:148-153.
    [81]Wyatt I.J., White P.F. Simple estimation of intrinsic increase rates for aphids and tetranychid mites [J].Appled Ecology,1997,14(3):757-766.
    [82]Spiegelman V.S., Fuchs S.Y., Belitsky G.A. The expression of insecticide resistance-related cytochrome P450 forms is regulated by molting hormone in Drosophila melanogaster[J].Biochemical and Biophysical Research Communications,1997,232 (2):304-307.
    [83]姚洪渭,叶恭银,程家安.害虫抗药性适合度与内分泌调控研究进展[J].昆虫知识,2002,39(3):181-187.
    [84]Bourguet D., Lenormand T., Guillemaud T. et al. Variation of dominance of newly arisen adqptive genes [J].Genetics,1997,147(3):1225-1234.
    [85]王金福,陆绍红,陈睿等.淡色库蚊三种有机磷抗性品系的相对适合度分析,寄生虫与医学昆虫学报,1997,4(3):145-150.
    [86]Kumar S., Pillai M.K. Correlation between the reproductive potential and the pyrethroid resistance in an Indian strain of filarial vector, Culex quinquefasciatus Say (Diptera:Culicidae)[J]. Bulletin of Entomological Research,2011,101(1):25-31.
    [87]兰亦全,赵士熙.抗三氟氯氰菊酯甜菜夜蛾品系的相对适合度研究[J].华东昆虫学报,2004,13(1):88-91.
    [88]Pathan A.K., Sayyed A.H., Aslam M. et al. Resistance to pyrethroids and organophosphates increased fitness and predation potential of Chrysoperla carnae (Neuroptera:Chrysopidae). Journal of Economic Entomology,2010,103(3):823-834.
    [89]Sayyed A.H., Wright D.J. Fitness costs and stability of resistance to Bacillus thuringiensis in a field population of the diamondback moth Plutella xylostella L. [J]. Journal of Economic Entomology,2001, 26:502-508.
    [90]Banks C.J., Needham P.H. Comparison of the biology of Myzus persicac (Sulz.) resistant and susceptible to dimethoate[J].The Annals of Applied Biology,1970,66(3):465-468.
    [91]吴孔明,刘芹轩.棉蚜抗杀灭菊酯品系的某些生物学特性[J].昆虫学报,1994,37(2):137-144.
    [92]Ang L.H., Chow-Yang L. Absence of a fitness penalty in insecticide-resistant German cockroaches, Blattella germanica (L.) (Dictyoptera:Blattellidae)[J]. International Journal of Pest Management,2011, 157 (3):195-204.
    [93]Ross M.H. A comparison of reproduction and longevity in pyrethroid-resistant and susceptible German cockroach (Blattodea:Blattellidae) field-collected strains [J]. Journal Entomology Science,1991, 26(4):408-418.
    [94]Bird L.J., Akhurst R.J.Variation in susceptibility of Helicoverpa armigera (Hiibner) and Helicoverpa punctigera (Wallengren) (Lepidoptera:Noctuidae) in Australia to two Bacillus thuringiensis toxins [J]. Journal of Invertebrate Pathology,2007,94(2):84-89.84-94.
    [95]Via S. Washington, D.C. In Pesticide resistance:strategies and tactics for management [J].National Academy of Science,1986,222-225.
    [96]Bloch G., Wool D. Methidathion resistance in the sweet potato whitefly (Aleyrodidae:homoptera) in Israel:selection, heritability, and correlated changes of esterase activity [J]. Journal of Economic Entomology,1994,87(5):1147-1156.
    [97]何林,赵志模,邓新平等.朱砂叶螨对两种杀螨剂的抗性遗传力及风险评估.植物保护学报,2002a,29(4):331-336.
    [98]何林,赵志模,邓新平等.朱砂叶螨对三种杀螨剂的抗性选育与抗性风险评估.昆虫学报,2002,45(5):688-692.
    [99]何林,谭仕禄,曹小芳等.朱砂叶螨的抗药性选育及其解毒酶活性研究.农药学学报,2003,5(4):23-29.
