基于异位表达系统的水稻报告基因表达模式系的创建及控制水稻开花期基因RID1的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改变基因的表达模式是一种有效的基因功能研究策略,可以帮助研究者发现特定基因的未知功能以及时空效应。本研究采用的GAL4/UAS异位表达系统是一种成熟的改变基因表达模式的双因子系统,通过目标系与特异表达模式系的杂交,可以实现改变目的基因的时空表达谱。
     本室构建的基于GAL4/UAS系统的水稻Enhancer Trap系,既可以作为筛选异位表达系统模式系的原始材料,通过对其报告基因表达模式的观测,构建报告基因表达谱;又可以作为插入突变体库进行突变表型的筛选以及相应的基因功能分析。本研究所得到的模式系以及用作水稻抽穗期基因研究的rid1突变体均来源于这些Enhancer Trap系。本研究的主要结果如下:
     1.将吴昌银博士改造的pEGFP载体用于构建水稻Enhancer Trap突变体库,统计数据显示引入该载体后,突变体库平均分化效率为57.35%,对其中4,416份样品检测所得阳性率为91.21%,该载体用于在水稻品种中花11号中构建突变体库是可行的。
     2.从用pEGFP载体构建的Enhancer Trap系中选取4,416个单株,单独移栽并进行PCR阳性检测,然后对其中的阳性单株进行全生育期不同部位(不含根)报告基因表达观测,构建了T0代报告基因表达谱,T0代报告基因表达频率约为60%。
     3.从T0代特异表达家系中,选取了140份特异表达材料进行T1代全生育期水培,观测不同时期不同部位(包含根)GFP表达情况。观测结果显示T1报告基因表达情况相对于T0代出现丢失现象,而且不同部位丢失比例不一样。
     4.T0代及T1代所得的特异表达材料,经过多次复筛及选择,得到了一批模式系候选材料,通过对这些候选材料的进一步复筛得到了45个特异表达模式系,这些家系的GFP表达部位涵盖了水稻的主要器官。
     5.对来自45个特异表达模式系的143个株系进行了T-DNA插入拷贝数检测,检测结果显示虽然所得的特异表达模式中报告基因的表达模式特异并稳定遗传,但是没有出现明显的拷贝数分离现象,大多数株系仍然存在多拷贝,没有按照预期分离出大量单拷贝。
     6.筛选所得的部分特异表达模式系材料,与目标系植株(携带UAS控制下的GUS报告基因和目标基因的pGOC17载体转化水稻品种中花11号)进行杂交,对杂交后代的报告基因表达观测显示,本研究所的模式系可以成功应用于GAL4/UAS异位表达系统。
     7.从所得的特异表达模式系中,选取了6个在花器官特异表达的家系,进行幼穗发育过程的GFP表达观测。观测结果显示,在不同模式系的穗发育过程中,GFP报告基因表现出不同的表达模式,说明了被标记基因在水稻穗发育过程中的呈现不同的表达谱。
     8.针对68个家系的表达谱材料,分离了106条T-DNA插入位点左、右端的侧翼序列,并对这些侧翼序列进行了分析,从中获得13个与报告基因表达模式一致的基因序列。
     9.从构建模式系的材料中,选取了578个家系观测其正常田间种植条件下突变表型,从中筛选得到了177份有明显突变表型的材料,并找到了31个报告基因表达与突变性状相关的家系。
     10.对水稻“不抽穗”突变体rid1进行了详尽的表型描述。在正常植株抽穗成熟以后,rid1突变体继续保持营养生长状态,甚至到了播种后600 d还是无法抽穗。叶片数统计结果显示在长、短日照条件下,野生型植抽穗以后,突变体植株在观测期间平均每10 d产生1片新的叶片。rid1突变体可以拔节,节数也比野生型植株多,但是电镜观测结果显示其SAM一直处于营养生长状态,无法向生殖生长状态转换。rid1突变体的“不抽穗”突变性状与SAM由营养生长向生殖生长的转换受阻直接相关。
     11.65%以上的rid1互补阳性植株可以恢复抽穗表型,但是它们的抽穗期存在极大的差异,单株间差异甚至达到了111d。推测原因是由于互补片段插入水稻基因组中的位置不同,导致RID1基因的表达模式发生了改变,从而引起了抽穗期的改变。
     12. RID1::RID1:GFP材料报告基因表达观测结果显示RID1:GFP蛋白在幼叶及SAM中存在,而前期数据显示RID1 mRNA仅存在于幼叶中,结合已发表的文献推测原因为该基因表达量太低导致不同检测手段出现不同结果,需要进一步的实验来加以验证。
     13.通过杂交方式将rid1突变引入3个典型的籼稻和3个典型粳稻品种后,6个组合的杂交后代中都出现了“不抽穗”的突变性状,F2代植株有表型的分离,说明RID1基因在籼稻和粳稻品种中都起到了重要作用。
     14.超表达Hd3a和RFT1 (FTL3)的结果显示,单独超量表达Hd3a或者RFT1均可以使rid1突变体恢复抽穗表型并且表现出极早抽穗的现象,说明RID1基因的突变抑制了Hd3a和RFT1的表达与积累。
The changing of gene expression pattern is a powerful tool for studying of gene function. This strategy can help researchers to know the temporal and spatial effects of the given genes, and discover their unknown functions. The GAL4/UAS two component ectopic expression system in this research is a recognized plan to chang the expression pattern of target genes, the tissue and time specific expression of the target gene can be put into practice by the genetic cross of pattern lines and target lines.
     The GAL4/UAS Enhancer Trap lines of our lab can be used as an original source of the pattern lines. A reporter gene expression profiling can be established by observing of the reporter gene expression. In the other hand, the traping lines can provide us a mutant library for studying of gene function. All of the the pattern lines and the rid1 mutant in this study come from the Enhancer Trap library. The main results are as follows:
     1. The introducing of pEGFP vector (modified by Dr. Wu Changyin) into the rice Enhancer Trap mutant library brings the differentiation rate to 57.35%. A positive detection of 4,416 lines shows the positive rate of those lines achieve to 91.21%. The pEGFP vector is fit for construction of mutant library in Zhonghua 11.
     2. A collection of 4,416 independent T0 plants from the pEGFP lines have been dissected for positive test and reporter gene expression pattern observation in different stages and tissues(without roots). The reporter gene expression ratio is about 60% in T0 plants.
     3. One hundred and forty specific expression T1 lines from T0 expression pattern library have been collected and grow in water culture pond for repoeter gene expression observation(within roots). The lost of the reporter gene expression in T1 generation compare to the T0 generation have been observed, and the rate of the lost is different around tissues.
     4. More selections have been done on T0 and T1 specific expression lines, and a number of undetermined pattern lines have been chosen.45 final pattern lines have been gathered from the undetermined lines, their expression patterns cover the main tissues of rice plants.
     5. Souther blot has been done in 143 strains from the 45 pattern lines for detecting the T-DNA copy number. The result shows that the copies of T-DNA have no distinctly segregation though the reporter gene expression patterns have stabilized by several generation's selection. Multiple copy lines still remain and few single copy strains arised.
     6. Several pattern lines from our screening have been used to cross with the target line (pGOC17 vector containing GUS reporter gene and miR156 gene controlled by UAS transformed into Zhonghua 11). Ectopic expression effect has been observed in the offspring of this target line crossed with our pattern lines. Our pattern lines can be well used in the GAL4/UAS ectopic expression system.
     7. Six lines with flower specific reporter gene expression pattern have been collected and the reporter gene expression of those lines in panicle development has been observed. The difference of the reporter gene expression pattern in time and location shows the differentiation of targeted genes.
     8. One hundred and six flanking sequences have been isolated and analyzed from 68 Enhancer trap lines.13 of those sequences show the same direction of reporter gene and targeted gene expression.
     9. Five hundred and seventy eight enhancer trap lines have been observed in normal cultivation conditions, and 177 mutant lines have been collected. The relativity of the mutation and reporter gene expression pattern has been discussed and 31 relativ lines have been found.
