用户名: 密码: 验证码:
甘草酸对CYP450酶的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:细胞色素P450酶系在人体内参与许多内源性和外源性物质的生物转化。药物对细胞色素P450酶活性的影响,是导致药物相互作用的主要原因之一。甘草及甘草酸制剂的应用日益增长,和其它临床药物合用的可能性增加。现有的研究表明甘草及甘草酸对动物体内CYP450酶的影响,但是尚无甘草及甘草酸对人体内CYP450酶的作用的研究报道。有研究证实甘草水溶性提取物可以激动人及动物PXR,因此对由PXR调控的代谢酶必然会产生影响,此外由于CYP450酶的种系差异的存在,因此探明甘草及甘草酸对人体内CYP450酶的影响,避免由P450酶影响而介导的药物相互作用是必要而具重要意义的。
     目的:检测甘草的主要成分甘草酸对人体内CYP3A、CYP1A2、CYP2E1、CYP2D6活性的影响。
     方法:应用COCKTAIL方法及单点法在人体内初步筛查甘草酸对人体内CYP3A、CYP1A2、CYP2E1、CYP2D6活性的影响。征集12名健康男性志愿者,加入双周期交叉实验,每周期受试者接受甘草酸或安慰剂处理14天,第15天同时服用探药咪达唑仑、咖啡因、氯唑沙宗和美托洛尔,采集单点外周静脉血及收集尿样来检测各时间点相应的药物及相应代谢产物的浓度。
     结果:服用甘草酸两周使1小时血浆中1-羟基咪达唑仑和咪达唑仑的比值显著升高(p=0.021),但是却显著降低6小时17X/137X的浓度之比(p=0.004)以及4小时6-羟基氯唑沙宗/氯唑沙宗的比值(p=0.021);甘草酸处理对0-8小时尿样中美托洛尔与α-羟基美托洛尔浓度的比值没有影响(p=0.248),
     结论:口服甘草酸14天能够诱导体内CYP3A酶活性;对CYP1A2、CYP2E1酶活性有抑制作用。甘草酸的服用对CYP2D6酶活性没有明显影响。
     背景:甘草及甘草酸的应用日益广泛,尤其现代用于慢性肝炎的治疗,剂量增加及疗程延长,其与其他药物合用的机会增加,但是其对人体内CYP450酶的影响却未见报道。我们第一部分用鸡尾酒法和单点法研究显示甘草酸能够诱导CYP3A酶,但是由于单点法的限制,甘草酸对CYP3A的诱导程度以及对咪达唑仑的药代动力学参数的影响和可能发生的临床药物相互作用还是未知的。
     目的:应用CYP3A最经典探药咪达唑仑进一步探讨甘草酸对人体内CYP3A酶活性的影响,并观察甘草酸对咪达唑仑药代动力学的影响及其可能的甘草酸与咪达唑仑的药物相互作用。
     方法:征集16名健康男性志愿者,加入双周期交叉实验,每周期受试者接受甘草酸或安慰剂处理14天,第15天同时服用探药咪达唑仑7.5mg,收集O-12小时血样,LC-MS/MS方法检测血浆中咪达唑仑及其代谢产物1-羟基咪达唑仑的药物浓度。
     结果:服用甘草酸两周使咪达唑仑Cmax显著降低12%(p<0.01;95%CI:-28.86 to 4.03);相应的咪达唑仑AUC0-∞显著降低by 20.2%(p<0.05;95%CI:-31.76 to-8.66)。而1-羟基咪达唑仑Cmax明显升高19.1%(p<0.01;95%CI:10.6 to27.7);1-羟基咪达唑仑AUC0-∞显著增加20.3%(p<0.01;95%CI:11.0 to 29.6)。对咪达唑仑的药代动力学参数AUC0-∞和Cmax进行生物等效性分析,其90%可信区间均超出0.8-1.25的生物等效范围.
