用户名: 密码: 验证码:
蛇葡萄根乙醇提取物通过p53信号通路发挥抗乙肝病毒作用初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分蛇葡萄根乙醇提取物抗乙肝病毒效应研究
     目的初步探讨蛇葡萄根Ampelopsis sinica W. T. Wang体外抗乙肝病毒效果。
     方法以HBV全基因组转染的人肝癌细胞系HepG2 2.2.15作为抗病毒细胞模型,首先采用细胞病变效应检测法以及MTT法检测蛇葡萄根对该细胞的毒性作用,然后加入不同无毒浓度蛇葡萄根对细胞进行不同时间的干预。ELISA法和实时荧光定量PCR法分别检测上清液中HBsAg、HBeAg的分泌量和HBV DNA含量。
     结果200μg/ml及200μg/ml以下浓度蛇葡萄根对HepG2 2.2.15的活性没有显著影响(P>0.05)。在无毒浓度范围内,不同浓度蛇葡萄根干预细胞后细胞所分泌的HBsAg、HBeAg和HBV DNA水平较未干预组低(P<0.05),且药物浓度越高,对HBsAg、HBeAg和HBV DNA的分泌抑制作用越明显,呈浓度依赖性。但与作用时间没有明显依赖关系。
     结论蛇葡萄根通过抑制HBsAg、HBeAg和HBV DNA的分泌而初步显示其抗病毒效果。为临床抗病毒药物的研究提供了一定的理论依据。
     第二部分蛇葡萄根乙醇提取物基于荧光素酶报告基因的抗乙肝病毒作用机制初步研究
     目的为了明确蛇葡萄根抗病毒的作用机制。
     方法首先对蛇葡萄根抗乙肝病毒过程中的信号通路进行筛选,以带有荧光素酶报告基因的PathDetect Cis-/Trans-Reporting Systems (pNFκB-Luc, pAP-1-Luc, pISRE-Luc, p53-Luc, pFA2-Elk1, pFA2-cJun, pFA2-CHOP pFA2-CREB, pFR-Luc)转染HepG2细胞,蛇葡萄根干预后,检测荧光素酶活性,并用流式细胞仪检测蛇葡萄根干预HepG2 2.2.15细胞48h后,细胞凋亡情况;然后从HBV转录水平来阐明问题,我们构建了五种带有荧光素酶报告基因的HBV启动子质粒(Cp, Xp, S1p, S2p和Fp)以及五个启动子截短报告质粒,并分别转入人肝癌细胞系HepG2,蛇葡萄根干预后检测荧光素酶活性。
     结果蛇葡萄根能够抑制p53的活性(P<0.05),对HepG2 2.2.15细胞具有促凋亡作用;蛇葡萄根能选择性抑制HepG2细胞中HBV启动子活性(Cp, S1p和Fp)(P<0.05)以及截短质粒t1,t4和t5的活性(P<0.05)。
     结论蛇葡萄根的抗病毒作用可能与其抑制HBV转录及p53通路有关,并且可能是通过抑制p53通路诱导细胞凋亡从而抑制病毒复制。第三部分蛇葡萄根的提取工艺
     目的为了促进蛇葡萄根的深入开发和为临床进程提供科学依据。对该药用植物的各种提取制备工艺做一简述及比较。
     方法采用水煮法、回流法、渗漉法等5项提取工艺分别提取蛇葡萄根,测定提取液所含的小分子水溶性指标性成分没食子酸和提取物的干浸膏量。
     结果以本实验推荐的5#工艺方法提取的提取物,其杂质减少了约70%,但提取液中小分子水溶性指标性成分没食子酸的含量没有明显差异。
     结论用该工艺最终制备的蛇葡萄根提取液或干浸膏中有效物质的纯度相对于水煮液和仅仅用醇提的粗提取物大大提高。用该工艺方法提取精制的蛇葡萄根制成0.8g/ml的生药提取液,澄明度增高,可以直接制备溶液剂(水或醇的粗提取物均为混悬剂)。尤其是该溶液去掉了有一定刺激性的粘液质成分,同时,通过最大限度去掉粘液质和鞣质等杂质,其细胞毒性大为降低。
Part 1 Preliminary research on anti-hepatitis B virus effects of Ampelopsis Sinica Root in vitro
     Objective:The present study was performed in order to investigate the anti-HBV activity of the ethanol extract from A. sinica root in vitro.
     Methods:The stably HBV-transfected HepG2 2.2.15 cells were cellular model. First, the cytotoxic concentration of A. sinica root was detected by CPE and MTT assay. Then, the HepG2 2.2.15 cells were interfered by A. sinica root. The antiviral activity of A. sinica root was examined by detecting the levels of HBsAg, HBeAg and extracellular HBV DNAs in stable HepG2 2.2.15 cells by ELISA and real-time PCR assay respectively.
     Results:A. sinica root with concentration 200μg/ml and the following had no effect on cell viability (P< 0.05). It effectively suppressed the secretion of HBsAg and HBeAg from HepG2 2.2.15 cells in a dose-dependent manner, and it also suppressed the amount of extracellular HBV DNA (P< 0.05). But this inhibiting effect had no significant relationship with the action time.
     Conclusions:A. sinica root had anti-virus activity by inhibiting the secretion of HBsAg, HBeAg and HBV DNA from HepG2 2.2.15 cells.
     Part 2 Anti-hepatitis B virus mechanisms of extract from Ampelopsis Sinica Root in vitro
     Objective:To clarify the anti-virus mechanisms of extract from A. Sinica Root in vitro.
     Methods:First, screening the signaling pathways, the PathDetect Cis-/Trans-Reporting Systems (pNFκB-Luc, pAP-1-Luc, pISRE-Luc, p53-Luc, pFA2-Elkl, pFA2-cJun, pFA2-CHOP, pFA2-CREB, pFR-Luc) were transiently transfected into HepG2 cells, respectively. After 8 h of transfection, cells were treated with 40μg/ml A. Sinica Root for 48 h. The activity of each signaling pathway was determined by measuring the luciferase activities of the reporter in treated and untreated transfectants. After A. Sinica Root treatment, the percentage of apoptotic HepG2 2.2.15 cells were detected by flow cytometric analysis; then, constructing 5 promoter plasmids and 5 truncate plasmid. These plasmids were transiently transfected into HepG2 cells, respectively. After 8 h of transfection, cells were treated with 40μg/ml A. Sinica Root for 48 h. The activity was determined by measuring the luciferase activities of the reporter in treated and untreated transfectants.