    [100]Roush R.T., Plapp F.W. Effects of insecticide resistance on biotic of the house fly (Diptera:Muscidae)[J]. Journal of Economic Entomology,1982,75:708-713.
    [101]EL-Rhatib, Zouhair L., Georghiou et al.Comparative fitness of temephos-resistant, susceptible and hybrid phenotypes of the southerm house mosquito (Diptera:Culicidae). Journal of Economic Entomology 1985,78:1023-1029.
    [102]张凡.德国小蠊肠道菌BGI-17的鉴定及抗真菌研究[J].中国媒介生物学及控制杂志,2012,23(1):35-37.
    [103]Lee Y.H., Hou R.F. Physiological roles of a yeast-like symbiote in reproduction and embryonic development of the brown planthopper, Nilaparvata lugens Stal. Journal of Insect Physiology,1987, 33(11):851-860.
    [104]董鹏,王进军.沃尔巴克氏体Wolbachia对宿主的生殖调控作用及其研究进展[J].昆虫知识,2006,43(3):288-293.
    [105]傅强,张志涛,胡萃等.高温处理后褐飞虱体内共生酵母菌和氨基酸需求的变化[J].昆虫学报,2001,44(4):534-540.
    [106]Tetsuhiko Sasaki, Maki Kawamura, Hajime Ishikama. Nitrogen recycling in the brown planthopper, Nilaparvata lugens:involvement of yeast-lke endosymbionts in uric acid metabolism [J].Journal of Insect Physiology,1996,42 (2):125-129.
    [107]Yuichi Hongo,Tetsuhiko Sasaki, Hajime Ishikamd.Cloning,sequence analysis and expression in Escherichia coli if the gene encoking a uricase from the yeast-like symbionts of brown planthoppers, Nilaparvata lugens [J].Insect Biochemistry and Molecular Biology,2000,30:173-182.
    [108]杜冰,杨公明,刘长海等.枯草芽孢杆菌的生理和培养特性研究[J].《广东饲料》,2008,4(2):12-14.
    [109]Ferrari J., Darby A. C., Daniell T. J., et al. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance [J].Ecological Entomology,2004,29(1):60-65.
    [110]Dillon R. J.,Charnley A. K. Invasion of the pathogenic fungus Metarhizium anisopliae through the guts of germfree desert locusts, Schistocerca gregaria[J]. Mycopathologia,1986,96:59-66.
    [111]Dillon R. J., Charnley A. K. Inhibition of Metarhizium anisopliae by the gut bacterial flora of the desert locust, Schistocerca gregaria:Evidence for an antifungal toxin [J]. Journal of Invertebrate Pathology,1986,47(3):350-360.
    [112]Dillon R. J., CharnleyA. K. Inhibition of Metarhizium anisopliae by the gut bacterial flora of the desert locust:characterisation of antifungal toxins [J]. Canadian Journal of Microbiology,1988,34(9): 1075-1082.
    [113]Sabate D. C., Carrillo L., Audisio M. C. Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples[J]. Research in Microbiology, 2009.160(3):193-199.
    [114]Chen C C, Cheng L L,Hou R F. Studies on the intracellular yeast like symbiote in brown planthopper, Nilaparvata lugens Stal.II.Effects of antibiotics and elevated temperature on the symbiontes and their host[J].Z Angew Entomology.,1981 b,92:440-449.
    [115]李娜,陈建明,张钰锋等.褐飞虱共生菌抗吡虫啉菌株和敏感菌株解毒酶活性的比较[J].浙江农业学报,2010,22(5):653-659.
    [116]吕仲贤,俞晓平,陈建明等.共生菌在褐飞虱致害性变化中的作用[J].昆虫学报,2001,44(2):197-204.
    [117]吕仲贤,俞晓平,陈建明等.不同虫源和致害性的褐飞虱体内共生菌的种群动态华东[J].昆虫学报,2001,10(1):44-49.
    [118]O'Farrell PH. High resolution two-dimensional electrophoresis of proteins [J]. Journal of Biological Chemistry,1975,250:4007-4021.
    [119]郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,2001,131-142.