     10. The phenotype of a "never-flowering" mutant rid1 has been described detailedly. rid1 mutant plants stayed in vegetative growth stage long after the harvest of wild type plant, even 600 days after sowing. The statistics of leaf numbers shows that the mutant plant produces one leaf within every 10 days after the heading of wild type plant. Elongation of the internode and more nodes can be obersived in rid1 plants. SEM analysis indicated that the SAM of ridl can not chang from vegetative growth to reproductive growth state, and the "never-flowering" phenotype of rid1 have a direct correlation with this reason.
     11. More than 65% of the positive complementary plants can recover the "never-flowering" phenotype of rid1 mutant with a widely distributed heading date. The difference between plants even reaches to 111 days. The possible reason for this condition is the differential expression of RID1 gene led by position effect.
     12. GFP observation of RID1::RID1:GFP plants shows the presence of RID1:GFP protein in young leaf and SAM, but our pre-data shows that the RID] mRNA only appears in the young leaf. The possible reason is the low expression level of RID1 gene and different detection methods, but we need more evidence.
     13. The "never-flowering" phenotype could be led into other rice varieties by crossing with rid] heterozygous plants since the rid1 mutant plants can not flower. The phenotype separation can be seen in F2 plant, indicated that the RID1 gene play an important role in other rice varieties.
     14. Over-expression of Hd3a and RFT1(FTL3) can recover the mutant phenotype of rid1 mutant separately and bring a very early flowering phenotype to it. These phenomenons indicated that the mutation of RID] gene inhibit the expression and accumulation of Hd3a and RFT1.
引文
1. 陈浩.三种Bt基因(cry1Ac、cry2A*和cry9C*)抗虫水稻的培育及评价.[博士学位论文].武汉:华中农业大学图书馆,2005
    2. 梁大成.水稻GAL4/UAS异位表达系统的建立和花模式形成基因SFL的功能分析.[博士学位论文].武汉:华中农业大学图书馆,2006
    3. 林拥军,陈浩,曹应龙,吴昌银,文静,李亚芳,华红霞.农杆菌介导的牡丹江8号高效转基因体系的建立.作物学报.2002,28:294-300
    4. 吴昌银.水稻T-DNA插入突变体库及其Enhancer Trap系的创建.[博士学位论文].武汉:华中农业大学图书馆,2003
    5. 袁文雅.水稻T-DNA插入突变体库及同源染色体配对基因PAIR3的分离与鉴定.[博士学位论文:.武汉:华中农业大学图书馆,2009
    6. 张健.水稻T-DNA插入突变体侧翼序列的分离与分析及控制杂台单株低育性基因Osfbox的功能研究.[博士学位论文].武汉:华中农业大学图书馆,2007
    7. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science,2005,309:1052-1056
    8. Adams M D, Kelley J M, Gocayne J D, Dubnick M, Polymeropoulos M H, Xiao H, Merril C R, Wu A, Olde B, Moreno R F, et al. Complementary DNA sequencing:expressed sequence tags and human genome project. Science,1991,252:1651-1656
    9. Alabadi D, Oyama T, Yanovsky M J, Harmon F G, Mas P, Kay S A. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science,2001. 293:880-883
    10. Alam J, Cook J L. Reporter genes:application to the study of mammalian gene transcription. Anal Biochem,1990,188:245-254
    11. Alonso J M, Stepanova AN, Leisse T J, Kim C J. Chen H, Shinn P, Stevenson D K, Zimmerman J, Barajas P. Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers C C, Parker H, Prednis L. Ansari Y, Choy N, Deen H, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science.2003.301:653-657
    12. Alvarado M C, Zsigmond L M, Kovacs I. Cseplo A. Koncz C, Szabados L M. Gene trapping with firefly luciferase in Arabidopsis. Tagging of stress-responsive genes. Plant Phvsiol,2004. 134:18-27
    13. Alwen A, Benito Moreno R M, Vicente 0. Heberle-Bors E. Plant endogenous beta-glucuronidase activity:how to avoid interference with the use of the E. coli beta-glucuronidase as a reporter gene in transgenic plants. Transgenic Res,1992,1:63-70
    14. An H, Roussot C, Suarez-Lopez P, Corbesier L, Vincent C, Pineiro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development,2004,131:3615-3626
    15. Andre D, Colau D, Schell J, Montagu M. Hernalste.ens P. Gene tagging in plants by a T-DNA insertion mutagen that generates APH(3') Ⅱ-plant gene fusions Molecular and General Genetics, 1986.204:512-518
    16. Asmann Y W, Wallace M B, Thompson E A. Transcriptome profiling using next-generation sequencing. Gastroenterolog,2008,135:1466-1468
    17. Baek I S, Park H Y, You M K, Lee J H, Kim J K. Functional conservation and divergence of FVE genes that control flowering time and cold response in rice and Arabidopsis. Mol Cells,2008. 26:368-372
    18. Baima S, Possenti M, Matteucci A, Wisman E, Altamura M M, Ruberti Ⅰ. Morelli G. The arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Phvsiol,2001,126:643-655
    19. Bateman A, Quackenbush J. Bioinformatics for next generation sequencing. Bioinformatics,2009, 25:429
    20. Battifora H, Mehta P. The checkerboard tissue block. An improved multitissue control block. Lab Invest,1990,63:722-724
    21. Battifora H. The multitumor (sausage) tissue block:novel method for immunohistochemical antibody testing. Lab Invest,1986.55:244-248
    22. Bellen H J. Ten years of enhancer detection:lessons from the fly. Plant Cell,1999.11:2271-2281
    23. Berger J, Hauber J, Hauber R. Geiger R, Cullen B R. Secreted placental alkaline phosphatase:a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene,1988.66:1-10
    24. Bhat R A. Lahaye T, Panstruga R. The visible touch:in planta visualization of protein-protein interactions by fluorophore-based methods. Plant Methods.2006,2:12
    25. Blanvillain R. Gallois P. Promoter trapping system to study embryogenesis. Methods Mol Biol. 2008,427:121-135
    26. Blazquez M A, Weigel D. Integration of floral inductive signals in Arabidopsis. Nature,2000, 404:889-892
    27. Bohlenius H, Eriksson S, Parcy F, Nilsson O. Retraction. Science,2007,316:367
    28. Bohner S, Lenk I I, Rieping M. Herold M. Gatz C. Technical advance:transcriptional activator TGV mediates dexamethasone-inducible and tetracycline-inactivatable gene expression. Plant J, 1999,19:87-95
    29. Bokman S H, Ward W W. Renaturation of Aequorea gree-fluorescent protein. Biochem Biophvs Res Commun,1981,101:1372-1380
    30. Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel K, Melzer S. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J,2000,24:591-599
    31. Boyes D C, Zayed A M. Ascenzi R, McCaskill A J, Hoffman N E, Davis K R, Gorlach J. Growth stage-based phenotypic analysis of Arabidopsis:a model for high throughput functional genomics in plants. Plant Cell,2001.13:1499-1510
    32. Brand A H, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development,1993,118:401-415
    33. Brenner E D, Stevenson D W, McCombie R W, Katari M S, Rudd S A. Mayer K F. Palenchar P M, Runko S J, Twigg R W, Dai G, Martienssen R A, Benfey P N, Coruzzi G M. Expressed sequence tag analysis in Cycas, the most primitive living seed plant. Genome Biol,2003,4:R78
    34. Bronstein I, Fortin J J, Voyta J C, Juo R R, Edwards B, Olesen C E. Lijam N, Kricka L J. Chemiluminescent reporter gene assays:sensitive detection of the GUS and SEAP gene products. Biotechniques,1994,17:172-174.176-177
    35. Bronstein I, Martin C S. Fortin J J, Olesen C E. Voyta J C. Chemiluminescence:sensitive detection technology for reporter gene assays. Clinical chemistry,1996,42:1542-1546
    36. Bryan G T, Wu K S. Farrall L. Jia Y, Hershey H P, McAdams S A. Faulk K N, Donaldson G K. Tarchini R, Valent B. tA single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell,2000,12:2033-2046
    37. Caddick M X, Greenland A J. Jepson I, Krause K P, Qu N, Riddell K V. Salter M G, Schuch W, Sonnewald U, Tomsett A B. An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nature biotechnology.1998,16:177-180
    38. Campisi L. Yang Y, Yi Y, Heilig E. Herman B, Cassista A J, Allen D W. Xiang H. Jack T. Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J,1999,17:699-707
    39. Cao S, Ye M, Jiang S. Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep,2005,24:683-690
    40. Carlson J. Molecular genetics of Drosophila olfaction. Ciba Found Symp,1993.179:150-161; discussion 162-156
    41. Casadaban M J. Cohen S N. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage:in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A,1979,76:4530-4533
    42. Chaga G S. Antibody arrays for determination of relative protein abundances. Methods Mol Biol, 2008,441:129-151
    43. Cheema K K, Grewal N K, Vikal Y. Sharma R, Lore J S, Das A. Bhatia D, Mahajan R, Gupta V, Bharaj T S, Singh K. A novel bacterial blight resistance gene from Oryza nivara mapped to 38 kb region on chromosome 4L and transferred to Oryza sativa L. Genet Res,2008,90:397-407
    44. Chen D S, Davis M M. Molecular and functional analysis using live cell microarrays. Curr Opin Chem Biol,2006,10:28-34
    45. Chujo A, Zhang Z, Kishino H, Shimamoto K, Kyozuka J. Partial conservation of LFY function between rice and Arabidopsis. Plant Cell Physiol,2003.44:1311-1319
    46. Ckurshumova W, Koizumi K. Chatfield S P, Sanchez-Buelna S U, Gangaeva A E, Berleth T. Tissue-specific GAL4 expression patterns as a resource enabling targeted gene expression, cell type specific transcript profiling and gene function characterization in the Arabidopsis vascular system. Plant Cell Physiol,2008.
