用户名: 密码: 验证码:
晋西人工林基于水分生产函数的密度调控模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在干旱半干旱区,水分已成为人工林培育关键限制因子。必须遵守水资源环境容量原则,根据林地水量调控林分密度和结构,才充分发挥人工林各项效益。笔者认为有必要深入研究水分生产函数等围绕水分因子的密度调控技术,弥补传统密度调控技术不足,有利于缓解人工林地力衰退、林地干化、地下水位下降等生态问题加剧。
     本研究在山西省方山县和吉县,以刺槐(Robinia pseudoacacia Linn.)和油松(Pinus tabulaeformis Carr.)人工林为研究对象,根据调查样地、解析木和气象资料,估算气候生产力,揭示气象因子对年轮影响机制。在全面分析不同结构林分生长、耗水及密度效应规律基础上,建立了人工林水分生产函数。旨在为干旱半干旱区人工林经营管理、抚育间伐、密度调控及碳循环研究提供依据。其主要结论为:
     1.研究区人工林生长受密度、坡向、坡位等因子综合影响。同密度及坡向林分生长与坡位有关;同密度及坡位林分生长与坡向有关。密度对林分生长影响,因坡向、坡位和密度大小而不同。密度多大将会影响林分生长,须分坡向、坡位进行量化。这对人工林集约经营有指导意义。以林龄和密度建立了单株生长模型。
     2.月降水和月湿润指数对年轮宽度影响有滞后效应。建立了年轮宽度指数模型。月湿润指数在研究气象因子对年轮影响方面,较降水和温度优越。方山县和吉县气候生产力分别达8.688 t·hm-2·a-1,9.314 t·hm-2·a-1。实测最高生产力分别占气候生产力的31.6%和59.8%。
     3.现降水条件下,人工林耗水量达不到需水量。将生长季按耗水量从高至低的排序为:7月,6月,8月,5月,9月,10月。随林龄增加,人工林耗水量增加,达一定林龄后将超过降水量。这林龄为:方山县刺槐15a;吉县刺槐5a,油松23a。以林龄和密度建立了人工林耗水模型。
     4.初步界定了人工林水分生产函数。以林分年耗水量为自变量,以林分生物量及蓄积量年增量为因变量,建立了人工林水分生产函数,填补了相关研究空白。为人工林合理利用水分,调控密度,提供理论依据。
     5.建立了人工林密度效应模型。随林龄增长,密度效应越显著,林木胸径生长与密度负相关系数增大。达一定林龄后,相关系数增幅变小,这林龄为:方山刺槐阳坡13a,半阳坡10a;吉县半阳坡刺槐8a;方山县半阳坡及阴坡油松13a。不同坡向对密度响应不同。方山刺槐阳坡相关系数较半阳坡小;方山油松阴坡相关系数较半阳坡小。
     6.研究区人工林直径分布顶峰多数偏左,现密度普遍偏大须间伐。间伐对林分更新和植被多样性有显著影响。间伐林多样性指数较未间伐林高。林下死地被物厚度、间伐林密度与辛普森、香农多样性指数显著负相关,与生态优势度显著正相关。间伐林随密度增加,更新密度和均匀度指数均减小。
     7.建立了以单株及林分生长量为因变量,以林龄、密度、林分耗水量为自变量的密度调控模型。可为人工林密度管理提供参考依据。
Moisture has become the key limiting factor of cultivating forest plantation in arid and semi-arid regions. All of benefits of forest plantation can be fully realized if people abide water resource environment capacity principle according to forest land water control standing forest density and structure. The author thinks it is necessary to deeply research density adjust and control technology of moisture factor such as moisture production function to make up the deficiency of traditional density adjust and control technology, which will be good for remitting more and more severe ecological problems such as deterioration of soil fertility of forest plantation, drying of woodland and decline of groundwater level.
     This research analyzes wood and meteorological data, estimates climate productivity and shows the mechanism of meteorological factor's effect on annual-ring according to investigation plot with forest plantation of Robinia pseudoacacia Linn and Pinus tabulaeformis Carr as research subject in Fangshan County and Ji County of Shanxi Province. Forest plantation moisture production function is established based on comprehensively analyzing growth of standing forest in different structures, water consumption and density effect rule, aiming at supplying basis for forest plantation operation management, intermediate cutting, density adjust and control and carbon cycle research in arid and semi-arid regions. Its main conclusion is:
     1 The growth of forest plantation in research region is affected by many factors such as density, slope and slope position. The growth of standing forest with the same density and slope is related with slope position; the growth of standing forest with the same density and slope position is related with slope; the effect of density on standing forest growth is different due to different slope, slope position and density. Density will affect the growth of standing forest and shall be quantized according to slope and slope position. It has guidance meaning for intensive operation of forest plantation. Single-tree growth mode is established with forest age and density.
     2 Monthly precipitation and monthly moisture index have lag effect on width of annual-rings. Annual-ring width index model is established. Monthly moisture index takes better effect on annual-ring in terms of meteorological factor, compared with precipitation and temperature. The climate productivity in Fangshan County and Ji County has reached 8.688 t·hm-2·a-1,9.314 t·hm-2·a-1,respectively. The actually-measured supreme productivity in such two counties has taken 31.6% and 59.8% of climate productivity, respectively.
     3 Under the condition of precipitation, the water-consuming quantity can't reach the water-requiring quantity. The sorting of water-consuming quantity in growth reasons according to the descending order is:July, June, Aug, May, Sept., Oct.. The water-consuming quantity of forest plantation increases with the increase of forest age. The water-consuming quantity will exceed the precipitation when the forest age reaches certain standard. The forest age is:15a Robinia pseudoacacia Linn. in Fangshan County; 5a Robinia pseudoacacia Linn. in Ji County and 23a Pinus tabulaeformis Carr. The water-consuming model of forest plantation is established with forest age and density.