    [120]Pandey A., Mann M. Proteomics to study genes and genomes [J]. Nature,2000,405(6788):837-846
    [121]Candas M., Loseva O., Oppert B., et al.Insect resistance to Bacillus thuringiensis:alterations in the indianmeal moth larval gut proteome [J]. Molecular & Cellular Proteomics,2003,2(1):19-28.
    [122]Pedra J.H., Festucci-Buselli R.A., Sun W. et al. Profiling of abundant proteins associated with dichlorodiphenyltrichloroethane resistance in Drosophila melanogaster [J]. Proteomics,2005,5(1): 258-269.
    [123]Sharma R., Komatsu S., Noda H. Proteomic analysis of brown planthopper:application to the study of carbamate toxicity [J]. Insect Biochemistry and Molecular Biology,2004,34(5):425-432.
    [124]Krishnamoorthya M., Jurat-Fuentesa J.L., McNallb R.J. et al. Identification of novel Cry 1 Ac binding proteins in midgut membranes from Heliothis virescens using proteomic analyses[J]. Insect Biochemistry and Molecular Biology,2007,37(3):189-201.
    [125]林永丽,曹敏,郝蕙玲等.德国小蠊血淋巴蛋白和卵巢蛋白的分析[J].中国媒介生物学及控制杂志,2002,13(4):275-276.
    [1]李海屏.杀虫剂新品种开发进展及特点[J].江苏化工,2004,32(1):6-11.
    [2]Bisset J., Rodriguez M., Soca A. et al. Cross-resistance to pyrethroid and organophosphorus insecticides in southern house mosquito(Diptera:Culicidae)from Cuba[J] Journal of Medical Entomology,1997,34(2):244-246.
    [3]孟和生,王开运,姜兴印等.桔全爪靖的抗药性选育及其解毒酶活力变化[J].昆虫学报,2002,45(1):58-62.
    [4]曹辉,霍新北,王学军.家蝇对高效氯氰菊酯抗药性的选育研究[J].中国媒介生物学及控制杂志,2010,21(1):56-58.
    [5]王学军,赖世宏,刘峰.德国小蠊抗性品系对化学杀虫剂交互抗性的研究[J].中国媒介生物学及控制杂志,2004,15(3):177-179
    [6]Yuping Wei, Arthur G Appel, William J Moar and Nannan Liu. Pyrethroid resistance and cross-resistance in the German cockroach, Blattella germanica(L)[J]. Pest Management Science,2001,57:1055-1059.
    [7]Enayati A.A., Motevalli H.F. Biochemistry of pyrethroid resistance in German cockroach (Dictyoptera, Blatellidae) from hospitals of Sari, Iran[J]. Iranian Biomedical Journal,2007,11(4):251-258.
    [8]Kim J.I., Jung C.S., Koh Y.H., Lee S.H. Molecular, biochemical and histochemical characterization of two acetylcholine esterase cDNAs from the German cockroach Blattella germanica[J]. Insect Molecular Biology,2006,15,513-522.
    [9]Revuelta L, Piulachs M.D, Belles X, et al. RNAi of ace1 and ace2 in Blattella germanica reveals their differential contribution to acetylcholine esterase activity and sensitivity to insecticides[J].Insect Biochemistry and Molecular Biology.2009,39(12):913-919.
    [10]Liu Z, Valles S.M, Dong K. Novel point mutations in the German cockroach para sodium channel gene are associated with knockdown resistance(kdr) to pyrethroid insecticides[J].Insect Biochemistry and Molecular Biology,2000,30:991-997.
    [11]Tan J., Liu Z., Tsai T.D. et al. Novel sodium channel gene mutations in Blattella germanica reduce the sensitivity of expressed channels to deltamethrin[J].Insect Biochemistry and Molecular Biology, 2002,32(4):445-454.
    [12]Valles S.M, Perera O.P Charles A.S. Relationship between thepara-homologous sodium channel point mutation (g→c at nucleotide 2979) and knockdown resistance in the German cockroach using multiplex polymerase chain reaction to discern genotype[J].Journal of Economic Entomology,2003,96:885-891.
    [13]霍新北,于国防,马义等.氯氰菊酯对德国小蠊谷胱甘肽过氧化物酶的诱导[J].中国公共卫生,2004,20(11):1318-1319.
