用户名: 密码: 验证码:
偏心支撑钢框架的高等分析及基于性能的塑性设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对现行钢结构分析与设计方法的不足,强调了钢框架高等分析方法的重要性。偏心支撑钢框架兼顾了纯框架结构和中心支撑钢框架结构的优点,刚度大、延性好,受力性能合理,罕遇地震作用下具有良好的抗震性能。目前对于钢框架高等分析方法的研究很多,但对于偏心支撑钢框架的高等分析方法研究较少。此外,《建筑抗震设计规范》中关于偏心支撑钢框架的规定大多来源于美国规范,对采用我国钢材的耗能梁性能研究较少,不利于准确评估偏心支撑钢框架的性能。
     现阶段对于偏心支撑钢框架的设计,先由弹性分析求出基底剪力和各楼层的侧向力,再计算出耗能梁所受的剪力,通过耗能梁的设计原理确定截面的大小;根据耗能梁的内力和规范中的相关放大系数,确定其余构件截面的大小。然而,基于弹性分析所设计的结构,直接运用于罕遇地震下的非弹性分析中,可能无法满足预期的破坏模式和相关规范的要求。
     针对以上关于高等分析方法和偏心支撑钢框架所存在的不足,本文研究内容主要包括以下几方面:
     (1)基于截面组合法和截面弹簧刚度理论,提出了一种有分布荷载作用时考虑单元跨内塑性铰的钢框架高等分析方法。该方法利用稳定函数考虑几何非线性和剪切变形、在初始屈服方程中考虑残余应力、折减弹性模量法考虑初始缺陷的影响等。此外,当单元上有分布荷载作用时,在可能出现屈服的两端和跨内分别假想有一个零长度的弹簧考虑截面在不同受力时的刚度,得到仅使用一个单元/杆件就能准确模拟跨内塑性铰的钢框架高等分析方法;
     (2)基于串联弹簧模型在单元端部同时考虑材料非线性和半刚性连接的影响,并在有分布荷载作用时,提出了一种准确模拟跨内塑性铰的半刚性钢框架的高等分析方法;
     (3)现行规范中对翼缘宽厚比的限制过于严格,许多轧制型钢很难作为耗能梁使用。与已有试验对比,校正有限元分析方法的准确性。为了重新评估该值,基于Q235钢材设计70个不同翼缘宽厚比和长度的耗能梁模型,并在往复荷载下进行有限元分析。结果表明,对剪切型耗能梁和弯曲型耗能梁,可考虑将翼缘宽厚比放宽至10235/fy,并得到相应的破坏模式、超强系数及力-位移曲线等;
     (4)基于Q235钢材设计50个不同加劲肋间距、厚度和布置方式的耗能梁模型、36个不同轴力作用下的耗能梁模型,通过有限元分析研究往复荷载作用下各种因素对不同长度耗能梁性能的影响,得到了一种耗能梁的优化设计方法;
     (5)根据耗能梁有限元分析所得的多线性力-位移曲线,在单元两端分别假定有三个零长度的转动子弹簧和三个零长度的平动子弹簧来模拟弯矩和剪力的影响,中间单元始终处于弹性状态,并结合截面组合法理论所推导的考虑单元应变强化的屈服方程,得到了耗能梁的高等分析模型。此外,基于该模型还考虑了半刚性连接的影响。耗能梁以外构件的分析模型与普通单元的高等分析模型相同,由此提出了偏心支撑钢框架的高等分析方法;
     (6)基于预先确定结构在非弹性变形下的目标位移和屈服机理,并结合建筑抗震设计规范,提出了纯框架结构和D型、K型和V型偏心支撑框架基于性能的塑性设计方法。该方法还根据罕遇地震作用下能量平衡原理得到结构的基底剪力和各楼层的剪力值,并考虑耗能折减系数η的影响。分析结果表明,使用该方法对不同抗震设防烈度下的各种结构设计时,无需进行复杂的计算和迭代,就能满足多遇地震及罕遇地震下的预定功能;
     (7)根据偏心支撑钢框架基于性能的塑性设计方法,设计某三十层的偏心支撑钢框架,采用基于性能的抗震设计方法对其进行评估。将结构的性能目标选为D,并选择合适的地震波,再根据相关规范确定各构件的性能指标,从层间位移角和构件变形两方面对结构进行评估。
The advantage of advanced analysis method has been emphasized due to the insufficientof current analysis and design method for steel structure. Eccentrically braced frames (EBFs),which combine the advantages of moment resisting frames (MRFs) and concentrically bracedframes (CBFs), can exhibit both adequate ductility and lateral stiffness during rare earthquake.Advanced analysis of steel frames has been a subject of extensive research over the pastdecade, but little research has been done in the EBFs. In the Code for Seismic Design ofBuildings, the design method about EBFs are mainly derived from AISC, few studies focus onthe mechanical properties of links that use Q235or Q345steel, so the performance of links inEBFs can’t be well predicted.