     Results:A. Sinica Root selectively inhibited the activity of p53-associated signaling pathway and the activities of HBV promoters (Cp, S1p and Fp) as well as truncates (t1, t4, t5) significantly(P< 0.05), and could induce apoptosis of HepG2 2.2.15 cells.
     Conclusions:A. Sinica Root exerts anti-HBV effects via inhibition of HBV transcription and the p53-associated signaling pathway, possibly by inhibiting the p53 pathway to induced apoptosis.
     Part 3 A optimum technology of extracting bioactive components from Ampelopsis Sinica Root
     Objective:In order to promote the advanced development of Ampelopsis Sinica Root and provide a scientific evidence for its clinical progress, giving a summary and comparison about the medicine plant extract on a variety of technology of extracting.
     Methods:Based on water boiling method, reflux method, percolation method, etc, the Ampelopsis Sinica Root was extracted to detect the dry extract and the content of gallic acid, a small-molecule and water-soluble component from extract.
     Results:In this experiment, the recommended 5# process were used to extract the medicine plant, as a result, the impurities from extract reduced 70%, but the content of gallic acid had no significant difference.
     Conclusions:The purity of active substance in extract solution or dry extract from Ampelopsis Sinica Root extracted by 5# process was greatly increased. And the extract was made of crud drug with concentration 0.8g/ml, as well as an increased clarity. It could be directly prepared for solution agent. In particular, the extract solution didn't have an element of stimulating mucus, so its cytotoxicity was significantly reduced.
引文
[1]Zhuang H. [Chronic hepatitis B virus infection, its treatment and prevention]. Zhonghua Gan Zang Bing Za Zhi,2005,13:324-325.
    [2]Semenenko T A. [Chronic hepatitis B and problem of viral persistence from position of disease's immunopathogenesis]. Zh Mikrobiol Epidemiol Immunobiol, 2009:33-39.
    [3]Goeser T, and Tox U. [Therapy of hepatitis B and C. Problem situations in chronic HBV and HCV infection]. Praxis (Bern 1994),2002,91:983-990.
    [4]Jia J D, and Zhuang H. [The overview of the seminar on chronic hepatitis B.]. Zhonghua Gan Zang Bing Za Zhi,2004,12:698-699.
    [5]Poynard T, Imbert-Bismut F, Munteanu M, et al. Overview of the diagnostic value of biochemical markers of liver fibrosis (FibroTest, HCV FibroSure) and necrosis (ActiTest) in patients with chronic hepatitis C. Comp Hepatol,2004, 3:8.
    [6]Elefsiniotis I S, Pantazis K D, Ketikoglou I D, et al. Changing serological status and low vaccination-induced protection rates against hepatitis B characterize chronic hepatitis C virus-infected injecting drug users in Greece:need for immunization policy. Eur J Gastroenterol Hepatol,2006,18:1227-1231.
    [7]Sung J J, Wong M L, Bowden S, et al. Intrahepatic hepatitis B virus covalently closed circular DNA can be a predictor of sustained response to therapy. Gastroenterology,2005,128:1890-1897.
    [8]Hadziyannis S J, Papatheodoridis G V, and Vassilopoulos D. Treatment of HBeAg-negative chronic hepatitis B. Semin Liver Dis,2003,23:81-88.
    [9]Marcellin P, Lau G K, Bonino F, et al. Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B. N Engl J Med,2004,351:1206-1217.
    [10]Schalm S W, Heathcote J, Cianciara J, et al. Lamivudine and alpha interferon combination treatment of patients with chronic hepatitis B infection:a randomised trial. Gut,2000,46:562-568.
    [11]Mohamadnejad M. Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic hepatitis B. Arch Iran Med,2006,9:90-92.
    [12]Lai C L, Shouval D, Lok A S, et al. Entecavir versus lamivudine for patients with HBeAg-negative chronic hepatitis B. N Engl J Med,2006,354:1011-1020.
    [13]Lai C L, Gane E, Liaw Y F, et al. Telbivudine versus lamivudine in patients with chronic hepatitis B. NEngl J Med,2007,357:2576-2588.
    [14]Milinkovic A, Martinez E, Lopez S, et al. The impact of reducing stavudine dose versus switching to tenofovir on plasma lipids, body composition and mitochondrial function in HIV-infected patients. Antivir Ther,2007,12:407-415.
    [15]Hadziyannis S J, Tassopoulos N C, Heathcote E J, et al. Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic hepatitis B. N Engl J Med,2005, 352:2673-2681.
    [16]Hadziyannis S J, Tassopoulos N C, Heathcote E J, et al. Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic hepatitis B for up to 5 years. Gastroenterology,2006,131:1743-1751.
    [17]Gish R G, Lok A S, Chang T T, et al. Entecavir therapy for up to 96 weeks in patients with HBeAg-positive chronic hepatitis B. Gastroenterology,2007, 133:1437-1444.
    [18]Chang T T, Gish R G, de Man R, et al. A comparison of entecavir and lamivudine for HBeAg-positive chronic hepatitis B. N Engl J Med,2006, 354:1001-1010.
    [19]Ruiz-Sancho A, Sheldon J, and Soriano V. Telbivudine:a new option for the treatment of chronic hepatitis B. Expert Opin Biol Ther,2007,7:751-761.
    [20]Lok A S. The maze of treatments for hepatitis B. N Engl J Med,2005, 352:2743-2746.
    [21]Janssen H L, van Zonneveld M, Senturk H, et al. Pegylated interferon alfa-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B:a randomised trial. Lancet,2005,365:123-129.
    [22]Qian H Z, Vermund S H, Kaslow R A, et al. Co-infection with HIV and hepatitis C virus in former plasma/blood donors:challenge for patient care in rural China. AIDS,2006,20:1429-1435.
    [23]Schulze-Bergkamen H, Untergasser A, Dax A, et al. Primary human hepatocytes--a valuable tool for investigation of apoptosis and hepatitis B virus infection. JHepatol,2003,38:736-744.
    [24]Koike K, Yoshida E, Katagiri K, et al. Production of hepatitis B virus surface antigen particles by the human hepatoma cell line huGK-14 in a serum-free medium. Jpn J Cancer Res,1987,78:1341-1346.
    [25]Yang L L, Yen K Y, Kiso Y, et al. Antihepatotoxic actions of Formosan plant drugs. J Ethnopharmacol,1987,19:103-110.
    [26]陈科力,张秀明.国产蛇葡萄属药用植物开发前景.中药材,1999,22:58-60.
    [27]王文采.葡萄科的新发现.植物分类学报,1979,17:75.