    [14]曲明静,许新军,韩召军等.酯酶基因扩增及突变与昆虫抗药性[J].昆虫知识,2007,44(1):29-31.
    [15]赵志刚,霍新北.高效氟氯氰菊酯对德国小蠊谷胱甘肽硫-转移酶抑制作用研究[J].预防医学论坛,2009,15(3):197-210.
    [16]Guangzhou G., Yijie G.,Dana H. et al. Level of CYP4G19 expression is associated with pyrethroid resistance in Blattella germanica[J]. Journal of Parasitology Research Volume,2010,1-7.
    [17]Osamu.K., Shinji K., Takashi T.a. Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus[J]. Insect Biochemistry and Molecular Biology,2010,40:146-152.
    [18]Hilary R., Raphael N.G., Jonathan L., et al. Pyrethroid resistance in African anopheline mosquitoes:what are the implications for malaria control[J]? Trends in Parasitology February,2011,27(2):91-98
    [19]Agrawala V.K., Ashok A., Varsha C., et al. Efficacy of imidacloprid and fipronil gels over synthetic pyrethroid and propoxur aerosols in control of German cockroaches (Dictyoptera:Blatellidae) [J].Journal of Vector-Borne and Zoonotic Diseases,2010,47:39-44.
    [20]Yan S.P., Zhang Q.Y., Tang Z.C., et al. Comparative proteomic analysis provides new insights into chilling stress responses in rice[J]. Molecular Cellular Proteomics,2006,5(3):484-496.
    [21]Goulielmos G.N., Arhontaki K., Eliopoulos E.,et al. Drosophila Cu,Zn superoxide dismutase gene confers resistance to paraquat in Escherichia coli[J]. Biochemical and Biophysical Research Communications, 2003,308(3):433-438.
    [22]Mao D., Qikang G., Jianchu M. et al. Construction and validation of an insecticide resistance-associated DNA microarray[J]. Journal of Pesticide Science.,2007,32(1):32-41.
    [23]马义,霍新北,马民,付荣恕.高效氯氰菊酯对德国小蠊超氧化物歧化酶诱导作用研究[J].寄生虫与医学昆虫学报,2005,12(1):37-40.
    [24]王式春,林琳,刘渠等.抗药性与敏感性德国小蠊乙酰胆碱酶的活性比较[J].热带医学杂志,2011,11(7):748-749.
    [25]李秋红,钱坤,周小沽等.德国小蠊谷胱甘肽S-转移酶在不同发育阶段活性变化及其在野外种群中的水平[J].中国媒介生物学及控制杂志,2011,22(5):429-432.
    [26]Ortelli F.,Rossiter L.C.,Vontas J. Heterologous expression of four Glutathione transferase genes genetically linked to a major insecticide resistance locus from the malaria vector Anopheles gambiae[J]. Journal of Biochemistry,2003,373(3):957-963.
    [27]Sawicki R.,Singh S.P.,Mondal A.K.,et al. Cloning,expression and biochemical characterization of one Epsilon class (GST-3) and ten Delta class(GST-1) glutathione-S-transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class[J].Journal of Biochemistry,2003,37(2):661-669.
    [28]Lumjuan N.,Rajatileka S.,Changsom D.,et al. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides[J]. Insect Biochemistry and Molecular Biology,2011,41 (3):203-209.
    [29]Wang Y, Qiu L, Ranson H, et al. Structure of an insect epsilon class glutathione S-transferase from the malaria vector Anopheles gambiae provides an explanation for the high DDT-detoxifying activity[J]. J Struct Biol,2008,164(2):228-235.
    [30]Steven M.V, Charles A.S, A microsomal esterase involved in cypermethr in resistance in the German cockroach, Blattella germanica[J].Pesticide Biochemistry and Physiology,2001,71:56-67.
    [31]曾晓艽,于彩虹,高希武.德国小蠊抗性及敏感品系羧酸酯酶生化特征比较研究[J].中国媒介生物学及控制杂志,2004,15(2):105-109
    [32]沈孝兵,张丽.不同施药周期DDVP对德国小蠊酶活性的影响[J].中国公共卫生,2003,19(4):403-405.