     In the current design method of EBFs, the elastic static analysis is utilized to distributebase shear and storey shear force along the height, then shear force and sizes of all the linkshave been obtained, so the other members can be determined by using the links and relativeamplification factors. However, when the structures designed by current elastic static analysisundergo large inelastic deformations under rare earthquakes, the yield mechanisms andinterstory drift may not meet the expected requirements.
     According to the current disadvantages of advanced analysis and EBFs, this papercontains following subjects:
     (1) Based on the section assemblage concept and section spring stiffness, an advancedanalysis method for steel frames using element with internal plastic hinge is proposed. In theproposed method, the stability function is used to consider the geometric nonlinearity andshear deformation, and the residual stress is considered in the initial yield function. Also, thereduced tangent modulus method is used to consider the influence of initial imperfection. Theelement subjected to distributed loads is derived by assuming a spring with zero-length at theend and internal of an element to consider the cross-sectional stiffness. It is demonstrated thatthe plastic hinge at the internal of the element can be well predicted, based on the proposedmethod, by only using one element per member.
     (2) An advanced analysis method for semi-rigid steel frames using element with internal plastic hinge is also proposed. Element with springs-in-series at each end is presented toconsider the effect of semi-rigid connections and material nonlinearity. Based on the proposedmethod, it is demonstrated that internal plastic hinge can be also well predicted by only usingone element for the members subjected to distributed loads.
     (3) Flange width-thickness ratio of links is so conservative in the current specificationthat many rolling sections cannot be used as links. In order to reevaluate the value,70linksare conducted to investigate the effect of different flange width-thickness ratio and length,which are all based on the Q235steel. The finite element model, verified by usingexperimental data during cyclic loading, indicates that the flange width-thickness ratio can berelaxed to10235/fy for shear links and flexural links. Also, the failure modes, overstrengthfactors and hysteresis curves can be obtained.
     (4)50links are also conducted to investigate the influence of stiffeners spacing,stiffeners thickness and placing on side(s), and36links are designed to consider the effect ofaxial loads. Finite element analysis is used to investigate the influencing factors on therotation capacity of links during cyclic loading. Then an optimum and practical designmethod of links with varying length is proposed.
     (5) According to the multilinear force-displacement curves of links obtained by finiteelement analysis, and yield functions derived by using section assemblage concept andaccounting for strain hardening, the advanced analytical model of links is proposed by usingthree rotational subprings and three translational subsprings elements with zero-length,respectively, at each element end to simulate the flexural and shear yielding behavior andstrain hardening effect, and the inner element should be constrained to remain elasticallyunder any condition. Moreover, semi-rigid connection is also considered based on the linksmodel. For the other elements in EBFs, a spring with zero-length is provided at each end toconsider yielding on the cross-sectional level, it is as same as the conventional model. So asimple and practical advanced analysis method for EBFs is proposed.
     (6) Based on the pre-selected target drift and yield mechanism under the inelastic seismicbehaviors and the Code for Seismic Design of Buildings, performance-based plastic design (PBSD) methods for moment resisting frame, D-, K-and V-EBF are proposed. In the PBSDmethods, the base shear and lateral force distribution are derived from modified energybalance equation under rare earthquake, and the reduced energy dissipation coefficient η isalso important to the proposed method. Numerical analysis shows that the frames withdifferent seismic precautionary intensity designed by the proposed method can exhibitexpected functions under frequent and rare earthquake without complicated iteration andcalculation.
     (7) A30-storey K-EBF designed by the proposed PBPD method is evaluated by theperformance-based seismic design method. The performance objective D is selected for thisEBF, and three earthquake records meet the specification requirement are chosen. Thecomponent performance levels, based on related specifications, are defined to consider theeffect of inelastic deformations. Both interstory drift and component deformations areincluded in the acceptance criteria.
引文
[1-1] AS4100. Standards Australia, Steel Structures[S]. Sydney, Australia,1990.
    [1-2] Eurocode3. Design of Steel Structures, General rules and rules for buildings[S].European Committee for Standardisation, Brussels,1992.
    [1-3]钢结构设计规范,GB50017-2003[S].北京,中国计划出版社,2003.
    [1-4]建筑抗震设计规范,GB50010-2010[S].北京,中国建筑工业出版社,2010.
    [1-5] JGJ99-98,高层民用建筑钢结构技术规程[S].北京:中国建筑工业出版社,1998.
    [1-6] Eurocode3. Design of steel structures[S]. Brussels, Belgium,1993.
    [1-7] American Institute of Steel Construction (AISC). Load and resistance factor design(LRFD): Specification for structural steel building[S]. Chicago, IL,1999.
    [1-8]陈惠发.钢框架稳定设计[M].世界图书出版社,1991.
    [1-9] Liew J.Y.R, White D.W, Chen W.F. Second-order refined plastic-hinge analysis forframes design, partⅠ[J]. Journal of Structural Engineering, ASCE,1993,119(11):3196-3216.