     结论:长期(14天)的甘草酸的服用诱导体内CYP3A酶活性,使体内咪达唑仑的药代动力学参数发生变化,生物等效性分析超出等效范围具有临床意义。
     背景:传统中药甘草的主要成分有甘草酸、甘草次酸、甘草黄酮、多羟基酚等成分。水溶性提取物中甘草酸是主要成分,有少量甘草次酸。但甘草酸口服后主要经肠道酶作用水解转化为甘草次酸吸收入血。我们前面临床实验证实口服甘草酸能够诱导体内CYP3A活性,抑制CYP1A2及CYP2E1活性,而对CYP2D6活性无影响,为了探讨其作用机制,我们首先拟在肝微粒体水平探讨甘草酸及其水解产物甘草次酸对CYP450酶的直接作用效应。
     目的:研究甘草酸及甘草次酸对人肝微粒体中CYP 1 A2、CYP3A4、CYP2C19、CYP2E1、CYP2D6酶活性的影响。
     方法:用体外实验人肝微粒体孵化体系的方法,分别以咖啡因、咪哒唑仑、奥美拉唑、氯唑沙宗、美托洛尔为探针药,利用HPLC方法测定探针药与相应代谢产物的浓度,以代谢产物的产率为酶活性指标,评估甘草酸及甘草次酸在人肝微粒体孵化体系中对CYP1A2、CYP3A、CYP2C19、CYP3A4、CYP2D6、CYP2E1酶活性的影响。为揭开甘草酸对人体内P450酶的作用机制提供有益信息。
     结果:在人肝微粒体反应体系中,甘草酸(0-200μM)对CYP1A2、CYP3A4、CYP2C19、CYP2E1、CYP2D6酶活性均无明显影响。同时观察到甘草次酸自10μM浓度开始对CYP3A介导的l羟咪达唑仑的生成和CYP3A4介导的奥美拉唑磺化作用均有明显抑制效应,且随着甘草次酸浓度的升高,对酶的抑制作用加强,其IC50值分别是32.94±9.51、141.28±22.46μM。甘草次酸自25μM浓度开始抑制CYP2C19介导的奥美拉唑羟化作用,IC50值为176.35±22.46μM。酶促动力学分析,甘草次酸对CYP3A催化的咪达唑仑1’羟化作用的抑制类型为非竞争性抑制,抑制常数为7.38±0.93μM。
     结论:甘草酸在肝微粒体水平,对CYP1A2、CYP3A、CYP2C19、CYP3A4、CYP2D6、CYP2E 1酶活性无明显影响。甘草次酸非竞争性抑制CYP3A介导的咪达唑仑1位羟化活性,对CYP3A4介导的奥美拉唑磺化和CYP2C19介导的羟化有明显的抑制作用。
     背景:以往研究表明甘草能够提高啮齿动物肝脏中多种CYP450酶的活性,并且甘草水溶性提取物是人PXR激动剂。但是甘草中何种成分对CYP450酶产生影响及何种成分激动PXR及其分子机制都不清楚。与此相一致的,我们前面的体内实验表明口服甘草酸会引起人体内CYP3A酶活性的增加,而肝微粒体实验却表明甘草次酸非竞争性抑制CYP3A4酶。为进一步探讨其体内诱导机制,我们拟从核受体PXR、CAR的调控角度来分析,观察甘草酸或甘草次酸是否通过核受体影响CYP3A基因表达而使体内酶活性增加。肝微粒体实验观察到甘草次酸抑制CYP2C19酶活性,为了正确预测口服甘草酸对体内CYP2C19活性的影响,我们也观察甘草酸或甘草次酸是否通过核受体对CYP2C19的调控产生影响。
     目的:观察甘草酸及甘草次酸是否通过孕烷核受体PXR或激活组成性核受体CAR途径,诱导细胞色素CYP3A4、CYP2C19的转录表达。
     方法:在人肝肿瘤细胞株HepG2细胞和人结肠癌细胞株Caco2细胞中,用瞬时转染报告基因试验检测甘草酸及甘草次酸对核受体PXR或CAR介导的CYP3A4、CYP2C19的转录调节作用。同时应用Real-time PCR检验甘草次酸对高表达PXR/RXRa或CAR/RXRa的肠道上皮肿瘤细胞株中CYP3A4mRNA表达的影响,并应用LC-MS/MS方法检测甘草次酸引起的CYP3A4活性的变化。为揭开并预测甘草及甘草酸对人体内CYP3A4及CYP2C19的影响和作用机制提供有益信息。
     结果:在瞬时转染的报告基因试验中,甘草酸不通过核受体PXR或CAR对CYP3A4或CYP2C19的转录表达产生影响。而甘草次酸在超高表达PXR和RXRa的肠道腺癌细胞株Caco2细胞中,能够引起CYP3A4的转录表达增加,而在超高表达PXR和RXRa的肝脏的肝癌细胞株HepG2细胞中,甘草次酸没有表现诱导CYP3A4转录表达的作用。无论在肝脏还是肠道肿瘤细胞株,甘草次酸均表现通过CAR诱导CYP3A4的转录表达。在同样的瞬时转染的报告基因检测系统中,无论是瞬时转染高表达的PXR还是CAR,甘草次酸都没有表现出对CYP2C19的诱导效应。Real-time PCR的实验结果与报告基因检测结果相一致。以1-羟咪达唑仑的生成率进行对CYP3A4活性检测,在转染了CAR的结肠癌细胞株LS174T,可以看到甘草次酸使CYP3A4的活性增加。
     结论:甘草酸没有通过核受体PXR、CAR对CYP3A4和CYP2C19的转录表达产生影响。甘草次酸通过CAR和/或PXR途径,主要在肠道提高CYP3A4的转录活性。
     背景:甘草是一种天然药物,因为有着多种药物效应而被临床广泛应用,随着与临床常用药物合用的情况日益增加,它们之间产生药物相互作用的几率也逐渐增高。甘草酸是甘草的主要成分,由于它具备保肝抗炎、抗病毒、抗氧化等作用被临床广泛应用,如常用作各种慢性肝炎、支气管炎和艾滋病的辅助治疗,因而甘草酸制剂不可避免地需要长期大剂量的服用。甘草酸对体内CYP450酶的影响值得关注。我们先前应用COCKTAIL方法发现口服甘草酸制剂对体内CYP3A酶活性具有诱导作用,并且报告基因检测发现甘草次酸通过核受体使CYP3A4转录活性增加,但甘草酸制剂的服用是否影响临床药物药代动力学而影响治疗尚未明确。奥美拉唑为质子泵抑制剂,临床常用于治疗消化性溃疡等疾病,在体内主要由CYP2C19和CYP3A4介导代谢为5-羟奥美拉唑和奥美拉唑砜,因此考察两者合用可能发生的药物相互作用对临床合理用药具有一定的指导意义。本课题选取奥美拉唑为代表,观察在临床合并治疗时,甘草酸对治疗药物与其代谢产物药代动力学的影响。
     目的:用CYP3A4和CYP2C19的共同探药奥美拉唑观察人体内甘草酸对CYP2C19和CYP3A4酶活性的影响,判断其效应与CYP2C19基因型之间的相关性,并观察甘草酸与奥美拉唑的中西药相互作用。