     4 The moisture production function of forest plantation is initially defined. The moisture production function of forest plantation is established to make up relevant research vacancy with standing forest annual water-consuming quantity as independent variable, standing forest biomass, accumulation quantity and annual increment as dependent variable, which supplies theory basis to rational moisture utilization and density adjust and control of forest plantation.
     5 Forest plantation density effect model is established. The density effect becomes more and more obvious with the increase of forest age, breast diameter in growth progress and negative correlation coefficient of density increases. When the forest age reaches certain standard, the correlation coefficient growth rate becomes small, the forest age is:13a Robinia pseudoacacia Linn of north-facing slope; 10a semi-north-facing slope;8a Robinia pseudoacacia Linn of semi-north-facing slope in Ji County; 13a Pinus tabulaeformis Carr of semi-north-facing slope and south-facing slope in Fangshan County. Different slopes give different responses for density. The correlation coefficient of north-facing slope Robinia pseudoacacia Linn in Fangshan County is smaller than that of semi-north-facing slope; the correlation coefficient of south-facing slope of Pinus tabulaeformis Carr in Fangshan County is smaller than that of semi-north-facing slope.
     6 Most of the diameter distribution peak of forest plantation in research region is in the left, the current density tends to be thinning commonly. Thinning has obvious effect on standing forest renewal and plant diversity. Diversity index of thinning forest is higher than that of non-thinning forest. Thickness of plants under the forest and thinning forest density are in obvious negative correlation with Simpson's diversity index and Shannon diversity index and are in obvious positive correlation with ecological dominance. The renewal density and evenness index of thinning forest reduces with the increase of density of thinning forest.
     7 The density adjust and control model is established with single-tree and standing forest growth as dependent variable as well as forest age, density and standing forest water-consuming quantity as independent variable. It can supply basis for forest plantation density management.
引文
1.财团法人水利科学研究所.地球环境时代の水と森[M].束京:(株)日本林業调查会,2002:1-49
    2.长池卓男.森林管理が植物种多样性に及ぼす影响[J].日本生態学会誌,2002,52:35-54
    3.陈昌毓,董安详.甘肃干旱半干旱地区林木蒸散量估算和水分适生度研究[J].应用生态学报,1998,9(1):79-87
    4.陈传国,彭永山,郭杏芬.计算红松人工林枝叶产量的经验公式[J].林业实用技术,1980(12):16-18
    5.陈传国,朱俊风.东北主要林木生物量手册[M].北京:北京中国林业出版社,1989
    6.陈辉,何忠明,洪伟.杉木人工林密度效应模型研究[J].福建林学院学报,1992,12(3):277-282
    7.陈建伟,张煌星.湿润指数与干燥度关系的探讨[J].中国沙漠,1996,16(1):79-82
    8.陈丽华,王礼先.北京市生态用水分类及森林植被生态用水定额的确定[J].水土保持研究,2001,8(4):161-164
    9.陈丽华,余新晓.晋西黄土地区合理造林密度的确定[J].林业科技通讯,1995,(1):22-23
    10.陈信旺.杉木人工林最优经营密度模型的研究[J].林业勘察设计,2006,(1):7-10
    11.陈永金,陈亚宁,薛燕.干旱区植物耗水量的研究与进展[J].干旱区资源与环境,2004,18(6):152-158
    12.陈章和,张德明,郭志华.南亚热带气候下三种树木径向生长季节节律研究[J].生态学报,1999,19(6):939-943
    13.谌红辉,丁贵杰.马尾松造林密度效应研究[J].林业科学,2004,40(1):92-98
    14.程煜,洪伟,吴承祯,等.闽北马尾松人工林密度效应蓄积量改进模型[J].河南农业大学学报,2002,36(2):147-150
    15.迟道才,王瑄,夏桂敏,等.北方水稻动态水分生产函数研究[J].农业工程学报,2004,20(3):30-34
    16.戴君虎,邵雪梅,崔海亭,等.太白山树木年轮宽度资料对过去生态气候要素的重建[J].第四纪研究,2003,23(4):428-435
    17.丁宝永,鞠永贵,张树森,等.人工落叶松林群落结构的研究[J].东北林学院学报,1982(4):11-23
    18.丁宝永,郎奎健,张世英.落叶松人工林动态间伐系统的研究(Ⅰ)[J].东北林业大学学报,1986,14(4):8-19