    [1-10] Kim S.E, Chen W.F. Practical advanced analysis for unbraced steel frames design[J].Journal of Structural Engineering, ASCE,1996,122(11):1259-1265.
    [1-11] Chan S.L, Chui P.P.T. A generalised design-based elasto-plastic analysis of steelframes by section assemblage concept[J]. Engineering Structures,1997,19(8),628-636.
    [1-12] Kim S.E, Kim M.K, Chen W.F. Improved refined plastic hinge analysis accountingfor strain reversal[J]. Engineering Structures,2000,22(1):15-25.
    [1-13] Kim S.E, Lee J. Improved refined plastic-hinge analysis accounting for localbuckling[J]. Engineering Structures,2001,23(8):1031-1042.
    [1-14] Kim S.E, Lee J. Improved refined plastic-hinge analysis accounting for lateraltorsional buckling[J]. Journal of Constructional Steel Research,2002,58(11):1431-1453.
    [1-15] Chan S.L, Chui P.P.T. Non-linear static and cyclic analysis of semi-rigid steelframes[M]. Oxford: Elsevier Science,2000.
    [1-16] Yau C.Y, Chan S.L. Inelastic and stability analysis of flexibly connected steel framesby springs-in-series model[J]. Journal of Structural Engineering, ASCE,1994,120(10):2803-2819.
    [1-17] Avery P, Mahendran M. Distributed plasticity analysis of steel frame structurescompri-sing non-compact sections[J]. Engineering Structures,2000,22(8):901-919.
    [1-18] Avery P, Mahendran M. Large-scale testing of steel frame structures comprisingnoncom-pact sections[J]. Engineering Structures,2000,22(8):920-936.
    [1-19] Chen W.F, Chan S.L. Second order inelastic analysis of steel frames using elementwith mid-span and end springs[J]. Journal of Structural Engineering, ASCE,1995,121(3),530-541.
    [1-20] Kim S.E, Lee J.S, Choi S.H. Practical second-order inelastic analysis for steel framessubjected to distributed load[J]. Engineering Structures,2004,26(1):51-61.
    [1-21]李国强,沈祖炎.钢框架弹塑性静动力反应的非线性分析模型[J].建筑结构学报,1990,11(2):51-59.
    [1-22]刘小强,吴惠弼.高层钢框架的非线性分析模型[J].工程力学,1993,10(4):42-51.
    [1-23]陈惠发.钢框架稳定设计[M].周绥平,译.上海:世界图书出版社,1999.
    [1-24]李国强,刘玉姝.钢结构框架体系整体非线性分析研究综述[J].同济大学学报,2003,32(1):138-144.
    [1-25]刘永华,张耀春.钢框架高等分析研究综述[J].哈尔滨工业大学学报,2005,37(9):1283-1390.
    [1-26]舒赣平,孟宪德,陈绍礼.钢框架的高等分析与设计[J].建筑结构学报,2005,26(1):51-59.
    [1-27]刘玉姝,李国强.考虑跨中塑性铰的钢框架结构非线性分析[J].同济大学学报(自然科学版),2004,32(10):1310-1315.
    [1-28]郑廷银,张玉.空间钢框架结构的改进塑性区模型[J].钢结构,2005,20(77):7-10.
    [1-29]张俊峰,郝际平.精细塑性铰法理论研究及面向对象程序设计[J].华中科技大学学报(城市科学版),2008,25(3):86-89.
    [1-30]王连坤,张俊峰,郝际平.空间钢框架高等分析的塑性区方法研究[J].钢结构,2010,25(137):1-4.
    [1-31]王连坤,王孟鸿,郝际平等.考虑剪切和翘曲变形影响的空间钢框架塑性铰模型[J].西安建筑科学大学学报(自然科学版),2010,42(4):514-520.
    [1-32] Kasai K, Popov E.P. General behavior of WF steel shear kink beams[J], Journal ofStructural Engineering, ASCE,1986,112(2):362-382.
    [1-33] Kasai K, Popov E.P. Cyclic web buckling buckling control of shear link beams[J],Journal of Structural Engineering, ASCE,1986,112(3):505-523.
    [1-34] Prpov E.P, Engelhardt M.D. Seismic eccentrically braced frames[J]. Journal ofConstructional Steel Research,1988,10,321-354.
    [1-35] Engelhardt M.D, Popov E.P. On design of eccentrically braced frames[J]. EarthquakeSpectra,1989,5(3):495-511.
    [1-36] Ghobarah A, Ramadan T. Seismic analysis of links of various lengths in eccentricallybraced frame[J].4th U.S. National Conference on Earthquake Engineering,1990, PalmSprings, CA, Vol.2:1017-1026.
    [1-37] Ghobarah A, Ramadan T. Effect of axial forces on the performance of links ineccentrically braced frames[J]. Engineering Structures,1990,12(2):106-113.
