用户名: 密码: 验证码:
控轧控冷微合金钢组织与抗腐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题选用X70钢、X80钢、15CrMoR钢和16MnR钢等4种微合金钢,针对其实际服役环境特点及主要的腐蚀失效形式,采用不同体系的腐蚀液和腐蚀测试方法,研究4种钢的耐腐蚀性能及在各自腐蚀环境体系中的腐蚀规律和腐蚀机理。根据X70钢、X80钢在含不同Cl- (0.05mol/L, 0.1mol/L、0.2mol/L、0.5mol/L、1.0mol/L)浓度溶液和在含0.5mol/LCl-溶液中加不同SO42- (0.05mol/L、0.5mol/L) l.Omol/L)浓度溶液中的极化曲线,以及不同Cl-和SO42-浓度(0.23%Cl-+0.1%SO42-、0.23%Cl-+1.0%SO42-2.3%Cl-+0.1%SO42-、2.3%Cl-+10.%SO42-)溶液中的电化学阻抗谱,结合金相显微镜分析腐蚀试样表面,利用SEM、TEM分析其组织结构,探究2种钢在西部典型盐碱性土壤模拟液中的腐蚀规律和耐腐蚀性的组织因素。基于4种钢在饱和H2S溶液中的氢致开裂(HIC)试验结果,根据其HIC的裂纹长度率、宽度率、敏感率,研究合金元素、夹杂物、组织形貌对4种钢在H2S环境中的HIC成因及裂纹扩展方式的影响。在饱和H2S溶液中对4种钢进行硫化物应力腐蚀开裂(SSCC)试验,结合成分和组织形貌分析,研究4种钢在H2S环境中的SSCC行为,运用恒载荷拉伸和四点弯曲方法测量了4种钢的SSCC门槛应力值。结果表明,X70钢对Cl-和SO42-的作用更为敏感,X80钢在腐蚀液中的耐腐蚀性能更好;在X70钢和15CrMoR钢中未发现氢致裂纹,X80钢裂纹率很小,具有优良的抗HIC性能,16MnR钢裂纹率高,不具备抗HIC性能;X70钢和15CrMoR钢的SSCC门槛应力值最高,X80钢次之,16MnR钢最低。
In this paper, different corrosion testing methods according to practical service environment and the main corrosion failure modes have been used to study the corrosion resistance, the corrosion rule and corrosion mechanism of X70 steel, X80 steel,15CrMoR steel and 16MnR steel in their respective corrosion environment systems. Polarization curves of X70 steel and X80 steel in different Cl- (0.05mol/L, 0.1mol/L, 0.2mol/L,0.5mol/L, 1.0mol/L) concentration solution and 0.5mol/L Cl-concentration solution by adding solution of different SO42" (0.05mol/L, 0.5mol/L, 1.0mol/L) concentrations were measured respectively. Also electrochemical impedance spectroscopy of X70 steel and X80 steel in different Cl- and SO42- concentration (0.23%Cl-+0.1%SO42-,0.23%Cl-+1.0%SO42-,2.3%Cl-+0.1%SO42-,2.3%Cl-+1.0%SO42-) were measured respectively corrosion mechanism and the effect of microstructure of the two steels on corrosion resistance were investigated in simulated typical saline and alkali soil of western areas solution. Hydrogen induced cracking (HIC) experiments in saturated H2S solution of the four steels were carried out to measure the crack length ratio, crack width ratio and sensitive ratio. The cause of HIC and the mode of crack propagation of the four kinds of steels mentioned above in H2S environment were also studied by alloying elements and inclusions analyzing and microstructure observation. Sulfide stress corrosion cracking (SSCC) in saturated H2S solution of steels the four steels were carried out and the critical stress value of SSCC were also measured by means of tensile test at constant load and three-point bending to investigate the SSCC behavior. The results show that the X70 steel is more sensitive to the role of Cl- and SO42- than X80 steel, and therefore the corrosion resistance of the X80 steel in the corrosive liquid is better. For the 15CrMoR steel and X70 steel, there was no hydrogen-induced cracking phenomenon observed, and the crack rate of the X80 steel is very small, which indicates that the three steels has excellent corrosion resistance to HIC.16MnR steel has bad corrosion resistance to HIC owing to its high crack rate. The critical stress value of SSCC of X70 steel and 15CrMoR steel is the highest in the four steels, and that of X80 steel is higher than 16MnR steel.
引文
[1]卢绮敏.石油工业的腐蚀与防护[M].北京:化学工业出版社,2001.
    [2]U. R. Evans. The corrosion and Oxidation of Metals[M]. London:Edward Arnold Ltd,1960.
    [3]康小兵.微合金元素铌、钛对低碳微合金钢组织性能影响的研究[D].鞍山:鞍山科技大学,2005.
    [4]唐一凡.采用国际标准推动微合金钢的发展[J].宽厚板,1997,3(3):5-6.