    19.丁宝永,刘世荣,蔡体久.落叶松人工林群落生物量生产力的研究.见:蒋有绪,等.中国森林生态系统结构与功能规律研究[M].北京:中国林业出版社,1996:46-66
    20.丁宝永.落叶松人工林动态间伐系统的研究(Ⅱ)[J].东北林业大学学报,1988,16(2):46-57
    21.范玮熠,王孝安.树木年轮宽度与气候因子的关系研究进展[J].西北植物学报,2004,24(2):345-351
    22.方精云,菅诚,山仓拓夫.日本落叶松模拟种群生长与密度的关系[J].植物学报,1991,33(12):949-957
    23.方精云,刘国华,徐高龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508
    24.方精云.中国森林生产力及其对全球气候变化的响应[J].植物生态学报,2000,24(5):513-517
    25.费本华,阮锡根.北京地区气温和降水对银杏木材年轮和密度的影响[J].林业科学研究,2001,14(2):176-180
    26.费本华.气候变化与树木年轮结构关系研究进展[J].世界林业研究,1998,11(6):48-51
    27.冯林,杨玉珙.兴安落叶松原始林三种林型生物量的研究[J].林业科学,1985,21(1):86-91
    28.冯宗炜,陈楚莹,张家武,等.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134
    29.高露双,赵秀海,张赟.温度、降水与树木径向生长关系研究现状[J].浙江林业科技,2007,27(4):76-79
    30.高素华,潘亚茹,郭建平.气候变化对植物气候生产力的影响[J].气象,1994,20(1):30-33
    31.关君蔚.生态控制系统工程[M].北京:中国林业出版社,2007
    32.郭建平,高素华,刘玲,等.气候变化对红松气候生产力的影响研究[J].中国生态农业学报,2003,11(2):129-131
    33.郭建平,高素华,刘玲.中国北方地区主要树木的气候生产力研究[J].资源科学,2002,24(4):56-60
    34.郭连生,田有亮.4种针叶幼树光合速率、蒸腾速率与土壤含水量的关系及其抗旱性研究[J].应用生态学报,1994,5(1):32-36
    35.何春燕,张忠,何新林,等.作物水分生产函数及灌溉制度优化的研究进展[J].水资源与水工程学报,2007,18(3):42-45
    36.何永涛,李文华,李贵才,等.黄土高原地区森林植被生态需水研究[J].环境科学,2004,25(3):35-39
    37.贺康宁.黄土半干旱区集水造林水分生产潜力研究[D].北京林业大学,2000
    38.贺康宁,张光灿,田阳,等.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境[J].林业科学,2003,39(1):10-16
    39.洪伟,吴承祯.闽北马尾松人工林密度控制模型研究[J].生物数学学报,1997,12(2):135-139
    40.洪伟,吴承祯.闽北杉木人工林密度控制连续状态的动态规划研究[J].福建林学院学报,1996,16(1):1-4
    41.洪伟,吴承祯.闽北杉木人工林密度效应新模型[J].浙江林学院学报,1996,13(1):15-20
    42.洪伟,吴承祯.杉木人工林种群密度与生长规律研究[J].福建林学院学报,2001,21(4):293-296
    43.洪伟,曾强,吴承祯,等.杉木人工林经营过程最优控制研究[J].福建林学院学报,1995,15(2):123-128
    44.候振宏,贺康宁,张小全.晋西黄土高原半干旱区刺槐林分需水量的研究[J].水土保持学报,2003,17(4):180-183
    45.黄家荣,温佐吾.贵州马尾松人工林密度和结构控制初步研究[J].贵州林业科技,1999,27(2):16-20
    46.黄家荣.贵州马尾松人工林经营密度模型初探[J].北京林业大学学报,1993,15(4):32-37
    47.黄家荣.人工用材林最优密度控制模型[J].浙江林学院学报,2001,18(1):36-40
    48.黄荣凤,赵有科,吕建雄,等.侧柏年轮宽度和年轮密度对气候变化的响应[J].林业科学,2006,42(7):78-82
    49.惠刚盈,罗云伍.江西大岗山丘陵区杉木人工林生产力的研究[J].林业科学,1989,25(6):584-569
    50.吉良竜夫.兢争密度效果な基にした干材稹收获予测[J].林試科学,1963,154:1-19
    51.贾宝全,慈龙骏.新疆生态用水量的初步估算[J].生态学报,2000,20(2):243-250
    52.贾宝全,张志强,张红旗,等.生态环境用水研究现状、问题分析与基本构架探索[J].生态学报,2002,22(10):1734-1740
    53.江希钿,黄娘增,江传阳,等.柳杉人工林密度效应新模型[J].福建林学院学报,2005,25(3):193-196
    54.蒋有绪,等.中国森林生态系统结构与功能规律研究[M].北京:中国林业出版社,1996:46-66
    55.解开宏.广南县杉木人工林林分密度控制图的编制[J].林业调查规划,2006,31(3):37-41
    56.李吉跃.太行山区主要造林树种耐旱特性的研究(Ⅳ)—蒸腾作用与气孔调节[J].北京林业大学学报,1991,13(增刊):240-250
    57.李洁,郭小平,朱金兆,等.山西吉县梨、李子土壤水分动态变化及其耗水研究[J].水土保持研究,2006,13(3):132-134
    58.李梦,匡莹,刘刚,等.长白落叶松人工林最优密度及其控制技术的研究(Ⅱ)[J].林业勘查设计,1996,97(1):1-5
    59.李梦,李长胜,李红光,等.长白落叶松人工林最优密度及其控制技术的研究[J].东北林业大学学报,1996,24(1):17-26
    60.李怒云,龚亚珍,章升东.林业碳汇项目的三重功能分析[J].世界林业研究,2006,19(3):1-5
    61.李怒云,宋维明,章升东.中国林业碳汇管理现状与展望[J].绿色中国,2005(6):23-26
    62.李怒云,宋维明.气候变化与中国林业碳汇政策研究综述[J].林业经济,2006(5):60-65
    63.李怒云.中国林业碳汇[M].北京:中国林业出版社,2007:1-139
    64.梁尔源,邵雪梅,胡玉熹,等.内蒙古草原沙地白扦年轮生长指数的变异[J].植物生态学报,2001,25(2):190-194
    65.林小梅.闽东柳杉人工林林分密度控制图的研究[J].福建林业科技,2002,29(3):75-77
    66.刘财富,黄金东,范俊岗.辽宁省刺槐人工林生产力的研究[J].林业科学,2001,36(1):41-46
    67.刘灿然,马克平,吕延华,等.生物群落多样性的测度方法Ⅵ:与多样性测度有关的统计问题[J].生物多样性,1998,6(3):229-239
    68.刘昌明,周长青,张士锋,等.小麦水分生产函数及其效益的研究[J].地理研究,2005,24(1):1-10
    69.刘奉觉,郑世锴,巨关升.树木蒸腾耗水测算技术的比较研究[J].林业科学,1997,33(2):117-126
    70.刘国华,傅伯杰.全球气候变化对森林生态系统的影响[J].自然资源学报,2001,16(1):71-78
    71.刘金福,洪伟,林芳.马尾松人工林密度效应模型研究[J].西南林学院学报,1998,18(3):148-152
    72.刘君然.林分密度理论及应用(第一版)[M].北京:中国林业出版社,1994:9-27
    73.刘君然.落叶松人工林不同密度林分生长量、成熟变化规律[J].内蒙古林业调查设计,1995,1:12-16