    [1-38] Korol R.M, Ghobarah A, Osman A. Extended end-plate connections under cyclicloading: behavior and design[J]. Journal of Constructional Steel Research,1990,16(4):253-280.
    [1-39] Popov E.P, Ricles J.M, Kasai K. Methodology for optimum EBF link design[J].10thWorld Conference of Earthquake Engineering, Balkema, Rotterdam,1992,7:3983-3988.
    [1-40] Ghobarah A, Ramadan T. Bolted link-column joints in eccentrically braced frames[J].Engineering Structures,1994,16(1):33-41.
    [1-41] Ramadan T, Ghobarah A. Behavior of bolted link-column joints in eccentricallybraced frames[J]. Canadian Journal of Civil Engineering,1995;22(4):745-754.
    [1-42] Ricles J.M, Popov E.P. Inelastic link element for EBF seismic analysis[J]. Journal ofStructural Engineering, ASCE,1994;120(2):441-463.
    [1-43] Ramadan T, Ghobarah A. Analytical model for shear-link behavior[J]. Journal ofStructural Engineering, ASCE,1995,121(11):1574-1580.
    [1-44] Richards P. Cyclic stability and capacity design of steel eccentrically braced frames
    [D]. Ph.D. dissertation. University of California, San Diego,2004.
    [1-45] Richards P, and Uang C.M. Testing protocol for short links in eccentrically bracedframes[J]. Journal of Structural Engineering, ASCE,2006;132(8):1183-1191.
    [1-46] Okazaki T, Ryu H.C, Engelarht M.D. Experimental study of local buckling,overstrength and fracture of links in EBFs[J]. Journal of Structural Engineering, ASCE,2005;131(10):1526-1535.
    [1-47] Okazaki T, Engelhardt M.D. Experimental performance of link-to-column connectionin eccentrically braced frames[J]. Journal of Structural Engineering, ASCE,2006,132(8):1201-1211.
    [1-48] Mansour N, Christopoulos C, Tremblay R. Seismic design of EBF steel frames usingreplaceable nonlinear links[J]. In STESSA2006. Taylor&Francis Group: London,2006:745-750.
    [1-49] Rossi P.P, Lombardo A. Influence of the link overstrength factor on the seismicbehaviour of eccentrically braced frames[J]. Journal of Constructional Steel Research,2007,63(11):1529-1545.
    [1-50] Berman J.W, Bruneau M. Experimental and analytical investigation of tubular linksfor eccentrically braced frames[J]. Engineering Structure,2007,29(8):1929-1938.
    [1-51] Berman J.W, Bruneau M. Tubular links for eccentrically braced frames.Ⅰ:Finiteelement parametric study[J]. Journal of Structural Engineering, ASCE,2008,134(5):692-701.
    [1-52] Berman J.W, Bruneau M. Tubular links for eccentrically braced frames. Ⅱ:Experimental Verification[J]. Journal of Structural Engineering, ASCE,2008,134(5):702-712.
    [1-53] Mastrandrea L, Piluso V. Plastic design of eccentrically braced frames, Ⅰ: Moment-shear interaction[J]. Journal of Constructional Steel Research,2009,65(5),1007-1014.
    [1-54] Mastrandrea L, Piluso V. Plastic design of eccentrically braced frames,Ⅱ: Failuremode control[J]. Journal of Constructional Steel Research,2009,65(5),1015-1028.
    [1-55] Richards P.W. Estimating the stiffness of eccentrically braced frames[J]. PracticePeriodical on Structural Design and Construction,2010,15(1):91-95.
    [1-56] Berman J.W, Okazaki T, Hauksdottir H.O. Reduced link sections for improving theductility of eccentrically braced frame link-to-column connections[J]. Journal ofStructural Engineering, ASCE,2010,136(5):543-553.
    [1-57] Mansour N, Christopoulos C, Tremblay R. Experimental validation of replaceableshear links for eccentrically braced steel frames[J]. Journal of Structural Engineering,ASCE,2011,137(10):1141-1152.
    [1-58] Daneshmand A, Hosseini B. Performance of intermediate and long links ineccentrically braced frames[J]. Journal of Constructional Steel Research,2012,70:167-176.
    [1-59] Ohsaki M, Nakajima T. Optimization of link member of eccentrically braced framesfor maximum energy dissipation[J]. Journal of Constructional Steel Research,2012,75:38-44.
    [1-60]易方民.高层建筑偏心支撑钢框架结构抗震性能和设计参数研究[D].中国建筑科学研究院博士学位论文,2000.
    [1-61]赵宝成,顾强.偏心支撑钢框架在循环荷载作用下非线性有限元分析[J].土木工程学报,2005,38(2):27-31.
    [1-62]陈小峰,邓开国,郝际平.偏心支撑钢框架能力设计方法研究[J].钢结构,2010(3):15-21.