     方法:在297名无血缘关系汉族男性健康志愿者中分别采用聚合酶链式反应-限制性片断长度多态性(Polymerase Chain Reaction-Restriction Fragment Length Polymorphism, PCR-RFLP)方法检测CYP2C19*2或*3基因突变。选取健康受试者18人(野生型CYP2C19*1/*1,n=6;突变杂合子CYP2C19*1/*2or*3,n=6;突变纯合子CYP2C19*2/*2or*3,n=6)参加本次平行开放的两阶段随机交叉临床试验。每个阶段受试者服用甘草酸制剂(甘草甜素片)或安慰剂150mg,每天2次,连续服用14天,第15天受试者口服20mg奥美拉唑胶囊1粒,然后采集0-12小时外周静脉血。用高效液相色谱法测定各时间点血浆中奥美拉唑和代谢产物浓度。
     结果:连续服用甘草酸14天后,血药奥美拉唑浓度显著降低,其代谢产物5-羟奥美拉唑血药浓度无明显变化而奥美拉唑砜血药浓度显著升高。奥美拉唑与5-羟奥美拉唑的比值在各基因型受试者中无显著变化。奥美拉唑与奥美拉唑砜的比值在CYP2C19*1/*1受试者中降低了43.93±13.56%(p=0.009),在CYP2C19*1/*2中降低了44.85±14.84%(p=0.002),在CYP2C19*2/*2中降低36.16±7.52%(p<0.001)。奥美拉唑与奥美拉唑砜的比值在不同基因型中的降低程度无显著差异
     结论:甘草酸对CYP2C19介导的羟化活性没有显著影响,但能够诱导CYP3A4介导的奥美拉唑的磺化,导致奥美拉唑的血药浓度降低。
BACKGROUND:Cytochrome P450s superfamily expressed widely in organisms are known to play an important role in the biotransformation of many endogenous and exogenous substances. Inhibition or induction of cytochrome P450 isozymes is one of the major causes for clinical drug-drug interactions. Licorice and glycyrrhizin is widely used in the treatment of various diseases such as chronic hepatitis. Although licorice and glycyrrhizin are widely used, there is little study on its effects on CYP450 in human beings. To investigate medicines effect on CYP450s activities has important clinical significance, it helps with clinical rational administration and reducing the drug adverse reaction inducing by drug interactions. Glycyrrhizin obviously affects the activities of CYP450s in rat and mouths. However, as our knowledge,This is the first study to investigate the effects of glycyrrhizin on CYP450s in vivo.
     OBJECTIVE:This study was designed to investigate the effects of glycyrrhizin on CYP3A, CYP1A2, CYP2E1, CYP2D6 activities in humans. The effect of glycyrrhizin on CYP activity in vivo was assessed by a four-drug cocktail approach useing CYP probe drugs midazolam(CYP3A), caffeine(CYP1A2), chlorzoxazone(CYP2E1) and metoprolol(CYP2D6).
     METHODS:Twelve healthy adult men were enrolled in a 2-phase randomized crossover design. In each phase the volunteers received placebo or glycyrrhizin for 14 days.Then probe drug cocktails of midazolam, caffeine, chlorzoxazone and metoprolol were administered to determine in vivo CYP activities.
     RESULTS:Glycyrrhizin administration significantly increased 1-hydroxymidazolam/midazolam serum ratios (1 hour sample) (p=0.021), Conversely, the plasma paraxanthine/caffeine ratios and 6-hydroxychlorzoxazone/chlorzoxazone plasma ratios were both significantly decreased by glycyrihizin treatment compared to placebo treatment (p=0.004, p=0.021).14 days glycyrrhizin treatment did not alter the urinary metoprolol/a-hydroxymetoprolol ratio (the index of CYP2D6 activity) (p= 0.248).