    [5]陈明香,胡儒卓,李润洪.微合金钢的开发与研究[J].钢管,2002,31(4):14-15.
    [6]侯晶,王飞,赵国英,等.微合金钢的研究现状及发展趋势[J].材料导报,2007,21(6):91-92.
    [7]G. Q. Liu, F. M. Wang, Z. B. Wang, et al. HSLA Steels 2000[C].Beijing: Metallurgical Industry Press,2000:11-13.
    [8]G. F. Zhou, M. B. Wen, X. M. Wang, et al. Effect of copper and boron content on strain-induced Nb(C, N) precipitation in ULCB steels at hot deformation temperature[J].Acta Metall Sinica,2000,13(2):623-625.
    [9]S. W. Yang, X. M. Wang, C. J. Shang, et al. Relaxation of deformed austenite and refinement of bainite in a Nb-containing microalloyed steel [J]. J Univ Sci Techn Beijing,2001,8(3):214-216.
    [10]雍岐龙,马鸣图,吴宝榕.微合金钢—物理和力学冶金[M].北京:机械工业出版社,1989.
    [11]B. J. Kum, U. K. Chatterjee. Hydrogen permeation and hydrogen content under cathodic charging in HSLA 80 and HSLA 100 steels[J]. Scripta Materialia,2001, 44(2):213-216.
    [12]Y. Q. Zhang, H. Q. Zhang, J. F. Li, et al. Effect of Heat Input on Microstructure and Toughness of Coarse Grain Heat Affected Zone in Nb Microalloyed HSLA Steels[J]. Journal of Iron and Steel Research, International,2009,16(5):73-80.
    [13]M. Sendra, S. O. Choudens, D. Lascoux. The SUF iron-sulfur cluster biosynthetic machinery:Sulfur transfer from the SUFS-SUFE complex to SUFA[J]. FEBS Letters,2007,7(581):1362-1368.
    [14]东涛,刘嘉禾.我国低合金钢及微合金钢的发展、问题和方向[J].钢铁,2000,35(11):71-75.
    [15]谢利群,毛新平,霍向东.Ti对钢组织性能的影响[J].冶金丛刊,2005,4(1):1-10.
    [16]戚向东.2004年钢铁行业运行态势及2005年钢铁市场展望[J].冶金财会,2004,3(12):4-7.
    [17]T. Dong, J. Y. Fu. Prospect of Chinese steel industry and Nb-microalloyed steel in The 21th Century [A]. The Round Table Discussion of"Prospect for New Century Development of Nb-microalloy Steel Science-technology"[C].Beijing. 1999
    [18]肖宝亮,许云波,王国栋.“低成本”X80管线钢工艺及力学性能[J].东北大学学报(自然科学版),2009,30(6):829-832.
    [19]郑磊,傅俊岩.高等级管线钢的发展现状[J].钢铁,2006,41(10):1-10.
    [20]冯佃臣.Q345钢和X70管线钢在包头土壤中的腐蚀规律研究[D].内蒙古:内蒙古科技大学,2008.
    [21]李云涛.国产X70管线钢及其焊接接头的硫化氢腐蚀性能研究[D].天津:天津大学,2003.
    [22]黄志潜.国外输气管道技术发展现状和几点建议[J].焊管,2000,23(3):1-20.
    [23]王国栋.新一代控制轧制和控制冷却技术与创新的热轧过程[J].东北大学学报(自然科学版),2009,3(7):913-917.
    [24]兰亮云,邱春林,赵德文.高钢级管线钢的常规TMCP工艺与HTP工艺[J].轧钢,2009,26(5):39-42.
    [25]王兵,李长俊,田勇,等.抗硫化氢腐蚀管材[J].油气田地面工程,2008,27(1): 75-77.
    [26]刘妹,顾铁新,史长义,等.我国主要土壤类型元素地球化学形态成分标准物质研制[J].物探与化探,2008,32(5):492-496.
    [27]张爱民,高玲.压力容器中厚板的显微组织分析[J].物理测试,2007,25(5):17-20.
    [28]陈学东,蒋家羚,艾志斌等.典型压力容器用钢在湿H2S环境下应力腐蚀开裂特性分析与试验验证[C].2005年特种设备安全国际论坛.2005年特种设备安全国际论坛论文集.北京:国家质量监督检验检疫总局,2005:522-533.
    [29]余存烨.石化厂湿硫化氢环境下钢的腐蚀开裂与选材[J].化工设备与管道,2009,46(9):60-65.
    [30]李明,李晓刚,陈钢.16Mn(HIC)钢硫化物应力腐蚀开裂实验研究[J].北京科技大学学报,29(3):282-287.
    [31]刘富胜.压力容器用钢16MnR和316L不锈钢在含硫和Cl-介质中的腐蚀试验研究[D].杭州:浙江工业大学,2001.
    [32]覃奇贤,刘淑兰.电极的极化和极化曲线(Ⅱ)—极化曲线[J].电镀与精饰,2008,30(7):29-34.