    [1-63]郭兵,刘国鹏,徐超,等.偏心支撑半刚接钢框架的动力特性及抗震性能试验研究[J].建筑结构学报,2011,32(10):90-96.
    [1-64]郭兵,王磊,王颖,等.钢框架梁柱连接节点转动刚度试验研究[J].建筑结构学报,2011,32(10):82-89.
    [1-65]郭兵,郭彦林,李光明.半刚接钢框架的动力特性探讨[J].建筑结构,2007,37(10):109-111.
    [1-66]陈鹃,王湛,袁继雄.加强环式钢管混凝土柱-钢梁节点的刚性研究[J].建筑结构学报,2004,25(4):43-49.
    [1-67]黄冀卓,王湛,马人乐.半刚性钢框架结构分析与性能研究[J].建筑结构,2006,28(8):8-14.
    [1-68] Zhan Wang, Jixong Yuan, Jianrong Pan, Juan Chen. The study on semi-rigid joint ofCFST frame[J]. Advanced Steel Construction,2006,2:289-399.
    [1-69]陈曦,王湛.加强环式钢管混凝土节点梁柱连接刚度的有限元分析[J].四川建筑科学研究,2007,33(5):9-11.
    [1-70]陈曦,王湛.钢管混凝土框架节点的刚度研究[J].哈尔滨工业大学学报(增刊),2005,37:330-332.
    [1-71] Zhan Wang, Jianrong Pan. The nonlinear analysis of joint of steel-concrete compositebeam of CFST column[J]. Proceedings of Fifth International Conference on Advanced inSteel Structures, Singapore,2007:938-943.
    [1-72]潘建荣,王湛,张吉.框架组合梁柱节点的非线性有限元分析[J].西安建筑科技大学学报(自然科学版),2009,41(5):655-662.
    [1-73]潘建荣.基于相关性的框架节点半刚性分析方法研究[D].汕头,汕头大学博士学位论文,2009.
    [1-74]张云.基于相关性的带加劲肋的顶底角钢连接节点的半刚性研究[D].广州,华南理工大学硕士学位论文,2011.
    [1-75]龚成.基于相关性端板连接本构关系的研究[D].广州,华南理工大学硕士学位论文,2011.
    [1-76]薛圣瑜.基于相关性的双腹板顶底角钢连接节点的弯矩-转角研究[D].广州,华南理工大学硕士学位论文,2012.
    [1-77] Leelataviwat S. Drift and yield mechanism based seismic design and upgrading ofsteel moment frames[D]. Department of Civ&Env. Engrg, University of Michigan, AnnArobor, MI,1998.
    [1-78] Leelataviwat S, Goel S.C, Stojadinovic B. Toward performance-based seismic designof structures[J]. Earthquake spectra,1999,15(3),435-461.
    [1-79] Lee S.S, Goel S.C, Chao S.H. Performance-based seismic design of steel momentframes using target drift and yield mechanism[J]. The13thWorld Conference onEarthquake Engineering, Vancouver,2004.
    [1-80] Chao S.H, Goel S.C, Lee S.S. A seismic design lateral force distribution based oninelastic state of structures[J]. Earthquake Spectra,2007,23(3),547-569.
    [1-81] Geol S.C, Liao W.C, Chao S.H. Performance-based plastic design (PBPD) methodfor earthquake-resistant structures: an overview[J]. Structural design of tall and specialbuildings,2010,19(1-2):115-137.
    [1-82] Sahoo D.R, Chao S.H. Performance-based plastic design method for buckling-restrained braced frames[J]. Engineering Structure,2010,32(9):2950-2958.
    [1-83] Shayanfar M.A, Rezaeian A.R, Zanganeh A. Seismic performance of eccentricallybraced frame with vertical link using PBPD method[J]. Structural Design of Tall andSpecial Buildings,2012,23(1):1-21.
    [1-84] Park R, Paulay T. Reinforced concrete structures[M]. John Wiley&Sons inc,1975.
    [1-85] SEAOC Vision2000. A framework for performance-based engineering[S]. US:Structural Engineering Association of California,1995.
    [1-86] FEMA-273. Guidelines for the seismic rehabilitation of buildings[S]. WashingtonDC: Federal Emergency Management Agency,1997.
    [1-87] FEMA-274. NEHRP commentary on the guidelines for the seismic rehabilitation ofbuildings[S]. Washington DC: Federal Emergency Management Agency,1996.
    [1-88] FEMA-356. Prestandard and commentary for the seismic rehabilitation ofbuildings[S]. Washington DC: Federal Emergency Management Agency,2000.
    [1-89] ATC-40. Seismic evaluation and retrofit of concrete buildings[S]. US: CaliforniaSeismic Safety Commission,1996.
    [1-90] Update to ASCE/SEI41concrete provisions[S]. US: Federal EmergencyManagement Agency,2007.
    [1-91]刁现伟.不规则框架结构抗震性能研究及基于性能的抗震设计[D].上海,同济大学硕士学位论文,2006.