    [33]韩国庆,刘志刚,阴伟雄等.美洲大蠊特异性抗原的蛋白印迹分析[J].中国人兽共患病学报,2006,22(10):971-974.
    [34]李奕冉,姜玉新,李朝品.黄粉虫蛋白提取工艺的研究进展[J].安徽医药,2010,14(7):751-753.
    [35]Cilia M, Fish T, Yang X, et al. A comparison of protein extraction methods suitable for gel-based proteomic studies of aphid proteins[J]. Journal of Biomolecular Techniques,2009,20(4):201-215.
    [36]仲义,史树森,梁煊赫等.不同方法提取昆虫蛋白质效果比较[J].吉林农业科学,2009,34(3):58-64.
    [37]Mohan M., Gujar G.T. Local variation in susceptibility of the diamonback moth Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes[J]. Crop Protection,2003,22:495-504.
    [38]Yu S.J., Huang S.W..Purification and Characterization of Glutathione S-transferases from the German Cockroach, Blattella germanica (L.)[J].Pesticide Biochemistry and Physiology,2000,67:36-45.
    [39]Zhimou W., Jeffrey G. S.. Cytochrome P450 CYP6L1 is specifically expressed in the reproductive tissues of adult male German cockroaches, Blattella germanica (L.)[J]. Insect Biochemistry and Molecular Biology,2001:179-187.
    [40]Kyu S.C., Hyun S.E., Jin S.J. et al.Monitoring for insecticide resistance in field-collected populations of Blattella germanica (Blattaria:Blattellidae)[J]. Journal of Asia-Pacific Entomology,2010:309-312.
    [41]Trent P., Philip B., Phillip D.J. The biology of insecticidal activity and resistance[J]. Insect Biochemistry and Molecular Biology,2011,411-422.
    [42]George, Janini M.,Thomas P.,et al. Development of a two-dimensional protein-peptide separation protocol for comprehensive proteome measurements [J]. Journal of Chromatography,2003,87:43-51.
    [43]Biron D.G., Agnew P., Marche L. et al. Proteome of aedes aegypti larvae in response to infection by the intracellular parasite vavraia culicis[J]. International Journal for Parasitology,2005,5:1-13.
    [44]Bradford M.M..A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72:248-54.
    [45]郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,2001,131-142.
    [46]Sharma R., Komatsu S., Noda H. Proteomic analysis of brown planthopper:application to the study of carbamate toxicity[J]. Insect Biochemistry and Molecular Biology,2004,34:425-432.
    [47]McNall R.J. Identification of novel Bacillus thuringiensis CrylAc binding proteins in Manduca sexta midgut through proteomic analysis [J]. Insect Biochemistry and Molecular Biology,2003,33(10):999-991.
    [48]Krishnamoorthya M., Jurat-Fuentesa J.L., McNallb R.J. et al. Identification of novel Cry1Ac binding proteins in midgut membranes from Heliothis virescens using proteomic analyses[J]. Insect Biochemistry and Molecular Biology,2007,37:189-201.
    [49]Weiske J., Wiesner A..Nitric. Oxide,1999,3(2):123-131.
    [50]Luckhart S., Vodovotz Y., Cui L., Rosenberg R. Proc. Natl.Acad. Sci. USA,1998,95:5700-5705.
    [51]Aisen, P., and Listowsky, I., Ann.Rev. Biochem.,1980,49:357.
    [52]Hemingway J. The molecular basis of two contrasting metabolic mechanisma of insecticide resistance[J].Insect Biochemistry and Molecular Biology,2000,30(11):1009-1015.
    [53]Grant D.F., Hammock B.D. Genetic and molecular evidence for a trans-acting regulatory locus controlling glutathione S-transferase-2 expression in Aedes aegypti[J].Mol Gen Genet,1992,234:169-176.
    [54]Tang H.,Tu C.P. Biochemical characterization of Drosophila glutathione S- transferases D1 and D21 [J]. Journal of Biology Chemistry,1994,269,(45):27876-27884.
    [55]Ortelli F.,Rossiter L.C.,Vontas J.,et al. Heterologous expression of four glutathione S-transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae[J].Journal of Biochemistry,2003,373:957-963.