     CONCLUSIONS:By utilizing single time-point phenotypic ratios, administration of glycyrrhizin resulted in an induction of CYP3A and a significant inhibit of CYP1A2 and CYP2E1 activity, and showed no significant effects on CYP2D6.
     BACKGROUND:Glycyrrhizin is a major ingredient of licorice which is widely used in the treatment of various diseases such as chronic hepatitis. Licorice or glycyrrhizin have been shown to alter the activity of CYP3A in rodents. The influence of glycyrrhizin on CYP3A has not been elucidated in humans. This is the first report showing the effects of glycyrrhizin on CYP3A enzyme activity in humans.
     OBJECTIVE:To investigate the effects of repeated glycyrrhizin ingestion on the oral pharmacokinetics of midazolam, a probe drug for CYP3A activity in humans. METHODS:Sixteen healthy adult male subjects were enrolled in a 2-phase randomized crossover design. In each phase the volunteers received placebo or glycyrrhizin for 14 days. On the 15th day, midazolam was administered as a probe drug to determine in vivo CYP3 A activity in vivo.
     RESULTS:Glycyrrhizin administration decreased midazolam maximum plasma concentration(Cmax) by 12.4% (p<0.01; 95%CI:-28.86 to 4.03) and midazolam AUC0-∞by 20.2% (p<0.05; 95%CI:-31.76 to-8.66).Conversely, 1'-hydroxymidazolam Cmax was increased by 19.1% (p<0.01; 95%CI:10.6 to 27.7) and 1'-hydroxymidazolam AUC0-∞was increased by 20.3% (p<0.01; 95%CI:11.0 to 29.6) with glycyrrihizin. For AUC0-∞and Cmax of midzolam, the 90% CI for the geometric mean ratio of glycyrrhizin over placebo were both out of the no-effect boundaries of 0.80-1.25.
     CONCLUSIONS:Administration of glycyrrhizin resulted in a modest induction of CYP3A with clinically relevant according to the bioequivalence analysis.
     BACKGROUND:Traditional medicine licorice has been used as a medicinal plant for thousands of years.The active component of licorice, glycyrrhizin, is hydrolyzed in vivo to glycyrrhetinic acid, which is responsible for most of its pharmacological properties. Our previous clinical trial has shown that glycyrrhizin administration exerted inhibitive effects on the activities of CYP1A2 and CYP2E1, and inductive effect on CYP3A activity. However, the mechanism for glycyrrhizin's above effects has not been clarified.
     OBJECTIVE:To find out whether glycyrrhizin and glycyrrhetic acid have effect on CYPs activities including CYP1A2, CYP3A4, CYP2C19, CYP2E1, and CYP2D6 in pooled human liver microsomes.
     METHODS:The in vitro effects of glycyrrhizin and glycyrrhetic acid on CYP1A2 (caffeine deethylation), CYP3A (midazolam 1-hydroxylation), CYP2C19 (omeprazole 5'-hydroxylation), CYP3A4(omeprazole sulfoxidation), CYP2D6 (metoprololα-hydroxylation), and CYP2E1 (chlorzoxazone 6-hydroxylation) activities were examined using pooled human liver microsomes. The concentrations of the probe drugs and their metabolites were determined by HPLC and LC-MS/MS.
     RESULTS:With concentrations up to 200μM, Glycyrrhizin showed no appreciable effect on CYP1A2, CYP3A, CYP2C19,CYP3A4, CYP2E1, and CYP2D6 activities. Glycyrrhetic acid potent inhibited CYP3A(midazolam 1-hydroxylation) activity with a IC50 value of 32.94±9.51μM. Glycyrrhetic acid exhibited somewhat smaller inhibitory effects on CYP2C19 (omeprazole 5'-hydroxylation) and CYP3A4(omeprazole sulfoxidation) activities, with IC50 values of 176.35±22.46μM and 141.28±22.46μM, respectively. Km and Vmax for midazolam 1'-hydroxylation by microsomes were 3.59±0.85μM and 2.78±0.18 nmol/min.mg, respectively. Formation of 1'-OH MDZ by CYP3A4 was noncompetitively inhibited by glycyrrhetic acid (GA), with a Ki of 7.38±0.93μM.
     CONCLUSIONS:.Glycyrrhizin showed no effect on CYP1A2, CYP3A, CYP2C19, CYP3A4, CYP2E1, and CYP2D6 activities in human liver microsomes. Glycyrrhetic acid noncompetitively inhibits Formation of 1'-OH MDZ by CYP3A4, and also inhibit metabolism of omeprazole to 5'-Hydroxyomeprazole by CYP2C19 and inhibit metabolism of omeprazole to omeprazole sulfone by CYP3A4.