    47. Colasanti J, Tremblay R. Wong A Y. Coneva V. Kozaki A. Mable B K. The maize INDETERMINATEI flowering time regulator defines a highly conserved zinc finger protein family in higher plants. BMC Genomics,2006.7:158
    48. Collins A R. Olmedilla B, Southon S. Granado F. Duthie S J. Serum carotenoids and oxidative DNA damage in human lymphocytes. Carcinogenesis.1998.19:2159-2162
    49. Corbesier L, Vincent C. Jang S, Fornara F. Fan Q. Searle I. Giakountis A, Farrona S. Gissot L. Turnbull C, Coupland G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science,2007.316:1030-1033
    50. Croft L, Schandorff S, Clark F, Burrage K. Arctander P. Mattick J S. ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genome. Nat Genet,2000, 24:340-341
    51. Curtis M D, Grossniklaus U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol,2003,133:462-469
    52. Davison J M, Akitake C M, Goll M G, Rhee J M. Gosse N, Baier H, Halpern M E, Leach S D, Parsons M J. Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol,2007,304:811-824
    53. DiLella A G, Hope D A. Chen H, Trumbauer M, Schwartz R J, Smith R G. Utility of firefly luciferase as a reporter gene for promoter activity in transgenic mice. Nucleic Acids Res,1988, 16:4159
    54. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hdl. Genes Dev,2004.18:926-936
    55. Doyle M R. Davis S J. Bastow R M, McWatters H G. Kozma-Bognar L. Nagy F, Millar A J. Amasino R M. The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature,2002.419:74-77
    56. Duggan D J, Bittner M. Chen Y, Meltzer P. Trent J M. Expression profiling using cDNA microarrays. Nat Genet,1999,21:10-14
    57. Dunlap J C. Molecular bases for circadian clocks. Cell,1999,96:271-290
    58. Engineer C B, Fitzsimmons K C, Schmuke J J, Dotson S B, Kranz R G Development and evaluation of a Gal4-mediated LUC/GFP/GUS enhancer trap system in Arabidopsis. BMC Plant Biol,2005.5:9
    59. Enoki H. Izawa T. Kawahara M. Komatsu M. Koh S, Kvozuka J. Shimamoto K. Ac as a tool for the functional genomics of rice. Plant J.1999.19:605-613
    60. Feng Q. Zhang Y. Hao P, Wang S, Fu G Huang Y. Li Y. Zhu J. Liu Y. Hu X. Jia P. Zhang Y, Zhao Q. Ying K. Yu S. Tang Y, Weng Q, Zhang L. Lu Y. Mu J. et al. Sequence and analysis of rice chromosome 4. Nature.2002,420:316-320
    61. Fleck B, Harberd N P. Evidence that the Arabidopsis nuclear gibberellin signalling protein GAI is not destabilised by gibberellin. Plant J,2002.32:935-947
    62. Fobert P R. Miki B L, Iyer V N. Detection of gene regulatory signals in plants revealed by T-DNA-mediated fusions. Plant Mol Biol.1991,17:837-851
    63. Ford D, Hoe N, Landis G N, Tozer K, Luu A, Bhole D, Badrinath A, Tower J. Alteration of Drosophila life span using conditional, tissue-specific expression of transgenes triggered by doxycyline or RU486/Mifepristone. Exp Gerontol,2007,42:483-497
    64. Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G. Putterill J. GIGANTEA:a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. The EMBO journal 1999,18:4679-4688
    65. Fray M D, Mann G E, Charleston B. Validation of an Mx/CAT reporter gene assay for the quantification of bovine type-Ⅰ interferon. Journal of immunological methods,2001,249:235-244
    66. Gale M D. Devos K M. Comparative genetics in the grasses. Proc Natl Acad Sci U S A,1998, 95:1971-1974
    67. Garner W W,Allard H A. Effect of Short Alternating Periods of Light and Darkness on Plant Growth. Science,1927,66:40-42
    68. Garner W W, Allard H A. Photoperiodism, the Response of the Plant to Relative Length of Day and Night. Science,1922,55:582-583
    69. Gerard X, Vignaud L, Charles S, Pinset C, Scherman D, Kichler A, Israeli D. Real-time monitoring of cell transplantation in mouse dystrophic muscles by a secreted alkaline phosphatase reporter gene. Gene Ther,2009,
    70. Geurts A M, Wilber A, Carlson C M, Lobitz P D, Clark K J, Hackett P B, McIvor R S, Largaespada D A. Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon. BMC Biotechnol,2006,6:30
    71. Goff S A. Ricke D, Lan T H. Presting G, Wang R, Dunn M,Glazebrook J, Sessions A, Oeller P, Varma H. Hadiey D. Hutchison D. Martin C, Katagiri F. Lange B M. Moughamer T, Xia Y, Budworth P. Zhong J. Miguel T, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science.2002,296:92-100
    72. Gossen M. Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A,1992.89:5547-5551
    73. Gowda M. Jantasuriyarat C. Dean R A. Wang G L. Robust-LongSAGE (RL-SAGE):a substantially improved LongSAGE method for gene discovery and transcriptome analysis. Plant Phvsiol,2004.134:890-897
    74. Guver D. Tuttle A. Rouse S. Volrath S. Johnson M. Potter S, Gorlach J. Goff S, Crossland L, Ward E. Activation of latent transgenes in Arabidopsis using a hybrid transcription factor. Genetics,1998,149:633-639
    75. Halfon M S, Kose H, Chiba A, Keshishian H. Targeted gene expression without a tissue-specific promoter:creating mosaic embryos using laser-induced single-cell heat shock. Proc Natl Acad Sci USA,1997,94:6255-6260
    76. Halloran M C, Sato-Maeda M, Warren J T, Su F, Lele Z, Krone P H. Kuwada J Y, Shoji W. Laser-induced gene expression in specific cells of transgenic zebrafish. Development,2000, 127:1953-1960
    77. Han P, Garcia-Ponce B. Fonseca-Salazar G Alvarez-Buylla E R, Yu H. AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT-independent photoperiod pathway. Plant J,2008, 55:253-265
    78. Harris T D, Buzby P R, Babcock H, Beer E. Bowers J. Braslavsky I, Causey M, Colonell J, Dimeo J, Efcavitch J W, Giladi E, Gill J. Healy J, Jarosz M, Lapen D, Moulton K. Quake S R. Steinmann K, Thayer E, Tyurina A, et al. Single-molecule DNA sequencing of a viral genome. Science,2008,320:106-109
    79. Haseloff J. GFP variants for multispectral imaging of living cells. Methods in cell bio logy, 1999, 58:139-151
    80. Hastings J W. Chemistries and colors of bioluminescent reactions:a review. Gene,1996,173:5-11
    81. Hattori M. Finishing the euchromatic sequence of the human genome. Tanpakushitsu Kakusan Koso,2005,50:162-168
    82. Hayama R, Izawa T. Shimamoto K. Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol,2002, 43:494-504
    83. Hayama R. Yokoi S. Tamaki S, Yano M. Shimamoto K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature,2003,422:719-722
    84. He Y. Amasino R M. Role of chromatin modification in flowering-time control. Trends Plant Sci. 2005.10:30-35
    85. Hepworth S R. Valverde F. Ravenscroft D. Mouradov A, Coupland G. Antagonistic regulation of fiowenng-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. The EMBO journal,2002,21:4327-4337
    86. Herman L. Jacobs A. Van Montagu M. Depicker A. Plant chromosome/marker gene fusion assay for study of normal and truncated T-DNA integration events. Mol Gen Genet,1990,224:248-256
    87. Higgins D G, Sharp P M. CLUSTAL:a package for performing multiple sequence alignment on a microcomputer. Gene,1988,73:237-244