    [28]刘培育,丘明祈,梁婷韵.无莉根中蛇葡萄索的提取及其对黑色素瘤的抑制作用.中山医科大学学报,1999,20:127-129.
    [29]刘德育,罗曼,谢冰芬.蛇葡萄素的抗肿瘤作用研究.,癌症,2001,20:1372-1375.
    [30]Tozer G M, Kanthou C, and Baguley B C. Disrupting tumour blood vessels. Nat Rev Cancer,2005,5:423-435.
    [31]刘德育,郑宏强,罗高琴.蛇葡萄素体内外侵袭和转移的抑制作用.中国中药杂志,2003,28:957-961.
    [32]罗高琴,曾飒,刘德育.蛇葡萄素的血管生成抑制作用.中药材,2006,29:146-150.
    [33]曾飒,罗高琴,刘德育.蛇葡萄素对免疫细胞的趋化作用.中药材,2006,29:260-262.
    [34]Wu M J, Yen J H, Wang L, et al. Antioxidant activity of Porcelainberry (Ampelopsis brevipedunculata (Maxim.) Trautv.). Am J Chin Med,2004, 32:681-693.
    [35]Chen K, Ye C, Plumb G W, et al. [Investigation on the antioxidant activities in vitro of extracts from Ampelopsis humilifolia var. heterophylla and A. sinica]. Zhong Yao Cai,2004,27:650-653.
    [36]Murakami T, Miyakoshi M, Araho D, et al. Hepatoprotective activity of tocha, the stems and leaves of Ampelopsis grossedentata, and ampelopsin. Biofactors, 2004,21:175-178.
    [37]陈科力,张秀明,李瀚旻.三种蛇葡萄根D-Ga1N致急性肝损伤的实验研究.中药材,1999,22:353-354.
    [38]张秀明,陈科力,李翰明.蛇葡萄根的保肝降酶及抗自由基损伤作用.中国药师,1999,2:225-226.
    [39]Yabe N, and Matsui H. Effects of Ampelopsis brevipedunculata (Vitaceae) extract on hepatic M cell culture:function in collagen biosynthesis. J Ethnopharmacol,1997,56:31-44.
    [40]Friedman S L, Roll F J, Boyles J, et al. Hepatic lipocytes:the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A,1985, 82:8681-8685.
    [41]Loreal O, Levavasseur F, Fromaget C, et al. Cooperation of Ito cells and hepatocytes in the deposition of an extracellular matrix in vitro. Am J Pathol, 1993,143:538-544.
    [42]Yabe N, and Matsui H. Ampelopsis brevipedunculata (Vitaceae) extract stimulates collagen synthesis through superoxide generation in the serum-free cultures of rat dermal fibroblasts and Ito cells. J Ethnopharmacol,1997, 56:67-76.
    [43]陈科力,杨占秋.蛇葡萄根提取物在细胞内抗单纯疱疹病毒的作用部位.中国药师,1999,2:281-282.
    [44]陈科力,李瀚明,陈艳明.蛇葡萄根提取物体内抗鸭乙型肝炎病毒的作用.中药材,2000,23:41-42.
    [45]Ganem D, and Prince A M. Hepatitis B virus infection--natural history and clinical consequences. N Engl J Med,2004,350:1118-1129.
    [46]Block T M, Guo H, and Guo J T. Molecular virology of hepatitis B virus for clinicians. Clin Liver Dis,2007,11:685-706, vii.
    [47]Wang G H, and Seeger C. Novel mechanism for reverse transcription in hepatitis B viruses. J Virol,1993,67:6507-6512.
    [48]Hu J, Toft D O, and Seeger C. Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids.EMBO J,1997,16:59-68.
    [49]Seeger C, and Mason W S. Hepatitis B virus biology. Microbiol Mol Biol Rev, 2000,64:51-68.
    [50]Guo J T, and Pugh J C. Topology of the large envelope protein of duck hepatitis B virus suggests a mechanism for membrane translocation during particle morphogenesis. J Virol,1997,71:1107-1114.
    [51]Prange R, and Streeck R E. Novel transmembrane topology of the hepatitis B virus envelope proteins. EMBO J,1995,14:247-256.
    [52]Block T M, Mehta A S, Blumberg B S, et al. Does rapid oligomerization of hepatitis B envelope proteins play a role in resistance to proteasome degradation and enhance chronicity? DNA Cell Biol,2006,25:165-170.
    [53]Ozaras R, Tabak F, Tahan V, et al. Correlation of quantitative assay of HBsAg and HBV DNA levels during chronic HBV treatment. Dig Dis Sci,2008, 53:2995-2998.
    [54]Milich D, and Liang T J. Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatology,2003,38:1075-1086.
    [55]Hoofnagle J H, and di Bisceglie A M. The treatment of chronic viral hepatitis. N Engl J Med,1997,336:347-356.
    [56]Tong Q S, Zheng L D, Wang L, et al. Downregulation of XIAP expression induces apoptosis and enhances chemotherapeutic sensitivity in human gastric cancer cells. Cancer Gene Ther,2005,12:509-514.
    [57]Tong S P, Li J S, Vitvitski L, et al. Active hepatitis B virus replication in the presence of anti-HBe is associated with viral variants containing an inactive pre-C region. Virology,1990,176:596-603.
    [58]Ou J H. Molecular biology of hepatitis B virus e antigen. J Gastroenterol Hepatol,1997,12:S178-187.
    [59]Choi B H, Park G T, and Rho H M. Interaction of hepatitis B viral X protein and CCAAT/enhancer-binding protein alpha synergistically activates the hepatitis B viral enhancer II/pregenomic promoter. JBiol Chem,1999,274:2858-2865.
    [60]Xu J, Wang J, Deng F, et al. Green tea extract and its major component epigallocatechin gallate inhibits hepatitis B virus in vitro. Antiviral Res,2008, 78:242-249.
    [61]Dienstag J L. Hepatitis B virus infection. N Engl J Med,2008,359:1486-1500.
    [62]Moolla N, Kew M, and Arbuthnot P. Regulatory elements of hepatitis B virus transcription. J Viral Hepat,2002,9:323-331.
    [1]Ghosh S, May M J, and Kopp E B. NF-kappa B and Rel proteins:evolutionarily conserved mediators of immune responses. Annu Rev Immunol,1998, 16:225-260.
    [2]Li Q, and Verma I M. NF-kappaB regulation in the immune system. Nat Rev Immunol,2002,2:725-734.