     BACKGROUND:Research has found that licorice(Gan Cao) could induce total CYP450s in rodents. And previous reports have demonstrated that licorice(Gan Cao) total extracts activated PXR and induced the expression of drug-metabolism, however, the constituents responsible for licorice-mediated CYP450s induction and the underlying molecular mechanisms remains unknown. Our previous work has demonstrated that administration of glycyrrhizin in healthy males resulted in an increased metabolism of Midazolam, By contrast, glycyrrhetic acid presented play an inhibitive action in metabolism of midazolam in pooled human liver microsomes. We also observed inhibition metabolism of omeprazole to 5'-Hydroxyomeprazole by CYP2C19 in human liver microsomes. The discovery of a family of nuclear receptors such as pregnane X recepor (PXR) and constitutive androstane receptor(CAR) gives insight into the molecular explanation of CYP3A induction by glycyrrhizin. In the present study, interactions between glycyrrhizin and glycyrrhetic acid and human CAR and PXR were evaluated using a reporter gene assay.
     OBJECTIVE:In our study, we tested the hypothesis whether glycyrrhizin or glycyrrhetic acid in therapeutic concentrations has potential to affect expression of CYP3A4 and CYP2C19 via constitutive androstane receptor(CAR) and pregnane X receptor(PXR) pathways.
     METHODS:Interaction of glycyrrhizin and glycyrrhetic acid with CAR and PXR nuclear receptors was studied using luciferase reporter assays, real-time reverse transcriptase chain reaction (RT-PCR), and analysis of CYP3A4 catalytic activity.
     RESULTS:Using transient transfection reporter assays in Caco2 cells, Glycyrrhetic acid was recognized to activate CYP3A4 promoter via CAR and PXR pathways. A significant effect of glycyrrhetic acid on CYP3A4 promoter activation in HepG2 cells was observed only by CAR pathway. Glycyrrhizin showed no impact on CYP3A4 promotor activation by CAR or PXR pathways. Neither glycyrrhizin nor glycyrrhetic acid have impacts on CYP2C19 promoter via CAR or PXR pathways. These data well correlated with up-regulation of CYP3A4 mRNA analyzed by real-time RT-PCR in cells with expression vectors encoding CAR or PXR and treated with glycyrrhetic acid. In addition, analysis of specific CYP3A4 catalytic activity revealed its significant increase in glycyrrhetic acid-treated LS174T transfected with CAR.
     CONCLUSIONS:.In conclusions,we provide novel insight into the mechanism by which GA affects gene expression of CYP3A4. Our results demonstrate that GA has potential to up-regulate CYP3A4 through direct activation of CAR and/or PXR pathways.
     OBJECTIVE:To investigate the interaction between glycyrrhizin and omeprazole and observe the effects of glycyrrhizin on CYP2C19 and CYP3A4 activities in healthy Chinese male volunteers with different CYP2C19 genotypes..
     METHODS:Eighteen healthy subjects (six CYP2C19*1/*1, five CYP2C19*1/*2, one CYP2C19*1/*3, five CYP2C19*2/*2 and one CYP2C19*2/*3) were enrolled in a two-phase randomized crossover trial. In each phase, all subjects received placebo or glycyrrhizin salt tablet 150mg twice daily for 14 consecutive days. The pharmacokinetics of omeprazole(20mg orally on day 15) was determined for up to 12h following administration by HPLC.
     RESULTS:After 14-day treatment of glycyrrhizin, plasma omeprazole significantly decreased, and those of omeprazole sulfone significantly increased. However, plasma concenetrations of 5-hydroxyomeprazole did not significantly change. The ratio of AUC0-∞of omeprazole to omeprazole sulfone decreased by 43.93±13.56%(p=0.009) in CYP2C19*1/*1,44.85±14.84%(p=0.002) in CYP2C19*1/*2or*3 and 36.16±7.52%(p<0.001) in CYP2C19*2/*2 or*3 while those of omeprazole to 5-hydroxyomeprazole did not change significantly in all three genotypes. No significant differences in glycyrrhizin response were found among CYP2C19 genotypes..
     CONCLUSIONS:Glycyrrhizin induces CYP3A4-catalyzed sulfoxidation of omeprazole and leads to decreased omeprazole plasma concentrations, but has no significant impact on CYP2C19-dependent hydroxylation of omeprazole.
引文
[1]Hattori M, Sakamoto T, Yamagishi T, et al. Metabolism of glycyrrhizin by human intestinal flora. II. Isolation and characterization of human intestinal bacteria capable of metabolizing glycyrrhizin and related compounds. Chem Pharm Bull (Tokyo).1985 Jan;33(1):210-7.
    [2]Kim DH, Hong SW, Kim BT, et al.Biotransformation of glycyrrhizin by human intestinal bacteria and its relation to biological activities. Arch Pharm Res.2000 Apr;23(2):172-7.