    88. Hily J M. Singer S D, Yang Y, Liu Z. A transformation booster sequence (TBS) from Petunia hybrida functions as an enhancer-blocking insulator in Arabidopsis thaliana. Plant Cell Rep. 2009,
    89. Hirt H. A novel method for in situ screening of yeast colonies with the beta-glucuronidase reporter gene. Curr Genet,1991,20:437-439
    90. Hsing Y I, Chern C G, Fan M J, Lu P C, Chen K T, Lo S F, Sun P K, Ho S L, Lee K W, Wang Y C, Huang W L, Ko S S, Chen S, Chen J L, Chung C I, Lin Y C, Hour A L, Wang Y W, Chang Y C, Tsai M W, et al. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol,2007,63:351-364
    91. In-depth view of structure, activity, and evolution of rice chromosome 10. Science,2003, 300:1566-1569
    92. Istrail S, Sutton G G, Florea L, Halpern A L. Mobarry C M, Lippert R, Walenz B, Shatkay H, Dew I, Miller J R, Flanigan M J, Edwards N J, Bolanos R, Fasulo D, Halldorsson B V, Hannenhalli S. Turner R, Yooseph S, Lu F, Nusskern D R. et al. Whole-genome shotgun assembly and comparison of human genome assemblies. Proc Natl Acad Sci USA,2004,101:1916-1921
    93. Ito M, Sato T. Fukuda H, Komamine A. Meristem-specific gene expression directed by the promoter of the S-phase-specific gene. cyc07, in transgenic Arabidopsis. Plant Mol Biol,1994, 24:863-878
    94. Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J,2000,22:391-399
    95. Izawa T, Takahashi Y, Yano M. Comparative biology comes into bloom:genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol.2003, 6:113-120
    96. Jacobsen S E. Olszewski N E. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell,1993,5:887-896
    97. Jefferson R A. Klass M, Wolf N, Hirsh D. Expression of chimeric genes in Caenorhabditis elegans.J Mol Biol,1987,193:41-46
    98. Jeon J S, Jang S, Lee S, Nam J, Kim C, Lee S H, Chung Y Y, Kim S R, Lee Y H, Cho Y G,An G. leafy hull sterilel is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell,2000a,12:871-884
    99. Jeon J S, Lee S. Jung K H, Jun S H, Jeong D H, Lee J. Kim C, Jang S, Yang K, Nam J, An K. Han M J, Sung R J, Choi H S, Yu J H. Choi J H. Cho S Y, Cha S S, Kim S I, An G. T-DNA insertional mutagenesis for functional genomics in rice. Plant J,2000b,22:561-570
    100. Jiao Y, Jia P, Wang X. Su N, Yu S, Zhang D, Ma L, Feng Q, Jin Z, Li L, Xue Y, Cheng Z, Zhao H. Han B, Deng X W. A tiling microarray expression analysis of rice chromosome 4 suggests a chromosome-level regulation of transcription. Plant Cell,2005,17:1641-1657
    101. Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C. Molecular analysis of FRIGID A, a major determinant of natural variation in Arabidopsis flowering time. Science.2000. 290:344-347
    102. Johnson A A. Hibberd J M, Gay C, Essah P A, Haseloff J, Tester M, Guiderdoni E. Spatial control of transgene expression in rice (Oryza sativa L.) using the GAL4 enhancer trapping system. Plant J,2005,41:779-789
    103. Jones R B, Gordus A, Krall J A, MacBeath G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature,2006,439:168-174
    104. Jung S H, Lee J Y, Lee D H. Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant Mol Biol,2003,52:553-567
    105. Kantety R V, La Rota M, Matthews D E, Sorrells M E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol.2002, 48:501-510
    106. Kasahara M, Swartz T E, Olney M A, Onodera A, Mochizuki N, Fukuzawa H. Asamizu E. Tabata S. Kanegae H. Takano M. Christie J M. Nagatani A, Briggs W R. Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis. rice. and Chlamydomonas reinhardtii. Plant Physiol.2002,129:762-773
    107. Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform,2008.9:286-298
    108. Kawasaki S, Borchert C. Deyholos M, Wang H, Brazille S, Kawai K. Galbraith D. Bohnert H J. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell.200 13:889-905
    109. Kevei E. Gyula P, Feher B. Toth R. Viczian A. Kircher S. Rea D, Dorjgotov D. Schafer E. Millar A J, Kozma-Bognar L. Nagy F. Arabidopsis thaliana circadian clock is regulated by the small GTPase LIP1. Curr Biol,2007,17:1456-1464
    110. Keyes W M, Mills A A. Inducible systems see the light. Trends Biotechnol,2003,21:53-55
    111. Kikis E A, Khanna R, Quail P H. ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J,2005, 44:300-313
    112. Kim J, Kim Y. Yeom M, Kim J H. Nam H G. FIONA1 is essential for regulating period length in the Arabidopsis circadian clock. Plant Cell,2008,20:307-319
    113. Kim S L, Lee S. Kim H J, Nam H G, An G. OsMADS51 is a short-day flowering promoter that functions upstream of Ehdl, OsMADS14, and Hd3a. Plant Physiol,2007,145:1484-1494
    114. Klimyuk V I, Nussaume L, Harrison K, Jones J D. Novel GUS expression patterns following transposition of an enhancer trap Ds element in Arabidopsis. Mol Gen Genet,1995,249:357-365
    115. Kobayashi Y. Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science,1999,286:1960-1962
    116. Kojima S, Takahashi Y. Kobayashi Y, Monna L, Sasaki T. Araki T. Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol,2002,43:1096-1105
    117. Kolesnik T, Szeverenyi Ⅰ, Bachmann D, Kumar C S, Jiang S, Ramamoorthy R, Cai M. Ma Z G, Sundaresan V, Ramachandran S. Establishing an efficient AclDs tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J,2004,37:301-314
    118. Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol. 2004,55:521-535
    119. Komiya R. Ikegami A. Tamaki S. Yokoi S, Shimamoto K. Hd3a and RFT1 are essential for flowering in rice. Development.2008.135:767-774
    120. Koncz C. Martini N. Mayerhofer R. Koncz-Kalman Z, Korber H. Redei G P. Schell J High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci U S A.1989. 86:8467-8471
    121. Kononen J, Bubendorf L. Kallioniemi A, Barlund M, Schraml P. Leighton S. Torhorst J. Mihatsch M J, Sauter G. Kallioniemi O P. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med,1998.4:844-847
    122. Koo J, Kim Y. Kim J, Yeom M. Lee 1 C. Nam H G. A GUS/luciferase fusion reporter for plant gene trapping and for assay of promoter activity with luciferin-dependent control of the reporter protein stability. Plant Cell Physiol,2007,48:1121-1131
    123. Koornneef M. Alonso-Blanco C. Blankestijn-de Vries H. Hanhart C J, Peeters A J. Genetic interactions among late-flowering mutants of Arabidopsis. Genetics,1998,148:885-892
    124. Koornneef M, Hanhart C J, van der Veen J H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet,1991.229:57-66
    125. Krishnan A, Guiderdoni E, An G, Hsing Y I, Han C D, Lee M C. Yu S M, Upadhyaya N. Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A. Mutant resources in rice for functional genomics of the grasses. Plant Physiol,2009,149:165-170
    126. Krysan P J, Young J C, Sussman M R. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell,1999,11:2283-2290
    127. Ku S J. Cho K H, Choi Y J,Baek W K, Kim S, Suh H S, Chung Y Y. Cytological observation of two environmental genic male-sterile lines of rice. Mol Cells,2001,12:403-406
    128.Kulesh D A, Clive D R, Zarlenga D S. Greene J J. Identification of interferon-modulated proliferation-related cDNA sequences. Proc Natl Acad Sci U S A,1987,84:8453-8457