    [33]李晓刚,杜翠薇,董超芳,等.X70钢的腐蚀行为与实验研究[M].北京:科学出版社,2006.
    [34]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [35]刘庆才,李东,黎剑锋.影响输气管线钢抗H2S性能主要因素的探讨[J].焊管,2007,30(5):54-58.
    [36]M. C. Zhao, Y. Y. Shan, F. R. Xiao, et al. Investigation on the H2S-resistant Behaviors of Acicular Ferrite and Ultrafine Ferrite[J]. Meterials Letters,2002, 3(57):141-145.
    [37]J. I. Verdeja, J. Asensio, J. A. Pero-Sanz. Texture, formability, lamellar tearing and HIC susceptibility of ferritic and low-carbon HSLA steels[J]. Materials Characterization,2003,50(1):81-86.
    [38]W. K Kim, S. U. Koh, B. Y. Yang, et al. Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLAsteels[J]. Corrosion Science,2008,50(12):3336-3342.
    [39]L. Zhang, X. G. Li, C. W. Du. Effect of Environmental Factors on Electrochemical Behavior of X70 Pipeline Steel in Simulated Soil Solution[J]. Journal of Iron and Steel Research, International,2009,16 (6):52-57.
    [40]张亮,李晓刚,杜翠薇,等.管线钢应力腐蚀影响因素的研究进展[J].腐蚀科学与防护技术,2009,21(1):62-65.
    [41]奚运涛,刘道新,蔡杭平,等.国产X80管线钢的H2S应力腐蚀开裂研究[J].腐蚀科学与防护技术,2007,27(2):102-105.
    [42]J. L. Albarran, A.Aguilar, L. Martinez, et al. Corrosion and crack-ing behavior in an API X-80 steel exposed to sour gas environment [J]. Corrosion,2002, 58(9):783-785.
    [43]S. U. Koh, J. S. Kim, B. Y. Yang, et al. Effect of line pipe steel microstructure on susceptibility to sulfide stress cracking[J]. Corrosion,2004,60(3):244-247.
    [44]R. L. Eadie, K. E. klarz, R. L. Sutherby. Corrosion fatigue and near-neutral pH Stress corrosion cracking of pipeline steel and the effect of hydrogen sulfide [J]. Corrosion,2005,61(2):167-170.
    [45]陈旭,梁平,李晓刚,等.管线钢应力腐蚀开裂的影响因素[J].装备环境工程,2007,4(3):21-25.
    [46]周华,李全胜,朱瑞成.新疆库尔勒地区盐土的工程地质特征[J].西部探 矿工程,2000,3(2):37-38.
    [47]G. Magudeeswaran, V. Balasubramanian, G. Madhusudhan Reddy. Hydrogen induced cold cracking studies on armour grade high strength, quenched and tempered steel weldments[J]. International Journal of Hydrogen Energy,2008, 33(7):323-330.
    [48]Z. F. Yin, W. Z. Zhao, W. Y. Lai. Electrochemical behaviour of Ni-base alloys exposed under oil/gas field environments[J]. Corrosion Science,2009,51(8): 1702-1706.
    [49]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994.
    [50]K. Muhanna, K. Habib. Corrosion behavior of different alloys exposed to continuous flowing seawater by electrochemical impedance spectroscopy[J]. Desalination,2010,250(1):42-49.
    [51]陈长风,路民旭,赵国仙,等.N80钢CO2腐蚀电极过程交流阻抗分析[J].金属学报,2002,38(7):770-774.
    [52]赫瑞辉,高惠临,丛晖,等.合金元素在管线钢中的作用与控制[J].上海金属,2006,28(1):58-62.
    [53]王斌,李春福,范舟,等.合金元素和控制轧制对低合金高强度钢抗硫化氢腐蚀的影响[J].腐蚀与防护,2005,26(9):402-405.
    [54]T. Hare, H. Ashi, Y. Terada, et al. The condition of HIC occurrence of X65 line pipe in wet H2S environment [J]. Corrosion,1999,68(15):429-435.
    [55]J. G. Gonzalez, Rodriguez, J. M. Hallen, et al.Hydrogeninduced crack growth rate in steel plates exposed to sour environment [J]. Corrosion,1997,53(12): 935-943.
    [56]周琦,季根顺,张建斌,等.管线钢中的硫化夹杂物与氢致开裂[J].材料工程,2002,7(9):38-39.
    [57]赵明纯,肖福仁,单以银,等.超低碳针状铁素体管线钢的显微特征及强韧性行为[J].金属学报,2002,38(3):283-287.
    [58]翟海伟,蔡庆武,武会宾,等.X80级管线钢抗氢致开裂性能研究[J].材料热处理技术,2009,38(20):47-49.
    [59]任颂赞,张静江,陈质如,等.钢铁金相图谱[M].上海:上海科学技术文献出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700