    [56]陈东亚,褚宏亮,杨维芳等.德国小蠊谷胱甘肽S-转移酶和乙酰胆碱酯酶活力与抗药性的关系[J].中国媒介生物学及控制杂志,2009,20(6):522-524.
    [57]Timmins W.A., Reynolds S.E. Aradiracht in inhibits secret ion of trypsin in midgut of Manduca sexta caterpillars:reduced growth due to impaired protein digestion[J]. Entomologia Experimentalis Et Applicata,1992,63:47-54.
    [58]Terra W.R., Ferreira C. Insect digestive enzymes:properties, compatment alization and function[J]. Comparative Biochemistry and Physiology,1994,109b(1):1-62.
    [59]Ishimoto M., Yamada T., Kaga A. Insect icidal activity of an alpha amylase inhibitor in the common bean, Phaseolus v.ulgaris L[J].Biochimica et Biophysica Acta,1999,432:104-112.
    [60]Lee S.Y.,Kim D.S.,Kim K.E.,et al.IgE binding patterns to German cockroach whole body extract in Korean atopic asthmatic children[J].Yonsei Medical Journal,1998,39:409-416.
    [61]Wu C.H., Lee M.F., Tseng C.Y. IgE-binding epitopes of the American cockroach Per a 3 allergen[J]. Allergy,2003,58(10):986-992.
    [62]Uda K.,Matumoto A.,Suzuki T. Identification of the key amino acid residues in Sabellastarte arginine kinase for distinguishing chiral guanidine substrates(D-and L-arginine)[J]. Journal of Molecular Catalysis B:Enzymatic,2010,64(1-2):75-80.
    [63]Wyss M., Maughan D., Wallimann T. Re-evaluation of the structure and physiological function of guanidino kinases in fruitfly(Drosophila),sea urchin (Psammechinus miliaris) and man[J].Joural of Biochemistry,1995,309:255-261.
    [64]Ellington W.R. Evolution and physiological roles of phosphagen systems[J]. Annual Revievw Physiology,2001,63:289-325.
    [65]Zhao Y.Y.,Yang G.,Wang-Pruski G.,et al. Phyllotreta striolata(Coleoptera:Chrysomelidae):arginine kinase cloning and RNAibased pest control[J]. European Journal of Entomology, 2008,105:815-822.
    [66]赵艳艳,刘建兵,罗梅浩等.烟夜蛾组织蛋白酶B酶原基因的克隆序列分析和原核表达[J].昆虫学报,2008,51:1121-1128.
    [67]Brown A.E., Grossman S.H..The mechanism and modes of inhibition of arginine kinase from the cockroach (Periplaneta americana)[J].Archives of Insect Biochemistry and Physiology, 2004,57:166-177.
    [68]Sookrung N., Chaicumpa W., Tungtrongchitr A.et al.Periplaneta americana arginine kinase as a major cockroach allergen among Thai patients with major cockroach allergies[J].Environmental Health Perspectives,2006,114:875-880.
    [69]Tanaka K., Ichinari S., Iwanami K.et al.Arginine kinase from the beetle Cissites cephalotes (Olivier). Molecular cloning, phylogenetic analysis and enzymatic properties[J].Insect Biochemistry and Molecular Biology,2007,37:338-345.
    [70]林永丽,曹敏,郝蕙玲等.德国小蠊血淋巴蛋白和卵巢蛋白的分析[J].中国媒介生物学及控制杂志,2002,13(4):275-276.
    [71]李腾武,高希武,郑炳宗等.小菜蛾对阿维菌素的抗性遗传方式和相对适合度研究[J].昆虫学报,2000,43(3):255-263
    [72]任玉胜.山西省淡色库蚊对三种拟除虫菊酯类药物抗性株的选育及其生存力的比较[D].太原:山西医科大学,2009.
    [73]Ge-Mei L., Kong-Ming W., Hong-Kun Y. et al. Changes of inheritance mode and fitness in Helicoverpa armigera(Hu"bner) (Lepidoptera:Noctuidae) along with its resistance evolution to Cry 1 Ac toxin [J]. Journal of Invertebrate Pathology,2008,97:142-149.