    129. Kuraparthy V, Sood S, Gill B S. Genomic targeting and mapping of tiller inhibition gene (tin3) of wheat using ESTs and synteny with rice. Funct Integr Genomics.2008.8:33-42
    130. Lan L, Chen W, Lai Y. Suo J, Kong Z. Li C, Lu Y, Zhang Y, Zhao X, Zhang X, Han B, Cheng J, Xue Y. Monitoring of gene expression profiles and isolation of candidate genes involved in pollination and fertilization in rice (Oryza sativa L.) with a 10K cDNA microarray. Plant Mol Biol,2004.54:471-487
    131. Langridge R, Seeds W E, Wilson H R, Hooper C W. Wilkins H F, Hamilton L D. Molecular structure of deoxyribonucleic acid (DNA). JBiophys Biochem Cytol.1957.3:767-778
    132. Laplaze L. Parizot B, Baker A. Ricaud L. Martiniere A. Auguy F. Franche C, Nussaume L. Bogusz D. Haseloff J. GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. J Exp Bot,2005.56:2433-2442
    133. Larmande P, Gay C, Lorieux M. Perin C. Bouniol M. Droc G. Sallaud C. Perez P. Barnola I. Biderre-Petit C, Martin J, Morel J B. Johnson A A, Bourgis F. Ghesquiere A. Ruiz M. Courtois B. Guiderdoni E. Oryza Tag Line, a phenotypic mutant database for the Genoplante rice insertion line library. Nucleic Acids Res,2008,36:D1022-1027
    134. Lee B. Shin G. CleanEST:a database of cleansed EST libraries. Nucleic Acids Res.2009. 37:D686-689
    135. Lee H, Suh S S, Park E, Cho E, Ahn J H, Kim S G, Lee J S, Kwon Y M, Lee I. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 2000,14:2366-2376
    136. Lee J H, Cho Y S, Yoon H S, Suh M C, Moon J, Lee I, Weigel D, Yun C H, Kim J K. Conservation and divergence of FCA function between Arabidopsis and rice. Plant Mol Biol, 2005.58:823-838
    137. Lee S. Woo Y M, Ryu S I, Shin Y D, Kim W T, Park K Y Lee I J. An G. Further characterization of a rice AGL12 group MADS-box gene, OsMADS26. Plant Physiol,2008.147:156-168
    138. Legocki R P, Legocki M, Baldwin T O, Szalay A A. Bioluminescence in soybean root nodules: Demonstration of a general approach to assay gene expression in vivo by using bacterial luciferase. Proc Natl Acad Sci USA,1986,83:9080-9084
    139. Leuker C E, Hahn A M, Ernst J F. beta-Galactosidase of Kluyveromyces lactis (Lac4p) as reporter of gene expression in Candida albicans and C. tropicalis. Mol Gen Genet,1992.235:235-241
    140. Levy S. Sutton G, Ng P C, Feuk L, Halpern A L, Walenz B P. Axelrod N, Huang J. Kirkness E F. Denisov G, Lin Y, MacDonald J R. Pang A W. Shago M, Stockwell T B. Tsiamouri A, Bafna V, Bansal V, Kravitz S A, Busam D A, et al. The diploid genome sequence of an individual human. PLoS Biol,2007,5:e254
    141. Li H, Zhou S Y, Zhao W S, Su S C. Peng Y L. A novel wall-associated receptor-like protein kinase gene, OsWAKI, plays important roles in rice blast disease resistance. Plant Mol Biol,2009. 69:337-346
    142. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D. Wang X. Liu X, Teng S, Hiroshi F. Yuan M. Luo D. Han B. Li J. Control of tillering in rice. Nature,2003.422:618-621
    143. Li X. Yang Y. Yao J. Chen G, Zhang Q. Wu C. FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol Biol,2009.69:685-697
    144. Li X. Zhang Y. Reverse genetics by fast neutron mutagenesis in higher plants. Funct Integr Genomics.2002,2:254-258
    145. Liang D, Wu C, Li C, Xu C, Zhang J. Kilian A. Li X. Zhang Q. Xiong L. Establishment of a patterned GAL4-VP16 transactivation system for discovering gene function in rice. Plant J,2006, 46:1059-1072
    146. Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science,1992,257:967-97]
    147. Lim K, Chae C B. A simple assay for DNA transfection by incubation of the cells in culture dishes with substrates for beta-galactosidase. Biotechniques,1989,7:576-579
    148. Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics,2007,177:1871-1880
    149. Lindgren P B, Frederick R, Govindarajan A G. Panopoulos N J, Staskawicz B J, Lindow S E. An ice nucleation reporter gene system:identification of inducible pathogenicity genes in Pseudomonas syringae pv. phaseolicola. The EMBO journal,1989,8:1291-1301
    150. Lindsey K, Wei W, Clarke M C, McArdle H F. Rooke L M, Topping J F. Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plants. Transgenic Res,1993.2:33-47
    151. Liu X J, Prat S, Willmitzer L, Frommer W B. cis regulatory elements directing tuber-specific and sucrose-inducible expression of a chimeric class I patatin promoter/GUS-gene fusion. Mol Gen Genet,1990.223:401-406
    152. Liu X, Lin F, Wang L. Pan Q. The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics,2007,176:2541-2549
    153. Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from PI and YAC clones for chromosome walking. Genomics, 1995,25:674-681
    154. Lu H, Zhao Y L, Jiang X N. Stable and specific expression of 4-coumarate:coenzyme A ligase gene (4CL1) driven by the xylem-specific Pto4CLl promoter in the transgenic tobacco. Biotechnol Lett.2004.26:1147-1152
    155. Lu Y, Sze S H. Improving accuracy of multiple sequence alignment algorithms based on alignment of neighboring residues. Nucleic Acids Res,2009.37:463-472
    156. Ma H. Horiuchi K Y. Chemical microarray:a new tool for drug screening and discovery. Drug Discov Today,2006.11:661-668
    157. MacBeath G. Schreiber S L. Printing proteins as microarrays for high-throughput function determination. Science.2000,289:1760-1763
    158. Maheswari U. Mock T. Armbrust E V, Bowler C. Update of the Diatom EST Database:a new tool for digital transcriptomics. Nucleic Acids Res,2009,37:D1001-1005
    159. Marrocco K, Zhou Y. Bury E, Dieterle M. Funk M, Genschik P, Krenz M. Stolpe T, Kretsch T. Functional analysis of EID1, an F-box protein involved in phytochrome A-dependent light signal transduction. Plant J,2006,45:423-438
    160. Martienssen R A. Functional genomics:probing plant gene function and expression with transposons. Proc Natl Acad Sci U S A,1998,95:2021-2026
    161. Martinez-Zapater J M, Somerville C R. Effect of Light Quality and Vernalization on Late-Flowering Mutants of Arabidopsis thaliana. Plant Physiol,1990,92:770-776
    162. Mascarenhas P J, Hamilton A D. Artifacts in the localization of GUS activity in anthers of petunia transformed with a CaMV 35s-GUS construct. The Plant Journal,1992.2:405-408
    163. Matsubara K, Yamanouchi U, Wang Z X, Minobe Y, Izawa T, Yano M. Ehd2, a rice ortholog of the maize ID1 gene, promotes flowering by upregulating Ehdl. Plant Physiol,2008,
    164. Matsumura H, Ito A, Saitoh H, Winter P, Kahl G, Reuter M. Kruger D H, Terauchi R. SuperSAGE. Cell Microbiol,2005.7:11-18
    165. Matsumura H, Reuter M, Kruger D H. Winter P, Kahl G, Terauchi R. SuperSAGE. Methods Mol Biol,2008,387:55-70
    166. Matzke M A, Matzke A J. Planting the seeds of a new paradigm. PLoS Biol,2004,2:E133
    167. McClung C R. Circadian Rhythms in Plants. Annu Rev Plant Physiol Plant Mol Biol,2001, 52:139-162
    168. McLendon M M, Shinnick T M. I-TRAP:a method to identify transcriptional regulator activated promoters. BMC infectious diseases.2003.3:15