    [3]Yamamoto Y, and Gaynor R B. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest, 2001,107:135-142.
    [4]Karin M, Cao Y, Greten F R, et al. NF-kappaB in cancer:from innocent bystander to major culprit. Nat Rev Cancer,2002,2:301-310.
    [5]Tao Y, Deng X, Hu Z, et al. [EB virus encoded latent membrane protein 1 modulates the phosphorylation of epidermal growth factor receptor in nasopharyngeal carcinoma cell line]. Zhonghua Zhong Liu Za Zhi,2002, 24:226-229.
    [6]Purcell N H, Yu C, He D, et al. Activation of NF-kappaB by hepatitis B virus X protein through an IkappaB kinase-independent mechanism. Am J Physiol Gastrointest Liver Physiol,2001,280:G669-677.
    [7]Chinenov Y, and Kerppola T K. Close encounters of many kinds:Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene,2001, 20:2438-2452.
    [8]Angel P, and Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta,1991, 1072:129-157.
    [9]Aronheim A, Zandi E, Hennemann H, et al. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol Cell Biol,1997, 17:3094-3102.
    [10]Karin M, Liu Z, and Zandi E. AP-1 function and regulation. Curr Opin Cell Biol, 1997,9:240-246.
    [11]Wisdom R. AP-1:one switch for many signals. Exp Cell Res,1999, 253:180-185.
    [12]Evan G I, Wyllie A H, Gilbert C S, et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell,1992,69:119-128.
    [13]Qin X Q, Livingston D M, Kaelin W G, Jr., et al. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci U S A,1994,91:10918-10922.
    [14]Wu X, and Levine A J. p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA,1994,91:3602-3606.
    [15]Estus S, Zaks W J, Freeman R S, et al. Altered gene expression in neurons during programmed cell death:identification of c-jun as necessary for neuronal apoptosis. J Cell Biol,1994,127:1717-1727.
    [16]Ham J, Babij C, Whitfield J, et al. A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron,1995,14:927-939.
    [17]Le-Niculescu H, Bonfoco E, Kasuya Y, et al. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol Cell Biol,1999,19:751-763.
    [18]Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science,1995,270:1326-1331.
    [19]Takaoka A, Hayakawa S, Yanai H, et al. Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature, 2003,424:516-523.
    [20]Munoz-Fontela C, Macip S, Martinez-Sobrido L, et al. Transcriptional role of p53 in interferon-mediated antiviral immunity. J Exp Med,2008, 205:1929-1938.
    [21]Yokozaki H, and Tahara E. [An overview of research on p53 tumor suppressor gene]. Gan To Kagaku Ryoho,1997,24:2181-2186.
    [22]Sharrocks A D. Complexities in ETS-domain transcription factor function and regulation:lessons from the TCF (ternary complex factor) subfamily. The Colworth Medal Lecture. Biochem Soc Trans,2002,30:1-9.
    [23]Shaw P E, and Saxton J. Ternary complex factors:prime nuclear targets for mitogen-activated protein kinases. Int J Biochem Cell Biol,2003,35:1210-1226.
    [24]Ron D, and Habener J F. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev,1992, 6:439-453.
    [25]Ubeda M, Wang X Z, Zinszner H, et al. Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element. Mol Cell Biol, 1996,16:1479-1489.
    [26]Wang X Z, and Ron D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science,1996, 272:1347-1349.
    [27]Matsumoto M, Minami M, Takeda K, et al. Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. FEBS Lett, 1996,395:143-147.
    [28]Maytin E V, Ubeda M, Lin J C, et al. Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and-independent mechanisms. Exp Cell Res,2001,267:193-204.
    [29]Barone M V, Crozat A, Tabaee A, et al. CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of Gl/S arrest. Genes Dev,1994,8:453-464.
    [30]Xu C, Bailly-Maitre B, and Reed J C. Endoplasmic reticulum stress:cell life and death decisions. J Clin Invest,2005,115:2656-2664.
    [31]Shirakawa K, Maeda S, Gotoh T, et al. CCAAT/enhancer-binding protein homologous protein (CHOP) regulates osteoblast differentiation. Mol Cell Biol, 2006,26:6105-6116.
    [32]Endo M, Mori M, Akira S, et al. C/EBP homologous protein (CHOP) is crucial for the induction of caspase-11 and the pathogenesis of lipopolysaccharide-induced inflammation. J Immunol,2006,176:6245-6253.
    [33]Lee C Q, Yun Y D, Hoeffler J P, et al. Cyclic-AMP-responsive transcriptional activation of CREB-327 involves interdependent phosphorylated subdomains. EMBO J,1990,9:4455-4465.
    [34]Gonzalez G A, Menzel P, Leonard J, et al. Characterization of motifs which are critical for activity of the cyclic AMP-responsive transcription factor CREB. Mol Cell Biol,1991,11:1306-1312.
    [35]Mayr B, and Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol,2001, 2:599-609.
    [36]Shaywitz A J, and Greenberg M E. CREB:a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem, 1999,68:821-861.
    [37]Cheng J C, Kinjo K, Judelson D R, et al. CREB is a critical regulator of normal hematopoiesis and leukemogenesis. Blood,2008,111:1182-1192.
    [38]Han J H, Yiu A P, Cole C J, et al. Increasing CREB in the auditory thalamus enhances memory and generalization of auditory conditioned fear. Learn Mem, 2008,15:443-453.
    [39]Jansson D, Ng A C, Fu A, et al. Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2. Proc Natl Acad Sci U S A,2008, 105:10161-10166.
    [40]Yabe N, Tanaka K, and Matsui H. An ethanol-extract of Ampelopsis brevipedunculata (Vitaceae) berries decreases ferrous iron-stimulated hepatocyte injury in culture. JEthnopharmacol,1998,59:147-159.
    [41]Zhang Y S, Zhang Q Y, Li L Y, et al. Simultaneous determination and pharmacokinetic studies of dihydromyricetin and myricetin in rat plasma by HPLC-DAD after oral administration of Ampelopsis grossedentata decoction. J Chromatogr B Analyt Technol Biomed Life Sci,2007,860:4-9.
    [42]Levine A J. p53, the cellular gatekeeper for growth and division. Cell,1997, 88:323-331.
    [43]Yoon C H, Lee E S, Lim D S, et al. PKR, a p53 target gene, plays a crucial role in the tumor-suppressor function of p53. Proc Natl Acad Sci U S A,2009, 106:7852-7857.