    [74]Luna E., Postol E., Caldas C., et al. Diversity of physiological cell reactivity to heat shock protein 60 in different mouse strains[J]. Cell Stress Chaperones,2007,12:112-122.
    [75]Routsias J.G., Tzioufas A.G. The role of chaperone proteins in autoimmunity[J]. Ann N Y.Acad Sci. 2006,1088:52-64.
    [76]lzumi S., Yano K., Yamamoto Y., et al. Review.Yolk protein from'insect eggs: structure biosynthesis and pro-grammed degradation during embryogenesis[J]. Insect physiology,1994, 40 (9):735-746.
    [77]戴华国,宋小玲,吴小毅等.高温对褐飞虱发育和生殖的影响[J].昆虫学报,1997,40(增):15-164.
    [78]龚和,李乾君.家蝇的卵黄发生及其激素调节[J].昆虫学报,1992,35(2):129-137.
    [79]冯从经,戴华国,武淑文.高温对褐飞虱体内保幼激素活性的影响[J].南京农业大学学报,2000,23(2):114-115.
    [80]Hirano J., Miyamoto K., Ohta H. Purification and characterization of aldehyde Dehydrogenase with a broad substrate speeificity originated from 2-Phenyleth-Anol assimilating Brevibaeterium sp.KU1309[J].Applied Microbiology Biotechnology, 2007,76(2):357-363.
    [81]Brunner N.A., Hensel R.Nonphosphorylating glyceraldehydes-3-phosphate Dehydrogenase from Thermoproteus tenax[J].Methods Enzymol,2001,331:117-131.
    [82]Bhat P.V.,Labrecque J.,Boutin J.M.,et al.Cloning of a cDNA encoding rat aldehyde Dehydrogenase with high activity for retinal oxidation[J].Gene,1995,166(2):303-306.
    [83]Andersen S.O., Hojrup P., Roepstorff P.. Insect cuticular proteins[J]. Insect Biochemistry. Molecular. Biology.1995,25 (2):153-176.
    [84]Gilbert L., Iatrou K., Gill S. In:Comprehensive Molecular Insect Science [J], Oxford,2005,4:79-110.
    [85]Karouzou M. V.,Spyropoulos Y.,Iconomidou V. A.,et al. Drosophila cuticular proteins with the R & R Consensus:Annotation and classification with a new tool for discriminating[J].Insect Biochemistry Molecular Biology,2008,38(6):683.
    [86]Ahmad M.,Denholm I.,Bromilow R. H. Delayed cuticular penetration and enhanced metabolism of deltamethrin in pyrethroid-resistant strains of Helicoverpa armigera from China and Pakistan[J].Pest Management Science,2006,62(9):805-810.
    [87]Zhang J.,Goyer C.,Pelletier Y. Environmental stresses induce the expression of putative glycine-rich insect cuticular protein genes in adult Leptinotarsa decemlineata(Say)[J].Insect Molecular Biolgy,2008,17(3):209-216.
    [88]Bouhin H.,Charles J. P.,Quennedey B.,et al. Characterization of a cDNA clone encoding a glycine-rich cuticular protein of Tenebrio molitor:developmental expression and effect of a juvenile hormone analogue [J]. Insect Molecular Biology,1992, 1(2):53-62.
    [89]Lee Y.H., Hou R.F. Physiological roles of a yeast-like symbiote in reproduction and embryonic development of the brown planthopper, Nilaparvata lugens Stal [J]. Journal of Insect Physiology,1987, 33(11):851-860.
    [90]董鹏,王进军.沃尔巴克氏体Wolbachia对宿主的生殖调控作用及其研究进展[J].昆虫知识,2006,43(3):288-293.
    [91]金小宝,褚夫江,朱家勇.德国小蠊共生菌沃尔巴克氏体的分子检测与分析[J].中国媒介生物学及控制杂志,2008,19(2):121-122.
    [92]Cheng D.J, Hou R.F. Determination and distribution of a female-specific protein in the brown planthopper, Nilaparvata lugens Stal (Homoptera:Delphacidae)[J]. Tissue Cell,2005,37(1):37-45.