    169. McWatters H G, Bastow R M. Hall A. Millar A J. The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature,2000.408:716-720
    170. McWatters H G, Kolmos E. Hall A. Doyle M R, Amasino R M, Gyula P, Nagy F, Millar A J. Davis S J. ELF4 is required for oscillatory properties of the circadian clock. Plant Phrsiol,2007. 144:391-401
    171. Michaels S D, Amasino R M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell,1999a,11:949-956
    172. Michaels S D. Amasino R M. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell,2001,13:935-941
    173. Michaels S D, Amasino R M. The gibberellic acid biosynthesis mutant gal-3 of Arabidopsis thaliana is responsive to vernalization. Dev Genet,1999b,25:194-198
    174. Michaels S D, He Y, Scortecci K C, Amasino R M. Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci U S A,2003,100:10102-10107
    175. Michaels S D, Himelblau E, Kim S Y, Schomburg F M, Amasino R M. Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol,2005,137:149-156
    176. Michalides R, Griekspoor A. Balkenende A, Verwoerd D. Janssen L. Jalink K. Floore A, Velds A. van't Veer L, Neefjes J. Tamoxifen resistance by a conformational arrest of the estrogen receptor alpha after PKA activation in breast cancer. Cancer Cell,2004.5:597-605
    177. Misteli T. Spector D L. Applications of the green fluorescent protein in cell biology and biotechnology. Nature biotechnology,1997,15:961-964
    178. Miyao A. Tanaka K, Murata K. Sawaki H, Takeda S. Abe K, Shinozuka Y, Onosato K, Hirochika H. Target site specificity of the Tosl7 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell,2003, 15:1771-1780
    179. Mockler T, Yang H. Yu X, Parikh D, Cheng Y C. Dolan S. Lin C. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci USA,2003,100:2140-2145
    180. Mohan R, Vijayan P, Kolattukudy P E. Developmental and tissue-specific expression of a tomato anionic peroxidase (tap1) gene by a minimal promoter, with wound and pathogen induction by an additional 5'-flanking region. Plant Mol Biol,1993.22:475-490
    181. Molina C, Rotter B, Horres R, Udupa S M. Besser B. Bellarmino L, Baum M, Matsumura H. Terauchi R, Kahl G, Winter P. SuperSAGE:the drought stress-responsive transcriptome of chickpea roots. BMC Genomics,2008,9:553
    182. Moon J. Suh S S. Lee H. Choi K R. Hong C B, Paek N C, Kim S G. Lee I. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J,2003. 35:613-623
    183. Moore I. Galweiler L, Grosskopf D. Schell J, Palme K. A transcription activation system for regulated gene expression in transgenic plants. Proc Natl Acad Sci U S A,1998.95:376-381
    184. Morell M. Espargaro A. Aviles F X. Ventura S. Study and selection of in vivo protein interactions by coupling bimolecular fluorescence complementation and flow cytometry. Nat Protoc,2008,3:22-33
    185. Morozova O, Marra M A. Applications of next-generation sequencing technologies in functional genomics. Genomics,2008,92:255-264
    186. Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods,2008,5:621-628
    187. Murakami M, Ashikari M, Miura K, Yamashino T, Mizuno T. The evolutionarily conserved OsPRR quintet:rice pseudo-response regulators implicated in circadian rhythm. Plant Cell Physiol,2003,44:1229-1236
    188. Muthukalianan G K, Lee S, Yum H, Ku S, Kwun M, Kang H G, An G, Chung Y Y. Identification of anther-specific gene expression from T-DNA tagging rice. Mol Cells,2003,15:102-107
    189. Nakayama N, Arroyo J M, Simorowski J, May B, Martienssen R, Irish V F. Gene trap lines define domains of gene regulation in Arabidopsis petals and stamens. Plant Cell,2005,17:2486-2506
    190. Napoli C, Lemieux C, Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell,1990, 2:279-289
    191. Naylor L H. Reporter gene technology:the future looks bright. Biochemical pharmacology,1999, 58:749-757
    192. Nicholson L, Singh G K, Osterwalder T, Roman G W, Davis R L, Keshishian H. Spatial and temporal control of gene expression in Drosophila using the inducible GeneSwitch GAL4 system. Ⅰ. Screen for larval nervous system drivers. Genetics,2008,178:215-234
    193. Nilsson E E, Westfall S D, McDonald C, Lison T, Sadler-Riggleman I, Skinner M K. An in vivo mouse reporter gene (human secreted alkaline phosphatase) model to monitor ovarian tumor growth and response to therapeutics. Cancer Chemother Pharmacol,2002,49:93-100
    194. Niu X, Tang W, Huang W, Ren G, Wang Q, Luo D, Xiao Y, Yang S, Wang F, Lu B R, Gao F, Lu T, Liu Y. RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biol,2008,8:100
    195. Ochman H, Gerber A S, Hartl D L. Genetic applications of an inverse polymerase chain reaction. Genetics,1988,120:621-623
    196. Ohtsubo N, Nakayama T, Terada R, Shimamoto K. Iwabuchi M. Proximal promoter region of the wheat histone H3 gene confers S phase-specific gene expression in transformed rice cells. Plant Mol Biol,1993,23:553-565
    197. Ortega D, Raynal M. Laudie M. Llauro C. Cooke R. Devic M. Genestier S, Picard G, Abad P. Contard P, Sarrobert C, Nussaume L. Bechtold N, Horlow C, Pelletier G. Delseny M. Flanking sequence tags in Arabidopsis thaliana T-DNA insertion lines:a pilot study. C R Biol,2002, 325:773-780
    198. Osoegawa K, Mammoser A G. Wu C. Frengen E, Zeng C, Catanese J J, de Jong P J. A bacterial artificial chromosome library for sequencing the complete human genome. Genome Res,2001, 11:483-496
    199. Ow D W,JR D E W. Helinski D R. Howell S H, Wood K V, Deluca M. Transient and Stable Expression of the Firefly Luciferase Gene in Plant Cells and Transgenic Plants. Science,1986. 234:856-859
    200. Park S J, Kim S L, Lee S. Je B I, Piao H L. Park S H, Kim C M, Ryu C H, Xuan Y H. Colasanti J. An G, Han C D. Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehdl (Early heading date 1) regardless of photoperiod. Plant J,2008,56:1018-1029
    201. Peng J, Harberd N P. Derivative Alleles of the Arabidopsis Gibberellin-Insensitive (gai) Mutation Confer a Wild-Type Phenotype. Plant Cell.1993.5:351-360
    202. Perrimon N, Noll E, McCall K. Brand A. Generating lineage-specific markers to study Drosophila development. Dev Genet,1991.12:238-252
    203. Pertea M, Salzberg S L. Computational gene finding in plants. Plant Mol Biol,2002.48:39-48
    204. Platteeuw C, Simons G, de Vos W M. Use of the Escherichia coli beta-glucuronidase (gusA) gene as a reporter gene for analyzing promoters in lactic acid bacteria. Appl Environ Microbiol,1994. 60:587-593
    205. Poirot O, Suhre K, Abergel C. O'Toole E. Notredame C.3DCoffee@igs:a web server for combining sequences and structures into a multiple sequence alignment. Nucleic Acids Res,2004. 32:W37-40
    206. Prasher D C, Eckenrode V K, Ward W W, Prendergast F G, Cormier M J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene,1992,111:229-233
    207. Putterill J, Robson F. Lee K. Simon R. Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell,1995.80:847-857