    74.刘录三,邵雪梅,梁尔源,等.祁连山中部祁连圆柏生长与更新方式的树轮记录[J].地理研究,2006,25(1):53-61
    75.刘世荣,柴一新,蔡体久,等.兴安落叶松人工群落生物量与净初级生产力的研究[J].东北林业大学学报,1990,18(2):40-46
    76.刘世荣,郭泉水,王兵.中国森林生产力对气候变化响应的预测研究[J].生态学报,1998,18(5):478-483
    77.刘淑明,马龙第,孙丙寅,等.油松年轮生长与秦岭北坡气候的初步研究[J].西北林学院学报,1997,12(2):37-41
    78.刘晓宏,秦大河,邵雪梅,等.祁连山中部过去近千年温度变化的树轮记录[J].中国科学:D辑,2004,34(1):89-95
    79.刘玉宝.29年生杉木林下植物多样性与密度的关系[J].福建林学院学报,2005,25(1):1-4
    80.刘志刚,马钦彦,潘向丽.兴安落叶松天然林生物量及生产力的研究[J],植物生态学报,1994,18(4):328-337
    81.罗遵兰,冯绍元,左海萍.河北省夏玉米水分生产函数模型初步分析[J].节水灌溉,2006,1:17-19
    82.罗遵兰,冯绍元,左海萍.山西省冬小麦水分生产函数模型初步分析[J].灌溉排水学报,2005,24(1):16-19
    83.马克平,黄建辉,于顺利,等.北京东灵山地区植物群落多样性的研究Ⅱ丰富度、均匀度和物种多样性指数[J].生态学报,1995,15(3):268-277
    84.马克平,刘灿然,于顺利,等.北京东灵山地区植物群落多样性的研究Ⅲ.几种类型森林群落的种-多度关系研究[J].生态学报,1997,17(6):573-583
    85.马克平,刘玉明.生物群落多样性的测度方法Ⅰα多样性的测度方法(下)[J].生物多样性,1994,2(4):231-239
    86.马克平.生物群落多样性的测度方法Ⅰα多样性的测度方法(上)[J].生物多样性,1994,2(3):162-168
    87.马履一,王华田,林平.北京地区几个造林树种耗水性比较研究[J].北京林业大学学报,2003,25(2):1-7
    88.马履一,王华田.油松边材液流时空变化及其影响因子的研究[J].北京林业大学学报,2002,24(4):23-37
    89.马钦彦.华北油松人工林单株林木的生物量[J].北京林业大学学报,1983,5(4):1-16
    90.马钦彦.油松林生物量—密度管理图[J].北京林业大学学报,1988,(3):69-78
    91.马雪华.森林生态系统定位研究方法[M].北京:中国科学技术出版社,1994
    92.马义虎,陈丽华,余新晓.晋南人工刺槐林需水量计算及分析[J].水土保持研究,2005,12(6):89-91
    93.茆智,崔远来,李新健.我国南方水稻水分生产函数试验研究[J].水利学报,1994,9:21-31
    94.孟宪宇.测树学[M].北京:中国林业出版社,1996:45-64
    95.倪健.中国亚热带常绿阔叶林净第一性生产力的估算[J].生态学杂志,1996,15(6):1-8
    96.潘亚茹,高素华,郭建平.我国近40年降水的变化及对气候生产力的影响[J].生态农业研究,1994,2(1):31-36
    97.彭剑峰,勾晓华,陈发虎,等.天山东部西伯利亚落叶松树轮生长对气候要素的响应分析[J].生态学报,2006,26(8):2723-2731
    98.彭少麟,方炜.南亚热带森林演替过程生物量和生产力动态特征[J].生态科学,1995,2:1-9
    99.彭少麟,黄忠良.生产力与生物多样性之间的相互关系研究概述[J].生态科学,2000,19(1):1-9
    100.朴世龙,方精云,郭庆华.1982-1999年我国植被净第一性生产力及其时空变化[J].北京大学学报,2001,37(4):563-569
    101.邱扬,张金屯,柴宝峰,等.晋西油松人工林地上部分生物量与生产力的研究[J].河南科学,1999,17(专刊):72-79
    102.裘国旺,赵艳霞,王石立.气候变化对我国北方农牧交错带及其气候生产力的影响[J].干旱区研究,2001,18(1):23-28
    103.荣丰涛,王仰仁.山西省主要农作物水分生产函中参数的试验研究[J].水利学报,1997,1:78-83
    104.#12
    105.#12
    106.邵雪梅,吴祥定.华山树木年轮年表的建立[J].地理学报,1994,49(2):174-181
    107.沈国舫.森林培育[M].北京:中国林业出版社,2001:64-118
    108.盛炜彤,范少辉.人工林长期生产力保持机制研究的背景、现状和趋势[J].林业科学研究,2004,17(1):106-115
    109.盛炜彤,杨承栋.关于杉木林下植被对改良土壤性质效用的研究[J].生态学报,1997,17(4):377-385
    110.石家深,焦振家,向开馥.黑龙江省西部地区樟子松人工林调查研究[J].林业科学,1980(S1):116-123
    111.石青,余新晓,李文宇,等.水源涵养林林木耗水称重法试验研究[J].中国水土保持科学,2004,2(2):84-87
    112.石玉林,任阵海,雷志栋,等.西北地区土地荒漠化与水土资源利用研究[M].北京:科学出版社,2004:1-103
    113.宋永芳.刺槐资源的开发利用[J].林业科技开发,2002(5):11-13
    114.孙长忠,黄宝龙.单株平衡法的建立[J].林业科学,1996,32(4):378-381
    115.孙长忠,沈国舫,李吉跃,等.我国主要树种人工林生产力现状及潜力的调查研究Ⅱ.桉树、落叶松及樟子松人工林生产力研究[J].林业科学研究,2001,14(6):657-667
    116.孙长忠,沈国舫.我国主要树种人工林生产力现状及潜力的调查研究Ⅰ.杉木、马尾松人工林生产力研究[J].林业科学研究,2000,13(6):613-621
    117.孙凡,钟章成.缙云山四川大头茶树木年轮生长动态与气候因子关系的研究[J].应用生态学报,1999,10(2):151-154
    118.孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].北京:中国科技技术出版社,1995
    119.孙时轩.造林学[M].北京:中国林业出版社,1992:248-256
    120.孙中峰,张学培,朱金兆.晋西黄土区坡面刺槐林分生长规律研究[J].农业系统科学与综合研究,
    2006,22(1):46-49
    121.孙中文,孙中峰,张学培,等.黄土区人工林地的土壤水分研究动态[J].干旱区研究,2005,22(2):167-170
    122.田晶会,贺康宁,王百田,等.黄土半干旱区侧柏蒸腾作用及其与环境因子的关系[J].北京林业大学学报,2005,27(3):53-56
    123.田晶会,王百田.黄土半干旱区刺槐林水分与生长关系研究[J].水土保持学报,2002,16(5):61-64
    124.童书振,盛炜彤,张建国.杉木林分密度效应研究[J].林业科学研究,2002,15(1):66-75
    125.王百田,贺康宁,史常青,等.节水抗旱造林[M].北京:中国林业出版社,2004
    126.王百田,王颖,郭江红,等.黄土高原半干旱地区刺槐人工林密度与地上生物量效应[J].中国水土保持科学,2005,3(3):35-39
    127.王百田,杨雪松.黄土半干旱地区油松与侧柏林分适宜土壤含水量研究[J].水土保持学报,2002,16(1):80-83,135
    128.王百田,张府娥.黄土高原主要造林树种苗木蒸腾耗水特性[J].南京林业大学学报(自然科学版),2003,27(6):93-97