    [44]Hsu J W, Huang H C, Chen S T, et al. Ganoderma lucidum Polysaccharides Induce Macrophage-like Differentiation in Human Leukemia THP-1 Cells via Caspase and p53 Activation. Evid Based Complement Alternat Med,2009.
    [45]Marques J T, Rebouillat D, Ramana C V, et al. Down-regulation of p53 by double-stranded RNA modulates the antiviral response. J Virol,2005, 79:11105-11114.
    [46]Casavant N C, Luo M H, Rosenke K, et al. Potential role for p53 in the permissive life cycle of human cytomegalovirus. J Virol,2006,80:8390-8401.
    [47]Royds J A, Hibma M, Dix B R, et al. p53 promotes adenoviral replication and increases late viral gene expression. Oncogene,2006,25:1509-1520.
    [48]Groskreutz D J, Monick M M, Yarovinsky T O, et al. Respiratory syncytial virus decreases p53 protein to prolong survival of airway epithelial cells. J Immunol, 2007,179:2741-2747.
    [49]Nguyen M L, Kraft R M, Aubert M, et al. p53 and hTERT determine sensitivity to viral apoptosis. J Virol,2007,81:12985-12995.
    [50]Dharel N, Kato N, Muroyama R, et al. Potential contribution of tumor suppressor p53 in the host defense against hepatitis C virus. Hepatology,2008, 47:1136-1149.
    [51]Pampin M, Simonin Y, Blondel B, et al. Cross talk between PML and p53 during poliovirus infection:implications for antiviral defense. J Virol,2006, 80:8582-8592.
    [52]Moolla N, Kew M, and Arbuthnot P. Regulatory elements of hepatitis B virus transcription. J Viral Hepat,2002,9:323-331.
    [53]Choi B H, Park G T, and Rho H M. Interaction of hepatitis B viral X protein and CCAAT/ enhancer-binding protein alpha synergistically activates the hepatitis B viral enhancer II/pregenomic promoter. JBiol Chem,1999,274:2858-2865.
    [54]Shamay M, Barak O, Doitsh G, et al. Hepatitis B virus pX interacts with HBXAP, a PHD finger protein to coactivate transcription. J Biol Chem,2002, 277:9982-9988.
    [55]Kramvis A, and Kew M C. The core promoter of hepatitis B virus. J Viral Hepat, 1999,6:415-427.
    [56]Su H, and Yee J K. Regulation of hepatitis B virus gene expression by its two enhancers. Proc Natl Acad Sci USA,1992,89:2708-2712.
    [1]Duraipandiyan V, and Ignacimuthu S. Antibacterial and antifungal activity of Flindersine isolated from the traditional medicinal plant, Toddalia asiatica (L.) Lam. JEthnopharmacol,2009,123:494-498.
    [2]Haque M, Ullah M O, and Nahar K. In vitro antibacterial and cytotoxic activities of different parts of plant Swietenia mahagony. Pak J Biol Sci,2009, 12:599-602.
    [3]Nair R, Kalariya T, and Chanda S. Antibacterial activity of some plant extracts used in folk medicine. JHerb Pharmacother,2007,7:191-201.
    [4]Ghosh A, Das B K, Roy A, et al. Antibacterial activity of some medicinal plant extracts. JNatMed,2008,62:259-262.
    [5]Webster D, Taschereau P, Belland R J, et al. Antifungal activity of medicinal plant extracts; preliminary screening studies. J Ethnopharmacol,2008, 115:140-146.
    [6]White D C. The economic valuation of improved process plant decision support technology. ISA Trans,2007,46:437-442.
    [7]Vain P. Thirty years of plant transformation technology development. Plant Biotechnol J,2007,5:221-229.
    [8]Gao W Y, Jia W, and Xiao P G. [Utilization of spaceflight technology on medicinal plant study]. Zhongguo Zhong Yao Za Zhi,2004,29:611-614.
    [9]王文采.葡萄科的新发现.植物分类学报,1979,17:75.
    [10]陈科力,罗毅,詹亚华.野葡萄根原植物的调查研究.中药材,1996,19:176-177.
    [11]仲锡铜,冯崇华,张薇.中药提取方法的特点与应用.山东医药工业,2002,21:23-26.
    [12]Meer W A, Westby R S, and Sirgo W. Identification and evaluation of botanical extracts by paper chromatography. J Pharm Sci,1962,51:756-759.
    [13]Erler F, Yegen O, and Zeller W. Field evaluation of a botanical natural product against the pear psylla (Homoptera:Psyllidae). J Econ Entomol,2007, 100:66-71.
    [14]陈科力.蛇葡萄根化学成分的研究.中国中药杂志,1996,21:294-295.
    [15]罗毅,陈科力,詹亚华.蛇葡萄根的薄层色谱法鉴别.中药材,2003,26:556-557.
    [16]成清容,陈科力,叶丛进.四种蛇葡萄根类化学成分比较研究.亚太传统医药,2007,3:55-56.
    [17]陈科力,陈艳明.蛇葡萄根中鞣质的分析及测定.湖北中医杂志,1997,19:46-47.
    [1]Chantrill B H, Coulthard C E, Dickinson L, et al. The action of plant extracts on a bacteriophage of Pseudomonas pyocyanea and on influenza A virus. J Gen Microbiol,1952,6:74-84.
    [2]Debiaggi M, Pagani L, Cereda P M, et al. Antiviral activity of Chamaecyparis lawsoniana extract:study with herpes simplex virus type 2. Microbiologica, 1988,11:55-61.
    [3]Asres K, and Bucar F. Anti-HIV activity against immunodeficiency virus type 1 (HIV-Ⅰ) and type Ⅱ (HIV-Ⅱ) of compounds isolated from the stem bark of Combretum molle. Ethiop Med J,2005,43:15-20.
    [4]Vermani K, and Garg S. Herbal medicines for sexually transmitted diseases and AIDS. JEthnopharmacol,2002,80:49-66.
    [5]Kwon D H, Kwon H Y, Kim H J, et al. Inhibition of hepatitis B virus by an aqueous extract of Agrimonia eupatoria L. Phytother Res,2005,19:355-358.
    [6]Huang K L, Lai Y K, Lin C C, et al. Inhibition of hepatitis B virus production by Boehmeria nivea root extract in HepG2 2.2.15 cells. World J Gastroenterol, 2006,12:5721-5725.
    [7]Kotwal G J, Kaczmarek J N, Leivers S, et al. Anti-HIV, anti-poxvirus, and anti-SARS activity of a nontoxic, acidic plant extract from the Trifollium species Secomet-V/anti-vac suggests that it contains a novel broad-spectrum antiviral. Ann N YAcad Sci,2005,1056:293-302.