    208. Rabbani M A, Maruyama K. Abe H, Khan M A. Katsura K. Ito Y. Yoshiwara K. Seki M. Shinozaki K, Yamaguchi-Shinozaki K. Monitoring expression profiles of rice genes under cold. drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol,2003.133:1755-1767
    209. Ramsay G. DNA chips:state-of-the art. Nature biotechnology, 1998,16:40-44
    210. Reymond P. Weber H. Damond M, Fanner E E. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell,2000,12:707-720
    211.Rivas L A, Garcia-Villadangos M, Moreno-Paz M, Cruz-Gil P, Gomez-Elvira J, Parro V. A 200-antibody microarray biochip for environmental monitoring:searching for universal microbial biomarkers through immunoprofiling. Anal Chem.2008,80:7970-7979
    212. Ruan Y. Gilmore J, Conner T. Towards Arabidopsis genome analysis:monitoring expression profiles of 1400 genes using cDNA microarrays. Plant J,1998,15:821-833
    213. Rubenstein J L. Brice A E, Ciaranello R D, Denney D, Porteus M H, Usdin T B. Subtractive hybridization system using single-stranded phagemids with directional inserts. Nucleic Acids Res. 1990,18:4833-4842
    214. Sabatini S, Heidstra R, Wildwater M, Scheres B. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root menstem. Genes Dev,2003.17:354-358
    215. Saha S, Sparks A B, Rago C, Akmaev V, Wang C J, Vogelstein B. Kinzler K W. Velculescu V E. Using the transcriptome to annotate the genome. Nature biotechnology, 2002,20:508-512
    216. Saijo Y, Hata S, Kyozuka J. Shimamoto K, Izui K. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J.2000, 23:319-327
    217. Sakvarelidze L, Tao Z. Bush M, Roberts G R, Leader D J, Doonan J H. Rawsthorne S. Coupling the GAL4 UAS system with alcR for versatile cell type-specific chemically inducible gene expression in Arabidopsis. Plant Biotechnol J,2007,5:465-476
    218. Samach A, Onouchi H. Gold S E, Ditta G S. Schwarz-Sommer Z. Yanofsky M F. Coupland G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science. 2000,288:1613-1616
    219. Sanger F, Air G M. Barrell B G. Brown N L. Coulson A R, Fiddes C A. Hutchison C A. Siocombe P M. Smith M. Nucleotide sequence of bacteriophage Φ X174 DNA. Nature,1977a.265:687-695
    220. Sanger F. Nicklen S. Coulson A R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A,1977b,74:5463-5467
    221. Sarowar S, Kim Y J. Kim K D, Hwang B K, Ok S H. Shin J S. Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco. Plant Cell Rep,2009.28:419-427
    222. Sasaki T, Matsumoto T, Yamamoto K. Sakata K, Baba T. Katayose Y, Wu J, Niimura Y, Cheng Z. Nagamura Y, Antonio B A. Kanamori H. Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H, et al. The genome sequence and structure of rice chromosome 1. Nature,2002,420:312-316
    223. Sasaki T. The rice genome project in japan. Proc Natl Acad Sci USA,1998.95:2027-2028
    224. Sasin J M. Bujnicki J M. COLORADO3D,a web server for the visual analysis of protein structures. Nucleic Acids Res,2004,32:W586-589
    225. Schaffer R, Ramsay N, Samach A, Corden S, Putterill J. Carre I A. Coupland G. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell,1998,93:1219-1229
    226. Schena M. Shalon D. Davis R W, Brown P O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science,1995,270:467-470
    227. Schmitz R J. Hong L, Michaels S. Amasino R M. FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA and FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsis thaliana. Development,2005.132:5471-5478
    228. Sekar R B. Periasamy A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. The Journal of cell biology,2003,160:629-633
    229. Shawlot W, Deng J M, Fohn L E. Behringer R R. Restricted beta-galactosidase expression of a hvgromycin-lacZ gene targeted to the beta-actin locus and embryonic lethality of beta-actin mutant mice. Transgenic Res,1998.7:95-103
    230. Sheldon C C. Burn J E, Perez P P, Metzger J, Edwards J A, Peacock W J. Dennis E S. The FLF MADS box gene:a repressor of flowering in Arabidopsis regulated by vernalization and methvlation. Plant Cell 1999.11:445-458
    231. Shendure J. Ji H. Next-generation DNA sequencing. Nature biotechnology,2008.26:1135-1145
    232. Shirai T. Mi vagi S, Horiuchi D, Okuda-Katayanagi T. Nishimoto M. Muramatsu M. Sakamoto Y, Nagata M. Hagiwara K,Okuda A. Identification of an enhancer that controls up-regulation of fibronectin during differentiation of embryonic stem cells into extraembrvonic endodenn. J Biol Chem.2005,280:7244-7252
    233. Somers D E. Schultz T F. Milnamow M. Kay S A. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell.2000.101:319-329
    234. Sons X. Kristie D N. Reekie E G. Why does elevated CO2 affect time of flowering?An exploratory study using the photoperiodic flowering mutants of Arabidopsis thaliana. New Phytol, 2009,181:339-346
    235. Southern E M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol,1975,98:503-517
    236. Spilianakis C G. Lalioti M D. Town T, Lee G R, Flavell R A. Interchromosomal associations between alternatively expressed loci. Nature,2005,435:637-645
    237. Springer P S, McCombie W R, Sundaresan V, Martienssen R A. Gene trap tagging of PROLIFERA, an essential MCM2-3-5-like gene in Arabidopsis. Science.1995,268:877-880
    238. Springer P S. Gene traps:tools for plant development and genomics. Plant Cell,2000, 12:1007-1020
    239. Stolpe T, Susslin C. Marrocco K, Nick P, Kretsch T. Kircher S. In planta analysis of protein-protein interactions related to light signaling by bimolecular fluorescence complementation. Protoplasma,2005,226:137-146
    240. Strayer C, Oyama T. Schultz T F, Raman R, Somers D E. Mas P, Panda S. Kreps J A, Kay S A. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science,2000.289:768-771
    241. Sultan M. Schulz M H. Richard H. Magen A. Klingenhoff A, Scherf M. Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D. O'Keeffe S, Haas S. Vingron M. Lehrach H, Yaspo M L. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science,2008,321:956-960
    242. Sun T, Goodman H M, Ausubel F M. Cloning the Arabidopsis GA1 Locus by Genomic Subtraction. Plant Cell,1992.4:119-128
    243. Sun X. Cao Y. Yang Z, Xu C. Li X. Wang S. Zhang Q. Xa26. a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice. encodes an LRR receptor kinase-like protein. Plant J, 2004,37:517-52
    244. Swain S M. Singh D P. Tall tales from sly dwarves:novel functions of gibberellins in plant development. Trends Plant Sci.2005.10:123-129
    245. Tadege M, Sheldon C C. Helliwell C A. Upadhyaya N M. Dennis E S. Peacock W J. Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice. Plant Biotechnol J,2003.1:361-360
    246. Takahashi Y. Shomura A. Sasaki T. Yano M. Hd6. a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci U S A,2001,98:7922-7927
    247. Takahashi Y, Teshima K M, Yokoi S, Innan H, Shimamoto K. Variations in Hd1 proteins, Hd3a promoters, and Ehdl expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci USA,2009,
    248. Tamaki S, Matsuo S, Wong H L, Yokoi S. Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science,2007,316:1033-1036