    129.王斌瑞,王百田,张府娥,等.黄土高原径流林业技术研究[J].林业科技通讯,1996(9):13-21
    130.王斌瑞,王百田.黄土高原径流林业[M].北京:中国林业出版社,1996:103-122
    131.王兵,高鹏,郭浩,等.江西大岗山林区樟树年轮对气候变化的响应[J].应用生态学报,2009,20(1):71-76
    132.王贵霞,李传荣,许景伟,等.温带森林群落多样性的测度方法比较评述[J].浙江林学院学报,2004,21(4):486-491
    133.王华田.林木耗水性研究述评[J].世界林业研究,2003,16(2):23-27
    134.王辉民,周广胜,卫林,等.中国油松林净第一性生产力及其对气候变化的响应[J].植物学报,1995(12):102-108
    135.王会肖,刘昌明.作物水分利用效率内涵及研究进展[J].水科学研究进展,2000,11(1):99-104
    136.王克勤,王百田,王斌瑞,等.集水造林不同密度林分生长研究[J].林业科学,2002,38(2):54-60
    137.王克勤,王斌瑞,王震洪.金矮生苹果水分利用效率研究[J].生态学报,2002,22(5):723-728
    138.王克勤,王斌瑞.黄土高原刺槐林间伐改造研究[J].应用生态学报,2002,13(1):11-15
    139.王克勤,王斌瑞.集水造林防止人工林植被土壤干化的初步研究[J].林业科学,1998,34(4):14-21
    140.王克勤,王斌瑞.集水造林林分水分生产力研究[J].林业科学,2000,36(专刊):1-9
    141.王礼先.植被生态建设与生态用水:以西北地区为例[J].水土保持研究,2000,7(3):5-7
    142.王力,邵明安,李裕元.陕北黄土高原人工刺槐林生长与土壤干化的关系研究[J].林业科学,2004,39(1):84-91
    143.王婷,于丹,李江风,等.树木年轮宽度与气候变化关系研究进展[J].植物生态学报,2003,27(1):23-33
    144.王艳霞,吴承祯,洪伟,等.杉木人工林生长对密度效应的响应[J].福建林学院学报,2007,27(1): 25-29
    145.王佑民,王忠林.黄土高原沟壑区混农林的结构及其防护效益研究[J].水土保持学报,1992,6(4):54-59
    146.王宗明,梁银丽等.植被净第一性生产力模型研究进展[J].西北林学院学报,2002,17(2):22-25
    147.魏殿生.关注林业碳汇应对气候变化[J].中国林业,2006(1):25-27
    148.魏天兴,余新晓,朱金兆,等.黄土区防护林主要造林树种水分供需关系研究[J].应用生态学报,2001,12(2):185-189
    149.魏天兴,朱金兆,张学培,等.晋西南黄土区刺槐油松林地耗水规律的研究[J].北京林业大学学报,1998,20(4):36-40
    150.魏天兴,朱金兆.黄土区人工林地水分供耗特点与林分生产力研究[J].土壤侵蚀与水土保持学报,1999,5(4):45-51
    151.吴承祯,洪伟,柳江,等.封育次生马尾松(Pinus massoniana)林优势种群竞争密度效应[J].应用与环境生物学报,2005,11(1):14-17
    152.吴承祯,洪伟.马尾松人工林经营过程密度优化研究[J].林业科学,2001,37(专刊1):72-77
    153.吴承祯,洪伟.人工林经营过程密度最优控制研究[J].自然资源学报,1998,13(2):175-180
    154.吴承祯,洪伟.用遗传算法改进在约束条件下造林规划设计的研究[J].林业科学,1997,33(2):133-141
    155.吴祥定.树木年轮与气候变化[M].北京:气象出版社,1990:77-234
    156.吴泽民,黄成林,马青山.黄山松年轮生长和气候的关系[J].应用生态学报,1999,10(2):147-150
    157.武思宏,毕华兴,朱清科,等.晋西黄土区主要造林树种耗水量测算与分析[J].干旱区研究,2006,23(4):550-557
    158.武思宏,朱清科,余新晓,等.晋西黄土区主要造林树种合理林分密度计算与分析[J].水土保持研究,2008,15(1):83-86
    159.夏冰,贺善安,邓飞,等.西天目山针叶树直径生长与气候变化的关系[J].植物资源与环境,1995,4(4):1-9
    160.肖生春,肖洪浪,宋耀选,等.荒漠植被红砂(Reaumurta soongorica)水热响应的年轮学研究[J].中国沙漠,2006,26(4):548-552
    161.熊伟,王彦辉,徐德应.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应[J].林业科学,2003,39(2):6-12
    162.熊伟,王彦辉,于澎涛,等.六盘山南坡华北落叶松(Larix principis-rupprechtii)树干直径生长及其对气象因子的响应[J].生态学报,2007,27(2):432-441
    163.许越先.农业用水有效性研究(第一版)[M].北京:科学出版社,1992:1-5
    164.薛立,荻原秋男.杉木竞争密度效果分析[J].应用生态学报,2001,12(2):171-174
    165.延军平,张红娟,蒋毓新.黄土丘陵沟壑区县域气候生产力对气候变化的响应—以陕北米脂县为例[J].干旱区研究,2008,25(1):59-63
    166.闫淑君,洪伟,吴承祯,等.福建近41年气候变化对自然植被净第一性生产力的影响[J].山地学报,2001,19(6):522-526
    167.杨承栋,焦如珍,屠星南,等.发育林下植被是恢复杉木人工林地力的重要途径[J].林业科学,1995,31(3):275-283
    168.杨维西.试论我国北方地区人工植被的土壤干化问题[J].林业科学,1996,32(1):78-85
    169.姚茂和,盛炜彤,熊有强.杉木林林下植被及其生物量的研究[J].林业科学,1991,27(6):644-647
    170.杨文文.晋西黄土区刺槐抗旱造林适宜水分密度及水分代谢特征研究[D].北京林业大学,2006
    171.叶功富,涂育合,林瑞荣,等.杉木人工林不同密度管理定向培育大径材[J].北华大学学报(自然科学版),2005,6(6):544-549
    172.尹泰龙.林分密度控制图[M].北京:中国林业出版社,1984:1-26
    173.于大炮,王顺忠,唐立娜,等.长白山北坡落叶松年轮年表及其与气候变化的关系[J].应用生态学报,2005,16(1):14-20
    174.于大炮,周莉,代力民,等.树木年轮分析在全球变化研究中的应用[J].生态学杂志,2003,22(6):91-96
    175.于东升,史学正.我国土壤水分状况的估算[J].自然资源学报,1998,13(3):229-233
    176.余新晓,程根伟,赵玉涛,等.长江上游安针叶林生态系统蒸散计算[J].水土保持学报,2002,16(5):14-16
    177.俞新妥.福建杉木生产的历史和展望[J].福建林学院学报,1982(1):1-8
    178.袁嘉祖.土高原地区植物气候生产力[J].生态学杂志,1990,9(4):45-48
    179.袁玉江,邵雪梅,魏文寿,等.乌鲁木齐河山区树木年轮-积温关系及≥5.7℃积温的重建[J].生态学报,2005,25(4):756-762
    180.翟胜,梁银丽,王巨媛,等.干旱半干旱地区日光温室黄瓜水分生产函数的研究[J].农业工程学报,2005,21(4):136-139
    181.张彩琴,郝敦元,李海平.人工林林分密度最优控制策略的数学模型[J].东北林业大学学报,2006,34(2):24-26