    [8]Serkedjieva J. Influenza virus variants with reduced susceptibility to inhibition by a polyphenol extract from Geranium sanguineum L. Pharmazie,2003, 58:53-57.
    [9]Webster D, Taschereau P, Lee T D, et al. Immunostimulant properties of Heracleum maximum Bartr. J Ethnopharmacol,2006,106:360-363.
    [10]Chiang L C, Chiang W, Chang M Y, et al. In vitro cytotoxic, antiviral and immunomodulatory effects of Plantago major and Plantago asiatica. Am J Chin Med,2003,31:225-234.
    [11]Barak V, Halperin T, and Kalickman I. The effect of Sambucol, a black elderberry-based, natural product, on the production of human cytokines:I. Inflammatory cytokines. Eur Cytokine Netw,2001,12:290-296.
    [12]Pompei R, Flore O, Marccialis M A, et al. Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature,1979,281:689-690.
    [13]Ooi L S, Sun S S, and Ooi V E. Purification and characterization of a new antiviral protein from the leaves of Pandanus amaryllifolius (Pandanaceae). Int JBiochem Cell Biol,2004,36:1440-1446.
    [14]Ye Y M, Lee S K, Kim S H, et al. Changes of serum cytokines after the long term immunotherapy with Japanese hop pollen extracts. J Korean Med Sci, 2006,21:805-810.
    [15]Buckwold V E, Wilson R J, Nalca A, et al. Antiviral activity of hop constituents against a series of DNA and RNA viruses. Antiviral Res,2004, 61:57-62.
    [16]Abad M J, Guerra J A, Bermejo P, et al. Search for antiviral activity in higher plant extracts. Phytother Res,2000,14:604-607.
    [17]Zheng X L, and Xing F W. Ethnobotanical study on medicinal plants around Mt.Yinggeling, Hainan Island, China. J Ethnopharmacol,2009,124:197-210.
    [18]Yang X F, Wang Y L, and Xu W R. [Reviews on antiviral activity of chemical constituents from plants]. Zhongguo Zhong Yao Za Zhi,2008,33:100-104.
    [19]Yip L, Pei S, Hudson J B, et al. Screening of medicinal plants from Yunnan Province in southwest China for antiviral activity. J Ethnopharmacol,1991, 34:1-6.
    [20]Esimone C O, Ofokansi K C, Adikwu M U, et al. In vitro evaluation of the antiviral activity of extracts from the lichen Parmelia perlata (L.) Ach. against three RNA viruses. J Infect Dev Ctries,2007,1:315-320.
    [21]Bhanuprakash V, Hosamani M, Balamurugan V, et al. In vitro antiviral activity of plant extracts on goatpox virus replication. Indian J Exp Biol,2008, 46:120-127.
    [22]Wang H, Ooi E V, and Ang P O, Jr. Antiviral activities of extracts from Hong Kong seaweeds. J Zhejiang Univ Sci B,2008,9:969-976.
    [23]Yarmolinsky L, Zaccai M, Ben-Shabat S, et al. Antiviral activity of ethanol extracts of Ficus binjamina and Lilium candidum in vitro. NBiotechnol,2009, 26:307-313.
    [24]Siow Y L, Gong Y, Au-Yeung K K, et al. Emerging issues in traditional Chinese medicine. Can JPhysiol Pharmacol,2005,83:321-334.
    [25]Vaidya A B, and Antarkar V D. New drugs from medicinal plants: opportunities and approaches. J Assoc Physicians India,1994,42:221-222, 227-228.
    [26]Unny R, Chauhan A K, Joshi Y C, et al. A review on potentiality of medicinal plants as the source of new contraceptive principles. Phytomedicine,2003, 10:233-260.
    [27]Konowalchuk J, and Speirs J I. Antiviral effect of apple beverages. Appl Environ Microbiol,1978,36:798-801.
    [28]Konowalchuk J, and Speirs J I. Antiviral effect of commercial juices and beverages. Appl Environ Microbiol,1978,35:1219-1220.
    [29]Kurokawa M, Ohyama H, Hozumi T, et al. Assay for antiviral activity of herbal extracts using their absorbed sera. Chem Pharm Bull (Tokyo),1996, 44:1270-1272.
    [30]Kudi A C, and Myint S H. Antiviral activity of some Nigerian medicinal plant extracts. JEthnopharmacol,1999,68:289-294.
    [31]Babbar O P, Chowdhury B L, Singh M P, et al. Nature of antiviral activity detected in some plant extracts screened in cell cultures infected with vaccinia & Ranikhet disease viruses. Indian JExp Biol,1970,8:304-312.
    [32]Glatthaar-Saalmuller B, Sacher F, and Esperester A. Antiviral activity of an extract derived from roots of Eleutherococcus senticosus. Antiviral Res,2001, 50:223-228.
    [33]Karagoz A, Arda N, Goren N, et al. Antiviral activity of Sanicula europaea L. extracts on multiplication of human parainfluenza virus type 2. Phytother Res, 1999,13:436-438.
    [34]Karagoz A, Onay E, Arda N, et al. Antiviral potency of mistletoe (Viscum album ssp. album) extracts against human parainfluenza virus type 2 in Vero cells. Phytother Res,2003,17:560-562.
    [35]Kott V, Barbini L, Cruanes M, et al. Antiviral activity in Argentine medicinal plants. JEthnopharmacol,1999,64:79-84.
    [36]Abad M J, Bermejo P, Sanchez Palomino S, et al. Antiviral activity of some South American medicinal plants. Phytother Res,1999,13:142-146.
    [37]Kaij A K M, Amoros M, Chulia A J, et al. Screening of in vitro antiviral activity from Brittany plants, specially from Centaurea nigra L. (Asteraceae). J Pharm Belg,1991,46:325-326.
    [38]Ahmad A, Davies J, Randall S, et al. Antiviral properties of extract of Opuntia streptacantha. Antiviral Res,1996,30:75-85.
    [39]Rajbhandari M, Wegner U, Julich M, et al. Screening of Nepalese medicinal plants for antiviral activity. J Ethnopharmacol,2001,74:251-255.
    [40]De Clercq E. Emerging anti-HIV drugs. Expert Opin Emerg Drugs,2005, 10:241-273.
    [41]Boyd M R, Gustafson K R, McMahon J B, et al. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120:potential applications to microbicide development. Antimicrob Agents Chemother,1997,41:1521-1530.