    [93]Dillon R.J., Dillon V.M. The gut bacteria of insects:Nonpathogenic interactions [J]. Annul Review Entomology,2004,49:71-92.
    [94]Genta F.A., Dillon R.J., Terra W.R. et al. Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae[J]. Journal of Insect Physiology,2006,52:593-601.
    [95]布坝南RE,吉本斯NE.伯杰氏细菌鉴定手册[M].第8版.中国科学院微生物研究所译.北京:科学出版社,1984.
    [96]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [97]Ausubel F. M,Brent R.,Kingston R. E., D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl[J]., Vol. 2. U.S.:Current Protocols,2002.Short Protocols in Molecular Biology
    [98]Galkiewicz, J. P., Kellogg C. A. Cross-kingdom amplification using bacteria-specific primers: Complications for studies of coral microbial ecology [J]. Applied Environmental Microbiology,2008,74 (24):7828-7831.
    [99]Indiragandhi P., Anandham R., Madhaiyan M., et al. Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host insect nutrition[J]. Journal of Applied Microbiology,2007,103:2664-2675.
    [100]Cheng D.J, Hou R.F..Histological observations on transovarial transmission of a yeast-like symbiote in Nilaparvata lugens Stal (Homoptera, Delphacidae)[J].Tissue and Cell,2001,33(3): 273-279.
    [101]李娜,陈建明,张钰锋等.褐飞虱共生菌抗吡虫啉菌株和敏感菌株解毒酶活性的比较[J].浙江农业学报,2010,22(5):653-659.
    [102]吕仲贤,俞晓平,陈建明等.共生菌在褐飞虱致害性变化中的作用[J].昆虫学报,2001,44(2):197-204.
    [103]吕仲贤,俞晓平,陈建明等.不同虫源和致害性的褐飞虱体内共生菌的种群动态华东[J].昆虫学报,2001,10(1):44-49.
    [104]Howard A.F., Koenraadt C.J.M, Farenhorst M. et al. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria [J].Bassiana Malaria Journal,2010,9:168
    [105]Farenhorst M., Mouatcho J.C., Kikankie C.K. et al.Fungal infection counters insecticide resistance in African malaria mosquitoes [J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(41):17443-17447.
    [106]Dillon R. J.,Charnley A. K. Invasion of the pathogenic fungus Metarhizium anisopliae through the guts of germfree desert locusts, Schistocerca gregaria[J]. Mycopathologia.1986,96:59-66.
    [107]Dillon R. J., Charnley A. K. Inhibition of Metarhizium anisopliae by the gut bacterial flora of the desert locust, Schistocerca gregaria:Evidence for an antifungal toxin[J]. Journal Invertebrate Pathology, 1986,47(3):350-360.
    [108]Dillon, R. J., and A. K. Charnley. Inhibition of Metarhizium anisopliae by the gut bacterial flora of the desert locust:characterisation of antifungal toxins [J]. Canadian Journal of Microbiology,1988,34(9): 1075-1082.
    [109]Sabate D. C, Carrillo L., Audisio M. C. Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples[J]. Research Microbiology,2009, 160(3):193-199.
    [110]Maertens J. A., Boogaerts M. A. Fungal cell wall inhibitors:emphasis on clinical aspects[J]. Current Pharmaceutical Design,2000,6(2):225-239.
    [111]Lopez S.N.,Castelli M. V.,Zacchino S. A.,et al. In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall[J].Bioorganic Medicinal Chemistry Letters,2001,9(8):1999-2013.
    [112]Loeffler W., Tschen J.S.M., Vanittanakom N., et al. Antifungal effects of bacilysin and fengycin from Bacillus subtilis F29-3. A comparison with activities of other Bacillus antibiotics [J].Journal of phytopathology-phytopathologische zeitschrift,1986,115(3):204-213.
    [113]Moyne A.L., Cleveland T.E., Tuzun S. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D [J]. FEMS Microbiollogy Letters,2004, 234(1):43-49.
    [114]Leclere V., Bechet M., Adam A., et al. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities [J]. Applied Environmential Microbiology, 2005,71(8):4577-4584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700