    [1-92] JGJ3-2010,高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2010.
    [1-93]王亚勇.我国2000年抗震设计模式规范展望[J].建筑结构,1999,(6):32-36.
    [1-94]李应斌,刘伯权.基于结构性能的抗震设计理论研究与展望[J].地震工程与工程振动,2001,21(4):73-79.
    [1-95]韩小雷,郑宜,季静.美国基于性能的高层建筑结构抗震设计规范[J].地震工程与工程振动,2008,28(1):64-70.
    [1-96]戴金华,韩小雷,林生逸.基于性能的钢筋混凝土建筑结构抗震设计方法[J].土木工程学报,2011,44(5):1-5.
    [1-97]关雨辰.性能设计在钢框架结构中的应用研究[D].广州,华南理工大学硕士学位论文,2013.
    [1-98]蔡辉.高层建筑钢结构基于性能的抗震设计研究[D].广州,华南理工大学硕士学位论文,2013.
    [2-1]陈惠发.钢框架稳定设计[M].世界图书出版社,1991.
    [2-2]张俊峰.钢框架高等分析研究及面向对象的程序设计[D].西安:西安建筑科技大学博士学位论文,2008.
    [2-3]李国强,沈祖炎.钢结构框架体系弹性及弹塑性分析与计算理论[M].上海科学技术出版社,1998.
    [2-4] American Insitute of Steel Construction (AISC). Load and resistance factor design(LRFD): Specification for structural steel building[S]. Chicago, IL,1986.
    [2-5] Orbison J.G, Mcguire W, Abel J.F. Yield surface applications in nonlinear steel frameanalysis[J]. Computer Methods in Applied Mechanics and Engineering,1982,33(1):557-573.
    [2-6] Chan, S.L, Chui,P.P.T. A generalised design-based elasto-plastic analysis of steelframes by section assemblage concept[J]. Engineering Structures,1997,19(8),628-636.
    [2-7] Liew J.Y.R, White D.W, Chen W.F. Second-order refined plastic hinge analysis offrame design, part1[J]. Journal of Structural Engineering, ASCE,1993,119:3196-3216.
    [2-8] Chan S.L, Chui P.P.T. Non-linear static and cyclic analysis of semi-rigid steelframes[M]. Oxford: Elsevier Science,2000.
    [2-9] European Convention for Constructional Steelwork,'Ultimate limit state calculationof sway frames with rigid joints'[S], ECCS. Technical Working Group8.2, Systems,Publication No.33,1983.
    [2-10]陈惠发.梁柱分析与设计(第一卷),平面问题特性及设计[M].北京:人民交通出版社,1997.
    [2-11]罗伯特.D.库克,迈克尔.E.普利沙(著),关西正,强洪夫(译).有限元分析的概念与应用[M].西安交通大学出版社,2007.
    [2-12]陈绍蕃.钢结构基础[M].中国建筑工业出版社,2003.
    [2-13] Kim S.E, Chen W.F. Practical advanced analysis for unbraced steel frames design[J].Journal of Structural Engineering, ASCE,1996,122(11):1259-1265.
    [2-14]丁泉顺,陈艾荣,顶海帆.空间杆系结构实用几何非线性分析[J].力学季刊,2001年9月,第22卷第3期.
    [2-15] Chen W.F, Chan S.L. Second-order inelastic analysis of steel frames using elementwith midspan and end springs[J]. Journal of Structural Engineering, ASCE,1995,121(3):530-541.
    [2-16] Kim S.E, Lee J.S, Choi S.H. Practical second-order inelastic analysis for steel framessubjected to distributed load[J]. Engineering Structure,2004,26:51-61.
    [2-17]刘玉姝,李国强.考虑跨中塑性铰的钢框架结构非线性分析[J].同济大学学报(自然科学版),2004年10月,第32卷第10期.
    [2-18] Liew J.Y.R. Advanced analysis for frame design[D]. School of Civil Engineering,Purdue University, West Lafayette, IL,1992.
    [2-19]王志明.钢结构高等分析的多杆段单元法[D].南京:东南大学博士学位论文,2006.
    [2-20] Kassimali A. Large deformation analysis of elastic-plastic frames[J]. Journal ofStructural Engineering, ASCE,1983,109(8):1869~1886.
    [2-21] Vogel U. Calibrating frames[J]. Stahlbau,1985,10(10):1-7.
    [3-1] Frye M, Morris G.A. Analysis of flexibly connected steel frames[J]. CanadianJournal of Civil Engineering,1975,2(3):280-291.
    [3-2] Kishi N, Chen W.F. Moment-rotation relations of semi-rigid connections withangles[J]. Journal of Structural Engineering, ASCE,1990,160(7):1813-1834.
    [3-3] Lui E.M, Chen W.F. Analysis and behavior of flexibly-jointed frames[J]. EngineeringStructures,1986,8(4):107-118.