    182.张光灿,刘霞,周泽福,等.黄土丘陵区油松水土保持林生长过程与直径结构[J].应用生态学报,2007,18(4):728-734
    183.张华,王百田,郑培龙.黄土半干旱区不同土壤水分条件下刺槐蒸腾速率的研究[J].水土保持学报,2006,20(2):122-125
    184.张惠光.福建柏林分密度控制图的研究[J].福建林业科技,2006,33(4):41-44
    185.张惠光.巨尾桉人工林密度效应模型的研究[J].林业勘察设计,2006,(2):4-7
    186.张宪洲.我国自然植被净第一性生产力的估算与分布[J].自然资源,1992,(1):15-21
    187.张晓明,孙中峰,张学培.晋西黄土残塬沟壑区不同林分暴雨产流产沙作用分析[J].中国水土保持科学,2003,1(3):37-42
    188.张晓明,余新晓,武思宏,等.黄土高原主要造林树种需水定额计算与分析[J].水土保持研究,2008, 15(1):36-40
    189.张晓明,余新晓,张学培,等.晋西黄土区主要造林树种单株耗水量研究[J].林业科学,2006,42(9):17-23
    190.张兴源.林分最佳间伐量与间伐期的确定[J].林业资源管理,1987(1):29-32
    191.张煜星.中国荒漠化气候类型的分布[J].干旱区研究,1998,15(2):46-50
    192.张运锋.用动态规划方法探讨油松人工林最适密度[J].北京林业大学,1986,8(2):20-29
    193.赵彤堂.林分密度效应与密度管理技术[M].哈尔滨:东北林业大学出版社,1993
    194.赵西平,郭明辉,关鑫.人工林落叶松生长轮宽度年表的建立[J].东北林业大学学报,2007,35(3):7-9
    195.郑彩霞,王斌瑞.黄土高原坡面林地不同集水措施对林木生长的影响[J].北京林业大学学报,1995,17(4):56-61
    196.郑淑霞,上官周平.树木年轮与气候变化关系研究[J].林业科学,2006,42(6):100-107
    197.郑郁善.毛竹材用丰产林密度效应模型研究[J].生物数学学报,1997,12(3):279-282
    198.中国可持续发展林业战略研究项目组.中国可持续发展林业战略研究(战略卷)[M].北京:中国林业出版社,2003:181-187
    199.周广胜,张新时.全球气候变化的中国自然植被的净第一性生产力研究[J].植物生态学报,1996,20(1):11-19
    200.周广胜,张新时.自然植被净第一性生产力模型初探[J].植物生态学报,1995,19(3):193-200
    201.周广胜,郑元润,罗天祥,等.自然植被净第一性生产力模型及其应用[J].林业科学,1998,34(5):2-11
    202.周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究[J].北京林业大学学报,2002,24(5):50-55
    203.朱海峰,王丽丽,邵雪梅,等.雪岭云杉树轮宽度对气候变化的响应[J].地理学报,2004,59(6):863-870
    204.左其亭.干旱半干旱地区植被生态用水计算[J].水土保持学报,2002,16(3):114-117
    205.Akkemik B. Dendroclimatology of umbrella pine(Pinus pine L.) in Istanbul, Turkey[J]. Tree-Ring Bulletin,2000,56:17-20
    206.Alarc on J J, Domingo R, Green S R, et al. Sap flow as an indicator of transpiration and the water status of young apricot trees [J].Plant and Soil,2000,227:77-85
    207.Antonova G F, Stasova V V. Effects of environmental factors on wood formation in Scots pine stems[J]. Trees,1993,7:214-219
    208.Bhattacharyya A, LaMarche V C, Telewski F W. Dendrochronological reconnaissance of the conifers of northwest Indian[J]. Tree-Ring Bulletin,1988,48:21-30
    209.Borgaonkar H P, Pant G B, Kumar K R. Tree-ring chronologies from western Himalaya and their dendroclimatic potential[J]. International Association of Wood Anatomists,1999,20:295-309
    210.Bowie M R, Wand S J, Esler K J. Seasonal gas exchange responses under three different
    temperature treatments in a leaf succulent and a drought deciduous shrub from the Succulent Karoo[J].South African Journal of Botany,2000,66(2):118-123
    211.Brodie J D, Kao C. Optimizing thinning in Douglas-fir with three descriptor dynamic programming to account for accelerated diameter growth[J].For Sci,1979,25(4):665-672
    212.Buchman R G and Shifley S R. Guide to evaluating forest growth projection system[J]. Forest, 1983,81(4):232-234
    213.Chen C M, Rose D W, Leary R A. Derivation of optimal stand density over tine-a discrete stage, continuous state dynamic programming solution[J].For Sci,1980,26(2):217-227
    214.Cherubini P, Schweingruber F H, Forester T. Morphology and ecological significance of intra-annual radial cracks in living conifers [J].Trees,1997,11:216-222
    215.Clarke J M. Effect of drought stress on residual transpiration and its relationship with water use of wheat [J].Canadian Journal of Plant Science,2000,1(3):695-702
    216.Cook E R, Cole J. Predicting the response of forests in eastern North America to future climatic change[J]. Climatic Change,1991,19:271-282