    [42]Witvrouw M, Fikkert V, Hantson A, et al. Resistance of human immunodeficiency virus type 1 to the high-mannose binding agents cyanovirin N and concanavalin A. J Virol,2005,79:7777-7784.
    [43]Esser M T, Mori T, Mondor I, et al. Cyanovirin-N binds to gp120 to interfere with CD4-dependent human immunodeficiency virus type 1 virion binding, fusion, and infectivity but does not affect the CD4 binding site on gp120 or soluble CD4-induced conformational changes in gp120. J Virol,1999, 73:4360-4371.
    [44]Barrientos L G, O'Keefe B R, Bray M, et al. Cyanovirin-N binds to the viral surface glycoprotein, GP1,2 and inhibits infectivity of Ebola virus. Antiviral Res,2003,58:47-56.
    [45]Kitamura K, Honda M, Yoshizaki H, et al. Baicalin, an inhibitor of HIV-1 production in vitro. Antiviral Res,1998,37:131-140.
    [46]Li B Q, Fu T, Dongyan Y, et al. Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem Biophys Res Commun,2000,276:534-538.
    [47]Wang Q, Wang Y T, Pu S P, et al. Zinc coupling potentiates anti-HIV-1 activity of baicalin. Biochem Biophys Res Commun,2004,324:605-610.
    [48]Zhang X, Tang X, and Chen H. Inhibition of HIV replication by baicalin and S. baicalensis extracts in H9 cell culture. Chin Med Sci J,1991,6:230-232.
    [49]Huang L, and Chen C H. Molecular targets of anti-HIV-1 triterpenes. Curr Drug Targets Infect Disord,2002,2:33-36.
    [50]Fu M, Ng T B, Jiang Y, et al. Compounds from rose (Rosa rugosa) flowers with human immunodeficiency virus type 1 reverse transcriptase inhibitory activity. JPharm Pharmacol,2006,58:1275-1280.
    [51]Kostova I. Coumarins as inhibitors of HIV reverse transcriptase. Curr HIV Res, 2006,4:347-363.
    [52]Woradulayapinij W, Soonthornchareonnon N, and Wiwat C. In vitro HIV type 1 reverse transcriptase inhibitory activities of Thai medicinal plants and Canna indica L. rhizomes. J Ethnopharmacol,2005,101:84-89.
    [53]Yu D, Wild C T, Martin D E, et al. The discovery of a class of novel HIV-1 maturation inhibitors and their potential in the therapy of HIV. Expert Opin Investig Drugs,2005,14:681-693.
    [54]Park J C, Kim S C, Choi M R, et al. Anti-HIV protease activity from rosa family plant extracts and rosamultin from Rosa rugosa. J Med Food,2005, 8:107-109.
    [55]Hussein G, Miyashiro H, Nakamura N, et al. Inhibitory effects of Sudanese plant extracts on HIV-1 replication and HIV-1 protease. Phytother Res,1999, 13:31-36.
    [56]Bedows E, and Hatfield G M. An investigation of the antiviral activity of Podophyllum peltatum. J Nat Prod,1982,45:725-729.
    [57]Yang C M, Cheng H Y, Lin T C, et al. The in vitro activity-of geraniin and 1,3,4,6-tetra-O-galloyl-beta-D-glucose isolated from Phyllanthus urinaria against herpes simplex virus type 1 and type 2 infection. J Ethnopharmacol, 2007,110:555-558.
    [58]Tolo F M, Rukunga G M, Muli F W, et al. Anti-viral activity of the extracts of a Kenyan medicinal plant Carissa edulis against herpes simplex virus. J Ethnopharmacol,2006,104:92-99.
    [59]Cochran K W, Nishikawa T, and Beneke E S. Botanical sources of influenza inhibitors. Antimicrob Agents Chemother (Bethesda),1966,6:515-520.
    [60]May G, and Willuhn G [Antiviral effect of aqueous plant extracts in tissue culture]. Arzneimittelforschung,1978,28:1-7.
    [61]Mothana R A, Mentel R, Reiss C, et al. Phytochemical screening and antiviral activity of some medicinal plants from the island Soqotra. Phytother Res,2006, 20:298-302.
    [62]Pantev A, Ivancheva S, Staneva L, et al. Biologically active constituents of a polyphenol extract from Geranium sanguineum L. with anti-influenza activity. Z Naturforsch C,2006,61:508-516.
    [63]Prajoubklang A, Sirithunyalug B, Charoenchai P, et al. Bioactive deoxypreussomerins and dimeric naphthoquinones from Diospyros ehretioides fruits:deoxypreussomerins may not be plant metabolites but may be from fungal epiphytes or endophytes. Chem Biodivers,2005,2:1358-1367.
    [64]Prahoveanu E, Esanu V, Anton G, et al. Prophylactic effect of a Beta vulgaris extract on experimental influenza infection in mice. Virologie,1986, 37:121-123.
    [65]Ivanova E, Toshkova R, and Serkedjieva J. A plant polyphenol-rich extract restores the suppressed functions of phagocytes in influenza virus-infected mice. Microbes Infect,2005,7:391-398.
    [66]Wang X, Jia W, Zhao A, et al. Anti-influenza agents from plants and traditional Chinese medicine. Phytother Res,2006,20:335-341.
    [67]Wang M, Cheng H, Li Y, et al. Herbs of the genus Phyllanthus in the treatment of chronic hepatitis B:observations with three preparations from different geographic sites. JLab Clin Med,1995,126:350-352.
    [68]Ott M, Thyagarajan S P, and Gupta S. Phyllanthus amarus suppresses hepatitis B virus by interrupting interactions between HBV enhancer I and cellular transcription factors. Eur J Clin Invest,1997,27:908-915.
    [69]Lee C D, Ott M, Thyagarajan S P, et al. Phyllanthus amarus down-regulates hepatitis B virus mRNA transcription and replication. Eur J Clin Invest,1996, 26:1069-1076.
    [70]Lam W Y, Leung K T, Law P T, et al. Antiviral effect of Phyllanthus nanus ethanolic extract against hepatitis B virus (HBV) by expression microarray analysis. J Cell Biochem,2006,97:795-812.
    [71]Niu J Z, Wang Y Y, Qiao M, et al. Effect of Phyllanthus amarus on duck hepatitis B virus replication in vivo. JMed Virol,1990,32:212-218.
    [72]Munshi A, Mehrotra R, Ramesh R, et al. Evaluation of anti-hepadnavirus activity of Phyllanthus amarus and Phyllanthus maderaspatensis in duck hepatitis B virus carrier Pekin ducks. JMed Virol,1993,41:275-281.