    [3-4] Wu F.H, Chen W.F. A design model for semi-rigid connections[J]. EngineeringStructures,1990,12(4):88-97.
    [3-5]刘大海,李宁,晁阳. SPSS15.0统计分析[M].北京:清华大学出版社,2008.
    [3-6]潘建荣.基于相关性的框架节点半刚性分析方法研究[D].汕头,汕头大学博士学位论文,2009.
    [3-7]张云.基于相关性的带加劲肋的顶底角钢连接节点的半刚性研究[D].广州,华南理工大学硕士学位论文,2011.
    [3-8]龚成.基于相关性端板连接本构关系的研究[D].广州,华南理工大学硕士学位论文,2011.
    [3-9]薛圣瑜.基于相关性的双腹板顶底角钢连接节点的弯矩-转角研究[D].广州,华南理工大学硕士学位论文,2012.
    [3-10] Chen W.F, Lui E.M. Stability design of steel frames[M]. Boca Raton: CRCPress,1991.
    [3-11] Li T.Q, Choo B.S, Nethercot D.A. Connection element method for the analysis ofsemi-rigid frames[J]. Journal of Constructional Steel Research,1995,32(2):143-171.
    [3-12]刘永华.空间钢框架高等分析方法研究[D].哈尔滨,哈尔滨工业大学博士学位论文,2007.
    [3-13] Chan S.L, Chui P.P.T. Non-linear static and cyclic analysis of semi-rigid steelframes[M]. Oxford: Elsevier Science,2000.
    [3-14] Chan S.L, Yau C.Y. Inelastic and stability analysis of flexibly connected steel framesby springs-in-series model[J]. Journal of Structural Engineering,1994,120(10):2803-2819.
    [3-15] Kassimali A. Large deformation analysis of elastic-plastic frames[J]. Journal ofStructural Engineering, ASCE,1983,109(8):1869~1886.
    [3-16] Vogel U. Calibrating frames [J]. Stahlbau,1985,10(10):1-7.
    [4-1] Engelhardt M.D, Popov E.P. On design of eccentrically braced frames[J]. EarthquakeSpectra,1989,5(3):495-511.
    [4-2] JGJ99-98,高层民用建筑钢结构技术规程[S].北京:中国建筑工业出版社,1998.
    [4-3] Kasai K, Popov E.P. General Behavior of WF steel Shear Link Beams[J]. Journal ofStructural Engineering, ASCE,1986,112(2):362-382.
    [4-4]赵宝成.信心支撑钢框架在循环荷载作用下的破坏机理及抗震设计对策[D].西安:西安建筑科技大学博士论文,2003.
    [4-5]建筑抗震设计规范,GB50010-2010[S].北京,中国建筑工业出版社,2010.
    [4-6] Prpov E.P, Engelhardt M.D. Seismic eccentrically braced frames[J]. Journal ofConstructional Steel Research,1988,10,321-354.
    [4-7] Daneshmand A., Hosseini B. Performance of intermediate and long links ineccentrically braced frames[J]. Journal of Constructional Steel Research,2012,70:167-176.
    [4-8] Okazaki T, Engelhardt M.D. Cyclic loading behavior of EBF links constructed ofASTM A992steel[J]. Journal of Constructional Steel Research,2007,63(6):751-765.
    [4-9] Kasai K, Popov E.P. Cyclic web buckling buckling control of shear link beams[J].Journal of Structural Engineering, ASCE,1986,112:505-523.
    [4-10] Arce G. Impact of higher strength steels on local buckling and overstrength of linksin eccentrically braced frames[D]. Master thesis, University of Texas at Austin,Austin,Tex,2002.
    [4-11] Richards P.W, Uang C.M. Effect of flange width-thickness ratio on eccentricallybraced frames link cyclic rotation capacity[J]. Journal of Structural Engineering, ASCE,2005,131(10):1546-1552.
    [4-12]王新敏. ANSYS工程结构数值分析[M].人民交通出版社,2007.
    [4-13] AISC. Seismic Provisions for Structural Steel Buildings[S]. Chicago, Illinois,American Institute of Steel Construction,2002.
    [4-14]郭秉山,庄晓勇,闫月梅.耗能梁段的构造对K型偏心支撑钢框架受力性能的影响[J].西安建筑科技大学学报,2007年4月,第39卷第2期.
    [4-15] Daneshmand A, Hosseini B. Performance of intermediate and long links ineccentrically braced frames[J]. Journal of Constructional Steel Research,2012,70:167-176.
    [4-16] Okazaki T, Engelhardt M.D. Cyclic loading behavior of EBF links constructed ofASTM A992steel[J]. Journal of Constructional Steel Research,2007,63(6):751-765.
    [4-17] Ricles J.M, Popov E.P. Inelastic link element for EBF seismic analysis[J]. Journal ofStructural Engineering, ASCE,1994;120(2):441-463.