    249. Tanaka T, Antonio B A, Kikuchi S. Matsumoto T. Nagamura Y, Numa H, Sakai H, Wu J, Itoh T, Sasaki T, Aono R, Fujii Y, Habara T, Harada E, Kanno M, Kawahara Y, Kawashima H. Kubooka H, Matsuya A, Nakaoka H, et al. The Rice Annotation Project Database (RAP-DB):2008 update. Nucleic Acids Res,2008,36:D1028-1033
    250. Teeri T H, Herrera-Estrella L. Depicker A, Van Montagu M. Palva E T. Identification of plant promoters in situ by T-DNA-mediated transcriptional fusions to the npt-II gene. The EMBO journal,1986,5:1755-1760
    251. The map-based sequence of the rice genome. Nature,2005.436:793-800
    252. Timmons L. Becker J. Barthmaier P, Fyrberg C. Shearn A, Fyrberg E. Green fluorescent protein/beta-galactosidase double reporters for visualizing Drosophila gene expression patterns. Dev Genet,1997.20:338-347
    253. Toki S. Hara N, Ono K. Onodera H. Tagin A. Oka S. Tanaka H. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J,2006,47:969-976
    254. Tokunaga T, Miyata Y. Fujikawa Y, Esaka M. RNAi-mediated knockdown of the XIP-type endoxylanase inhibitor gene. OsXIP, has no effect on grain development and germination in rice. Plant Cell Phvsiol 2008.49:1122-1127
    255. Tyagi A K, Khurana J P. Khurana P. Raghuvanshi S, Gaur A. Kapur A, Gupta V, Kumar D, Ravi V, Vij S, Shanna S. Structural and functional analysis of rice genome. J Genet,2004,83:79-99
    256. Vega-Sanchez M E. Zeng L. Chen S. Leung H. Wang G L. SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11. is involved in flowering time control in rice. Plant Cell.2008.20:1456-1469
    257. Velculescu V E. Zhang L. Vogelstein B. Kinzler K W. Serial analysis of gene expression. Science, 1995,270:484-487
    258. Vergne E. Ballini E. Marques S. Sidi Mammar B. Droc G. Gaillard S, Bouroi S. DeRose R. Tharreau D, Notteghem J L, Lebrun M H, Morel J B. Early and specific gene expression triggered by rice resistance gene Pi33 in response to infection by ACE1 avirulent blast fungus. New Phytol, 2007,174:159-171
    259. Wada T, Tachibana T, Shimura Y, Okada K. Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science,1997,277:1113-1116
    260. Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J,1999,19:55-64
    261. Wang Z Y, Tobin E M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell,1998. 93:1207-1217
    262. Welsh S, Kay S A. Reporter gene expression for monitoring gene transfer. Current opinion in biotechnology,1997,8:617-622
    263. Wilber A, Frandsen J L. Wangensteen K J. Ekker S C. Wang X. McIvor R S. Dynamic gene expression after systemic delivery of plasmid DNA as determined by in vivo bioluminescence imaging. Hum Gene Ther,2005,16:1325-1332
    264. Wilson R N, Heckman J W, Somerville C R. Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Phvsiol,1992.100:403-408
    265. Wu C, Li X, Yuan W, Chen G, Kilian A, Li J. Xu C, Li X, Zhou D X, Wang S, Zhang Q. Development of enhancer trap lines for functional analysis of the rice genome. Plant J,2003. 35:418-427
    266. Wu C. You C. Li C, Long T. Chen G, Byrne M E, Zhang Q. RID1 encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci U S A.2008a.105:12915-12920
    267. Wu J F. Wang Y. Wu S H. Two new clock proteins. LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering. Plant Physiol.2008b,148:948-959
    268. Xu H E. Kodadek T, Johnston S A. A single GAL4 dimer can maximally activate transcription under physiological conditions. Proc Natl Acad Sci U S A,1995,92:7677-7680
    269. Xu M. Zhu L, Shou H. Wu P. A PIN1 family gene. OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol,2005,46:1674-1681
    270. Xu R. Zhao H. Dinkins R D. Cheng X. Carberry G. Li Q Q. The 73 kD subunit of the cleavage and polyadenylation specificity factor (CPSF) complex affects reproductive development in Arabidopsis. Plant Mol Biol,2006,61:799-815
    271. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L. Zhou H. Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008.40:761-767
    272. Yamaguchi T, Nakayama K, Hayashi T, Yazaki J, Kishimoto N, Kikuchi S, Koike S. cDNA microarray analysis of rice anther genes under chilling stress at the microsporogenesis stage revealed two genes with DNA transposon Castaway in the 5'-flanking region. Biosci Biotechnol Biochem,2004,68:1315-1323
    273. Yamamoto Y Y, Tsuhara Y, Gohda K, Suzuki K. Matsui M. Gene trapping of the Arabidopsis genome with a firefly luciferase reporter. Plant J,2003,35:273-283
    274. Yang N S. Russell D. Maize sucrose synthase-1 promoter directs phloem cell-specific expression of Gus gene in transgenic tobacco plants. Proc Natl Acad Sci U S A,1990,87:4144-4148
    275. Yano M. Katayose Y, Ashikari M. Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K. Umehara Y, Nagamura Y. Sasaki T. Hdl. a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell,2000. 12:2473-2484
    276. Yanovsky M J, Kay S A. Molecular basis of seasonal time measurement in Arabidopsis. Nature, 2002.419:308-312
    277. Yeh E. Gustafson K, Boulianne G L. Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc Natl Acad Sci USA,1995,92:7036-7040
    278. Yoo S Y. Bomblies K, Yoo S K, Yang J W, Choi M S. Lee J S, Weigel D. Ahn J H. The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. Planta.2005.221:523-530
    279. Yoshida S. Forno D A. Cook J H. Gomez K A. Laboratory Manual for Physiological Studies of Rice.3rd Edn. International Rice Research Institute, Manila.1976
    280. Yu J. Hu S. Wang J. Wong G K. Li S. Liu B. Deng Y. Dai L. Zhou Y, Zhang X. Cao M. Liu J. Sun J, Tang J. Chen Y. Huang X. Lin W. Ye C. Tong W. Cong L. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science,2002.296:79-92
    281. Yu S M. Ko S S. Hong C Y, Sun H J. Hsing Y I. Tong C G. Ho T H. Global functional analyses of nee promoters by genomics approaches. Plant Mol Biol,2007.65:417-425
    282. Yuan W, Li X, Chang Y, Wen R, Chen G, Zhang Q, Wu C. Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. Plant J,2009
    283. Zeevaart J A. Florigen coming of age after 70 years. Plant Cell,2006.18:1783-1789
    284. Zeevaart J A. Leaf-produced floral signals. Curr Opin Plant Biol,2008,11:541-547
    285. Zenbayashi-Sawata K, Fukuoka S, Katagiri S, Fujisawa M, Matsumoto T, Ashizawa T. Koizumi S. Genetic and physical mapping of the partial resistance gene,pi34, to blast in rice. Phytopathology 2007,97:598-602
    286. Zhang J. Li C. Wu C, Xiong L. Chen G, Zhang Q, Wang S. RMD:a rice mutant database for functional analysis of the rice genome. Nucleic Acids Res,2006,34:D745-748
    287. Zhang T, Wang Q, Chen X. Tian C, Wang X, Xing T, Li Y. Wang Y. Cloning and biochemical properties of CDPK gene OsCDPK14 from rice. J Plant Physiol,2005,162:1149-1159
    288. Zhou S, Bechner M C. Place M. Churas C P, Pape L, Leong S A, Runnheim R, Forrest D K. Goldstein S. Livny M. Schwartz D C. Validation of rice genome sequence by optical mapping. BMC Genomics,2007,8:278

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700