    [73]Munshi A, Mehrotra R, and Panda S K. Evaluation of Phyllanthus amarus and Phyllanthus maderaspatensis as agents for postexposure prophylaxis in neonatal duck hepatitis B virus infection. J Med Virol,1993,40:53-58.
    [74]Leung K T, Chiu L C, Lam W S, et al. In vitro antiviral activities of Chinese medicinal herbs against duck hepatitis B virus. Phytother Res,2006, 20:911-914.
    [75]Wang W N, Yang X B, Liu H Z, et al. Effect of Oenanthe javanica flavone on human and duck hepatitis B virus infection. Acta Pharmacol Sin,2005, 26:587-592.
    [76]Li Y, Yang Y, Fang L, et al. Anti-hepatitis activities in the broth of Ganoderma lucidum supplemented with a Chinese herbal medicine. Am J Chin Med,2006, 34:341-349.
    [77]Liu J, Manheimer E, Tsutani K, et al. Medicinal herbs for hepatitis C virus infection:a Cochrane hepatobiliary systematic review of randomized trials. Am J Gastroenterol,2003,98:538-544.
    [78]Hussein G, Miyashiro H, Nakamura N, et al. Inhibitory effects of sudanese medicinal plant extracts on hepatitis C virus (HCV) protease. Phytother Res, 2000,14:510-516.
    [79]Jassim S A, and Naji M A. Novel antiviral agents:a medicinal plant perspective. J Appl Microbiol,2003,95:412-427.
    [80]Patrick L. Hepatitis C:epidemiology and review of complementary/alternative medicine treatments. Altern Med Rev,1999,4:220-238.
    [81]Li S Y, Chen C, Zhang H Q, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res,2005, 67:18-23.
    [82]Aquino R, De Simone F, De Tommasi N, et al. New biologically active steroidal and triterpenoid glycosides from medicinal plants. Adv Exp Med Biol, 1996,404:401-414.
    [83]Serkedjieva J, and Hay A J. In vitro anti-influenza virus activity of a plant preparation from Geranium sanguineum L. Antiviral Res,1998,37:121-130.
    [84]Spiff A I, Zabel V, Watson W H, et al. Constituents of West African medicinal plants. XXX. Tridictyophylline, a new morphinan alkaloid from Triclisia dictyophylla. JNat Prod,1981,44:160-165.
    [85]Iwu M M. African medicinal plants in the search for new drugs based on ethnobotanical leads. Ciba Found Symp,1994,185:116-126; discussion 126-119.
    [86]Xing H C, Xu X Y, Liu Z, et al. Down-regulation of CXCR4 expression in MT4 cells by a recombinant vector expressing antisense RNA to CXCR4 and its potential anti-HIV-1 effect. Jpn J Infect Dis,2004,57:91-96.
    [87]Rey F, Barre-Sinoussi F, Schmidtmayerova H, et al. Detection and titration of neutralizing antibodies to HIV using an inhibition of the cytopathic effect of the virus on MT4 cells. J Virol Methods,1987,16:239-249.
    [88]Schaeffer D J, and Krylov V S. Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol Environ Saf,2000,45:208-227.
    [89]Cos P, Hermans N, De Bruyne T, et al. Further evaluation of Rwandan medicinal plant extracts for their antimicrobial and antiviral activities. J Ethnopharmacol,2002,79:155-163.
    [90]Binns S E, Hudson J, Merali S, et al. Antiviral activity of characterized extracts from echinacea spp. (Heliantheae:Asteraceae) against herpes simplex virus (HSV-I). Planta Med,2002,68:780-783.
    [91]Pieroni A. Medicinal plants and food medicines in the folk traditions of the upper Lucca Province, Italy. J Ethnopharmacol,2000,70:235-273.
    [92]Benencia F, and Courreges M C. Antiviral activity of sandalwood oil against herpes simplex viruses-1 and-2. Phytomedicine,1999,6:119-123.
    [93]Salem M L, and Hossain M S. Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int J Immunopharmacol, 2000,22:729-740.
    [94]Yoosook C, Bunyapraphatsara N, Boonyakiat Y, et al. Anti-herpes simplex virus activities of crude water extracts of Thai medicinal plants. Phytomedicine,2000,6:411-419.
    [95]Sakagami H, Kawazoe Y, Komatsu N, et al. Antitumor, antiviral and immunopotentiating activities of pine cone extracts:potential medicinal efficacy of natural and synthetic lignin-related materials (review). Anticancer Res,1991,11:881-888.
    [96]Alche L E, Barquero A A, Sanjuan N A, et al. An antiviral principle present in a purified fraction from Melia azedarach L. leaf aqueous extract restrains herpes simplex virus type 1 propagation. Phytother Res,2002,16:348-352.
    [97]Castilla V, Barquero A A, Mersich S E, et al. In vitro anti-Junin virus activity of a peptide isolated from Melia azedarach L. leaves. Int J Antimicrob Agents, 1998,10:67-75.
    [98]Wachsman M B, Castilla V, and Coto C E. Inhibition of foot and mouth disease virus (FMDV) uncoating by a plant-derived peptide isolated from Melia azedarach L leaves. Arch Virol,1998,143:581-590.
    [99]Wachsman M B, Damonte E B, Coto C E, et al. Antiviral effects of Melia azedarach L. leaves extracts on Sindbis virus-infected cells. Antiviral Res, 1987,8:1-12.
    [100]Wu W, Liang Z, Zhao Z, et al. Direct analysis of alkaloid profiling in plant tissue by using matrix-assisted laser desorption/ionization mass spectrometry. JMass Spectrom,2007,42:58-69.
    [101]Serkedjieva J. Antiinfective activity of a plant preparation from Geranium sanguineum L. Pharmazie,1997,52:799-802.
    [102]Koprowski H, and Yusibov V. The green revolution:plants as heterologous expression vectors. Vaccine,2001,19:2735-2741.
    [103]Thanavala Y, Mahoney M, Pal S, et al. Immunogenicity in humans of an edible vaccine for hepatitis B. Proc Natl Acad Sci U S A,2005, 102:3378-3382.
    [104]Ma J K, Drake P M, and Christou P. The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet,2003,4:794-805.
    [105]Pak E, Esrason K T, and Wu V H. Hepatotoxicity of herbal remedies:an emerging dilemma. Prog Transplant,2004,14:91-96.
    [106]Schiano T D. Hepatotoxicity and complementary and alternative medicines. Clin Liver Dis,2003,7:453-473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700