    217.D'Arrigo R, Jacoby G C, Pederson N et al. Mongolian tree rings, temperature sensitivity and reconstructions of Northern Hemisphere temperature[J].The Holocene,2000,10(6):669-672
    218.Deslauriers A, Morin H, Urbinati C, et al. Daily weather response of balsam fir(Abies balsamea (L.)Mill.) stem radius increment from dendrometer analysis in the boreal forests of Quebec (Canada)[J].Trees,2003,17(6):477-484
    219.Tanner E V J. Studies on the biomass and productivity in a series of Montane Rain forest in Jamaica[J]. Journal of Ecology,1980,68(2):573-588
    220.Ehleringer J R, Klassen S, Clayton C,et al.Carbon isotope discrimination and transpiration efficiency in common bean[J].Crop Sci.1991,31 (6):1611-1615
    221.Esper J, Cook E R, Schweingruber F H. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability[J].Science,2002,295:2250-2253
    222.Ferrara G, Flore J A. Comparison between different methods for measuring transpiration in potted apple trees[J].Biologia Plantarum,2005,46(1):4-47
    223.Field C B, Randerson J T, Malmstrom C M. Global net primary production:combining ecology and remote sensing[J].Remote Sens Environ,1995,51:74-88
    224.Fritts H C. Reconstruction Large-scale Climate Patterns from Tree Ring Data[M]. USA:The University of Arizona Press,1991
    225.Green S, Clothier B. The root zone dynamics of water uptake by a mature apple tree[J].Plant and Soil,2003,206:61-77
    226.Herzog K M, Hasler R, Thum R. Diurnal changes in the radius of a subalpine Norway spruce stem: Their relation to the sap flow and their use to estimate transpiration[J].Trees,1995,10:94-101
    227.Jacoby G C, D'Arrigo R D. Mongolian tree ring and 20th-century warming[J].Science,1996,273: 771-773
    228.Jacoby G, Solomina O, Frank D,et al. Kunashir (Kuriles) Oak 400-year reconstruction of temperature and relation to the Pacific Decadal Oscillation[J]. Palaeogeography Palaeoclimatology Palaeoecology,2004,209:303-311
    229.Kao C.Optimal stocking levels and rotation under risk[J].For Sic,1982,28(4):711-719
    230.Kirkham M B, He H, Bolger T P, et al. Leaf photosynthesis and water use of big bluestem under elevated carbon dioxide[J].Crop.Sci.,1991,31(6):1589-1594
    231.Kjell Andreassen, Svein Solberg, Ole Einar Tveito, et al. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests [J]. Forest Ecology and Management, 2006,222(1-3):211-221
    232.Lachenaud P H, Montagnon C. Competition effects in cocoa(Theobroma cacao L.) hybrid trials[J]. Euphytica,2002,128(1):97-104
    233.Lagergren F, Lindroth A. Transpiration response to soil moisture in pine and spruce trees in Sweden[J].Agricultural &Forest Meteorology,2002,112(2):67-85
    234.Lamarche V C, Graybill D A, Fritts H C,et al. Increasing atmospheric carbon dioxide:Tree ring evidence for growth enhancement in natural vegetation. Science,1984,225:1019-1021
    235.Larsen C P S, MacDonald G M. Relations between tree-ring widths, climate, and annual area burned in the boreal forest of Alberta[J].Canadian Journal of Forest Research,1995,25:1746-1755
    236.Lieth H. Modeling the primary productivity of the world[M]//Lieth H, Whittaker R H. Primary Productivity of the Biosphere. Berlin:Springer Verlarg,1975,237-263
    237.Lloyd A H, Graumlich L J. Holocene dynamics of treeline forests in the Sierra Nevada[J]. Ecology, 1997,78(4):1199-1210