    [3]Akamatsu H., Komura J, Asada Y, et al. Mechanism of anti-inflammatory action of glycyrrhizin:effect on neutrophil functions including reactive oxygen species generation. Planta Med.1991; 57,119-121.
    [4]Hattori T, Ikematsu S, Koito A, et al. Preliminary evidence for inhibitory effect of glycyrrhizin on HIV replication in patients with AIDS. Antiviral Res.1989; 1:255-261.
    [5]Fiore C, Eisenhut M, Krausse R, et al. Bielenberg J. Antiviral effects of Glycyrrhiza species. Phytother Res.2008; 22:141-148.
    [6]Nagai T., Egashira T., Kudo Y, et al. Attenuation of dysfunction in the ischemia-reperfused liver by glycyrrhizin. Jpn J Pharmacol.1992; 58,209-218.
    [7]van den Bosch AE, van der Klooster JM, Zuidgeest DM, et al. Severe hypokalaemic paralysis and rhabdomyolysis due to ingestion of liquorice. Neth J Med.2005; 63:146-8.
    [8]Cinatl J, Morgenstern B, Bauer Q.et al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet.2003 Jun 14;361(9374):2045-6..
    [9]Wang Z., Kurosaki Y, Nakayama T, et al. Mechanism of gastrointestinal absorption of glycyrrhizin in rats. Biol Pharm Bull.1994; 17,1399-1403.
    [10]Isbrucker RA,Burdock G.A. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol
    Pharmacol.2006; 46,167-192.
    [11]van Rossum TG, Vulto AG, de Man RA, et al. Review article:glycyrrhizin as a potential treatment for chronic hepatitis C. Aliment Pharmacol Ther. 1998; 12:199-205.
    [12]Arase Y, Ikeda K, Murashima N et al. The long term efficacy of glycyrrhizin in chronic hepatitis C patients. Cancer.1997 Apr 15;79(8):1494-1500.
    [13]Takeda R, Morimoto S, Uchida K, et al. Prolonged pseudoaldosteronism induced by glycyrrhizin. Endocrinol Jpn.1979 Oct;26(5):541-547.
    [14]van Uum SH, Lenders JW, Hermus AR. Cortisol, llbeta-hydroxysteroid dehydrogenases, and hypertension. Semin Vasc Med.2004; 4(2):121-12.
    [15]Armanini D, Lewicka S, Pratesi C, et al. Further studies on the mechanism of the mineralocorticoid action of licorice in humans. J Endocrinol Invest.1996 Oct;19(9):624-9.
    [16]Lin SH., Yang SS., Chau T, et al An unusual cause of hypokalemic paralysis: chronic licorice ingestion. Am J Med Sci.2003; 325,153-156.
    [17]van den Bosch AE, van der Klooster JM., Zuidgeest DM., et al. Severe hypokalaemic paralysis and rhabdomyolysis due to ingestion of liquorice. Neth J Med.2005; 63,146-148.
    [18]Sontia B, Mooney J, Gaudet L, et al.Pseudohyperaldosteronism, liquorice, and hypertension.; Clin Hypertens (Greenwich).2008; 10(2):153-7.
    [19]Izzo AA, Ernst E. Interactions between herbal medicines and prescribed drugs:a systematic review. Drugs2001; 61,2163-2175.
    [20]Ang-Lee MK, Moss J, Yuan CS. Herbal medicines and perioperative care. Jama. 2001; 286,208-216.
    [21]Brazier NC, Levine MA. Drug-herb interaction among commonly used conventional medicines:a compendium for health care professionals. Am J Ther. 2003; 10,163-169.
    [22]Hu WY, Li YW, Hou YN, et al. The induction of liver microsomal cytochrome P450 by Glycyrrhiza uralensis and glycyrrhetinic acid in mice. Biomed Environ Sci.1999 Mar; 12(1):10-4.
    [23]Lin G, Nnane IP, Cheng TY. The effects of pretreatment with glycyrrhizin and glycyrrhetinic acid on the retrorsine-induced hepatotoxicity in rats. Toxicon.1999 Sep;37(9):1259-70.
    [24]Paolini M., Pozzetti L., Sapone A,. et al. Effect of licorice and glycyrrhizin on murine liver CYP-dependent monooxygenases. Life Sci.1998; 62,571-582.
    [25]Paolini M, Barillari J, Broccoli M, et al. Effect of liquorice and glycyrrhizin on rat liver carcinogen metabolizing enzymes. Cancer Lett.1999; 145,35-42.
    [26]Jeong HG, You HJ, Park SJ, et al. Hepatoprotective effects of 18beta-glycyrrhetinic acid on carbon tetrachloride-induced liver injury:inhibition of cytochrome P450 2E1 expression. Pharmacol Res.2002; 46,221-227).
    [27]Ou-Yang DS, Huang SL, Wang W, et al. Phenotypic polymorphism and gender-related differences of CYP1A2 activity in a Chinese population. Br J Clin Pharmacol.2000 Feb;49(2):145-51.