    [4-18] Kasai K, Popov E.P. Cyclic web buckling buckling control of shear link beams[J].Journal of Structural Engineering, ASCE,1986(3),112:505-523.
    [4-19] Ghobarah A, Ramadan T. Effect of axial forces on the performance of links ineccentrically braced frames[J]. Engineering Structures,1990,12(2):106-113.
    [4-20]陈小峰,邓开国,郝际平.偏心支撑钢框架能力设计方法研究[J].钢结构,2010(3):15-21.
    [5-1] Ricles J.M, Popov E.P. Inelastic link element for EBF seismic analysis[J]. Journal ofStructural Engineering, ASCE,1994;120(2):441-463.
    [5-2] Ramadan T, Ghobarah A. Analytical model for shear-link behavior[J]. Journal ofStructural Engineering, ASCE,1995,121(11):1574-1580.
    [5-3] Richards P.W, Uang C.M. Testing protocol for short links in eccentrically bracedframes[J]. Journal of Structural Engineering, ASCE,2006,132(8):1183-1191.
    [5-4]石永久,熊俊,王元清等.多层钢框架偏心支撑的抗震性能试验研究[J].建筑结构学报,2010,31(2):29-34.
    [5-5]建筑抗震设计规范,GB50010-2010[S].北京,中国建筑工业出版社,2010.
    [5-6] Rozon J, Koboevic S, Tremblay R. Study of Global Behavior of Eccentrically BracedFrames in Response to Seismic Loads[J]. The14thWorld Conference on EarthquakeEngineering, Beijing,2008.
    [6-1]建筑抗震设计规范,GB50010-2010[S].北京,中国建筑工业出版社,2010.
    [6-2] Leelataviwat S. Drift and yield mechanism based seismic design and upgrading ofsteel moment frames[D]. Department of Civ&Env. Engrg, University of Michigan, AnnArobor, MI,1998.
    [6-3] Lee S.S, Goel S.C, Chao S.H. Performance-based seismic design of steel momentframes using target drift and yield mechanism[J]. The13thWorld Conference onEarthquake Engineering, Vancouver,2004.
    [6-4] Akiyama H. Earthquake-resistant limit-state design of buildings[M]. University ofTokyo Press,1985.
    [6-5] Chao S.H, Goel S.C, Lee S.S. A seismic design lateral force distribution based oninelastic state of structures[J]. Earthquake Spectra,2007,23(3),547-569.
    [6-6] Leelataviwat S, Goel S.C, Stojadinovic B. Toward performance-based seismic designof structures[J]. Earthquake spectra,1999,15(3),435-461.
    [6-7] Prpov E.P, Engelhardt M.D. Seismic eccentrically braced frames[J]. Journal ofConstructional Steel Research,1988,10,321-354.
    [6-8] Popov E.P. Methodology for optimum EBF link design[J]. Earthquake Engineering,Tenth world conference,1992, Balkema, Rotterdam.
    [6-9] AISC341-10. Seismic Provisions for Structural Steel Buildings[S]. Chicago, Illinois,American Institute of Steel Construction,2010.
    [6-10] Ghobarah A, and Ramadan T. Bolted link-column joints in eccentrically bracedframes[J]. Engineering Structures,1994,16(1):33-41.
    [6-11]郭兵,刘国鹏,徐超等.偏心支撑半刚接钢框架的动力特性及抗震性能试验研究[J].建筑结构学报,2011,32(10):90-96.
    [6-12]建筑结构荷载规范,GB50009-2012[S].北京,中国建筑工业出版社,2012.
    [6-13]结构大师:基于三维的建筑结构分析和设计系统-非线性分析[M].北京迈达斯技术有限公司,2010.
    [6-14]汪大绥,贺军利,张凤新.静力弹塑性分析的基本原理和计算实例[J].世界地震工程,2004,20(1):45-53.
    [6-15] FEMA-356. Prestandard and commentary for the seismic rehabilitation ofbuildings[S]. Washington DC: Federal Emergency Management Agency,2000.
    [7-1]建筑抗震设计规范,GB50010-2010[S].北京,中国建筑工业出版社,2010.
    [7-2] JGJ3-2010,高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2010.
    [7-3] FEMA-356. Prestandard and commentary for the seismic rehabilitation ofbuildings[S]. Washington DC: Federal Emergency Management Agency,2000.
    [7-4] ASCE41-06. Seismic rehabilitation of existing buildings[S]. American Society ofCivil Engineers, Reston,2007.
    [7-5]关雨辰.性能设计在钢框架结构中的应用研究[D].广州,华南理工大学硕士学位论文,2013.
    [7-6]胡淑军.屈曲约束支撑钢框架的抗震性能研究[D].广州,华南理工大学硕士学位论文,2013.
    [7-7]蔡辉.高层建筑钢结构基于性能的抗震设计研究[D].广州,华南理工大学硕士学位论文,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700