    238.Makinen H, Nojd P, Kahle H P, et al. Large-scale climatic variability and radial increment variation of Picea abies(L.) Karst. in central and northern Europe[J].Trees,2003,17:173-184
    239.Martin G L, Ek A R. A dynamic programming analysis of silvicultural alternative for red Pine plantations in Wisconsin[J].Can J For Res,1981,11(2):371-380
    240.Martin Holdgate.生物多样性的生态学意义[J].Ambio,1996,25(6):408-415
    241.Morgan T H, Biere A W, Kanemasu E T. A dynamic model of corn yield response to water [J]. Water Resources Research,1980,16(6):59-64
    242.Neilson R P. Vegetation redistribution:A possible biosphere source of CO2 during climate Change [J].Water, Air and Soil Pollution,1993,70:659-673
    243.Peng C H, Apps M J. Modelling response of net primary productivity(NPP) of boreal forest ecosystems to changes in climate and fire disturbance regimes[J].Ecol.Model,1999,122:175-193
    244.Peterson D W, Peterson D L. Effects of climate on radial growth of subalpine conifers in the North Cascade Mountain[J].Can. J. For. Res.,1994,24(9):1921-1932
    245.Philip J R. Plant water relations:some physical aspects[J]. Ann. Rev. Plant Physical,1966,17: 245-268
    246.Rajput G S, Singh J. Water production function for wheat under different environmental conditions[J].Agricultural Water Management,1986,(11):318-332
    247.Richardson S D, Dinwoodie J M. Studies on the physiology of xylem development I.The effects of night temperature on tracheid size and wood density in conifers[J]. Journal of the Institute of Wood Science,1960,6:3-13
    248.Rolland C. Tree-ring and climate relationships for Abies albain the internal Alps[J]. Tree-Ring Bulletin,1993,53:1-11
    249.Seino H U, Chijim A Z. Global distribution of net primary productivity of terrestrial vegetation [J]. Journal of Agricultural Meteorology.1992,48:39-48
    250.Shinozaki K, Kira T.Intraspecific competition among higher plantsVII:Logistic theory of the C-D effect[J]. Journal of Institute of Polytechnics,1956,7:35-72
    251.Silvertoun J W. Introduction of pant population ecology[M]. London and New York:Longman, 1982:7-8
    252.Tardif J, Bergeron Y. Comparative dendroclimatological analysis of two blank ash and two white cedar population from contrasting sites in the lake Duparquet region, northwestern Quebec[J]. Canadian Journal of Forest Research,1997,27:108-116
    253.Teare I D. Crop-Water Relations [J]. A Wiley-Inter science Publication,1982,1-2
    254.Uchijima Z, Seino H. Agroclimatic Evaluation of Net primary Productivity of Natural Vegetation (1):Chikugo Model for Evaluating Primary Productivity[J]. Journal of Agricultural Meteorology,1985,40:343-352
    255.Wimmer R, Grabner M. Effects of climate on vertical resin duct density and radial growth of Norway spruce (Picea abies(L.) Karst.)[J].Trees,1997,11(5):271-276
    256.Wullschleger S D, Meinzer F C, Vertessy R A.A review of whole plant water use studies in trees[J]. Tree Physiology,1998,18:499-512
    257.Xue L, Hagihara A. Growth analysis of the self-thinning stands distribution in of Pinus Densiflora Sieb.et Zucc[J].Ecology Research,1998,14:49-58
    258.Yoda. Self-thinning in overcrowded pure stands under cultivated and natural conditions[J]. J Biol Osaya City Univercity,1963,14:107-129
    259.Zhang Xinshi, Yang Dianan.Radiative dryness index and potential productivity of vegetation in China[J]. Journal of Environmental Sciences(China),1990,2(4):95-109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700