    [28]Zhu B, Ou-Yang DS, Cheng ZN, et al. Single plasma sampling to predict oral clearance of CYP3A probe midazolam. Acta Pharmacol Sin.2001 Jul;22(7):634-8
    [29]Frye RF, Adedoyin A, Mauro K, et al. and Branch RA. Use of chlorzoxazone as an in vivo probe of cytochrome P450 2E1:choice of dose and phenotypic trait measure. J Clin Pharmacol1998; 38,82-89.
    [30]McGourty JC, Silas JH, Lennard MS, et al. Metoprolol metabolism and debrisoquine oxidation polymorphism population and family studies.Br J Clin Pharmacol.1985; 20,555-66.
    [31]Ou-Yang DS, Huang SL, Xie HG., et al. Use of caffeine as a probe for rapid determination of cytochrome P-450 CYP1A2 activity in humans. Zhongguo Yao Li Xue Bao.1998; 9,44-46.
    [32]Chen XP, Han XM, Jiang CH, et al. Phenotype distribution and gender-related differences of CYP2E1 activity in a Chinese population. Xenobiotica.2002; 32, 1053-1062.
    [33]Chen XP, Tan ZR, Huang SL, et al. Isozyme-specific induction of low-dose aspirin on cytochrome P450 in healthy subjects. Clin Pharmacol Ther.2003;73, 264-71.
    [34]Zhu B, Ou-Yang DS, Chen XP, et al.Zhou HH.Assessment of cytochrome P450 activity by a five-drug cocktail approach.Clin Pharmacol Ther.2001 Nov;70(5):455-61.
    [35]Gurley BJ, Gardner SF, Hubbard MA, et al. Shah A. In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2,2D6, 2E1, and 3A4/5 phenotypes.Clin Pharmacol Ther.2005 May;77(5):415-26.
    [36]Gurley BJ, Gardner SF, Hubbard MA, et al. In vivo assessment of botanical supplementation on human cytochrome P450 phenotypes:Citrus aurantium, Echinacea purpurea, milk thistle, and saw palmetto. Clin Pharmacol Ther.2004; 76,428-440.
    [37]Gurley BJ, Gardner SF, Hubbard MA, et al. Cytochrome P450 et al. Cytochrome P450 phenotypic ratios for predicting herb-drug interactions in humans. Clin Pharmacol Ther.2002; 72,276-287.
    [38]Wang Z, Gorski JC, Hamman MA, et al. The effects of St John's wort (Hypericum perforatum) on human cytochrome P450 activity. Clin Pharmacol Ther.2001;70:317-326.
    [39]Mu Y, Zhang J, Zhang S,et al. Traditional Chinese medicines Wu Wei Zi (Schisandra chinensis Baill) and Gan Cao (Glycyrrhiza uralensis Fisch) activate pregnane X receptor and increase warfarin clearance in rats. J Pharmacol Exp Ther.2006; 316,1369-1377.
    [40]Fontana RJ, deVries TM, Woolf TF, et al. Caffeine based measures of CYP1A2 activity correlate with oral clearance of tacrine in patients with Alzheimer's disease.Br J Clin Pharmacol 1998; 46:221-8.
    [41]Khan AY, Preskorn SH. Examining concentration-dependent toxicity of clozapine: role of therapeutic drug monitoring. J Psychiatr Pract 2005;11,289-301.
    [42]Guengerich FP, Kim.H, Iwasaki M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol. 1991; 4,168-179.
    [43]Koop DR. Oxidative and reductive metabolism by cytochrome P450 2E1. Faseb J. 1992; 6,724-730.
    [44]Zangar RC, Benson JM., Burnett VL et al. Cytochrome P450 2E1 is the primary enzyme responsible for low-dose carbon tetrachloride metabolism in human liver microsomes. Chem Biol Interact.2000; 125,233-243.
    [45]Eaton DL, Gallagher EP, Bammler TK, et al. Role of cytochrome P4501A2 in chemical carcinogenesis:implications for human variability in expression and enzyme activity. Pharmacogenetics.1995; 5,259-274.
    [46]Eisenbrand G. Glycyrrhizin. Mol Nutr Food Res.2006;50:1087-1088.
    [47]Anonymous.Guidance for industry:in vivo drug metabolism/drug interaction studies-study design, data analysis and recommendations for dosing and labeling.1999. Available from:URL: http://www.fda.gov/cder/guidance/guidance.htm. Accessed Aug 27,2003.
    [48]Kolars JC, Lown KS, Schmiedlin-Ren P, et al. CYP3A gene expression in human gut epithelium. Pharmacogenetics.1994;4:247-259.
    [49]Prueksaritanont T, Gorham LM, Hochman JH, Tran LO, Vyas KP. Comparative studies of drug-metabolizing enzymes in dog, monkey, and human small intestines, and in Caco-2 cells. Drug Metab Dispos.1996;24:634-642.
    [50]Thummel KE, Shen DD, Podoll TD, et al. Use of midazolam as a human cytochrome P450,3A probe. I. In vitro-in vivo correlations in liver transplant patients. J Pharmacol Exp Ther.1994;271:549-556.
    [51]Backman JT, Kivisto KT, Olkkola KT, Neuvonen PJ. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol.1998;54:53-58.
    [52]Thummel KE, O'SheaD, Paine MF, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 1996;59:491-502.
    [53]Paine MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by the human intestine.Clin Pharmacol Ther 1996;60:14-24.
    [54]L ionel D, Ourlin JC, Pascussi JM, et al. Expression of CYP3A, CYP2B6, and CYP2C9 is regulated by the Vitamin D receptor pathway in p rimary human hepatocyte [J]. J Biol Chem,2002,277:25125-25132.
    [55]Moore LB, Goodwin B, Jones SA, et al. St. John'swort induces hepatic drug metabolism through activation of the pregnane X recep tor [J]. Proc Natl Acad Sci USA,2000,97:7500-7502.
    [56]Jasminder S, Mark A, Zheng XX, et al. Avasimibeinduces CYP3A4 and multiple drug resistance protein 1 gene expression through activation of the p regnane X receptor [J]. J Pharmacol Exp Ther,2003,306:1027-1034.
    [57]Rae JM, Johnson MD, Lippman ME, et al. Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes:studies with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther 2001;299:849-57.
    [58]Huang SM, Temple R, Throckmorton DC, et al. Drug interaction studies:study design, data analysis, and implications for dosing and labeling. Clin Pharmacol Ther 2007;81:298-304.
    [59]van Rossum TG, Vulto AG, de Man RA, Brouwer JT, Schalm SW. Review article: glycyrrhizin as a potential treatment for chronic hepatitis C. Aliment Pharmacol Ther.1998;12:199-205.
    [60]郑虎占,董泽宏,余靖.中药现代研究与运用(第二卷).北京学苑出版社,1997:1261-1268.
    [61]江苏新医学院.中药大辞典.第1版.上海:上海人民出版社,1977:567-573.
    [62]Vol Bohr C, Groth CG, Jansson H, et al. Drug metabolism in human liver in vitro:Establishment of a human liver bank. Clin Pharmacol Ther 1980;27:711-723.
    [63]Lowry OH, Roseborough NJ, Farr AL, et al. Protein measurement with the Folin reagent. J Biol Chem 1952; 193:265-275.
    [64]Oda Y, Mizutani K, Hase I, et al.. Fentanyl inhibits metabolism of midazolam: competitive inhibition of CYP3A4 in vitro. Br J Anaesth 1999; 82:900-3.
    [65]Sai Y, Dai R, Yang TJ, et al. Assessment of specificity of eight chemical inhibitors using cDNA-expressed cytochromes P450. Xenobiotica 2000; 30:327-43.
    [66]Reidy GF, Mehta I, Murray M. Inhibition of oxidative drug metabolism by orphenadrine:in vitro and in vivo evidence for isozyme-specific complexation of cytochrome P-450 and inhibition kinetics. Mol Pharmacol 1989; 35:736-43.
    [67]Dong-Sheng Ou-Yang, Song-Lin Huang, Hong-Guang Xie, et al. Use of Caffeine as a Probe for Rapid Determination of Cytochrome P450 CYP1A2 Activity in Humans. Acta Pharmacologica Sinica,1998; 19:44-46.
    [68]Jae-Wook Ko, Nadia Sukhova, David Thacker et al. Evaluation of omeprazole and lansoprazole as inhibitors of cytochrome P450 isoforms. Drug Metabolism and Disposition,1997; 25(7):853-62.
    [69]Thumml KE, Shen DD, Prodoll TD, et al. Use of midazolam as a human cytochrome P450 3A probe Ⅱ.Characterization of inter-and intra-indvidual hepatic CYP3A variability after liver transplantation. J Pharmacol Exp Ther, 1994 Oct; 271(1):557-66.
    [70]Mei-Hua Cai, Shan-Juan Wang, Yan-Nan Hang. Determination of the concentration of midazolam in plasma by RP-HPLC-UV detection. China Pharmacy,2002; 13(3):157-158.
    [71]Pet RR,Bocker P H,et al.Hydroxylation of chlorzoxazone as a specific probe of cytochrome P450 IIE1. Chem. Res. Toxicol,1990; 3:566-573.
    [72]Huai-Bing He, De-Lin Liu, Qun-Ying Yue, et al. RP-HPLC for determination of chlorzoxazone in human plasma. Acta Universitatis Medicinalis Shanghai,1990; 17 (4):309.
    [73]Jae-Gook Shin, Nadia Soukhova, And David A, et al. Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms in vitro:preferential inhibition of CYP2D6. Drug metabolism and disposition,1999 May; 27(9): 1078-84.
    [74]Wen-Bing Xie, Huan-De Li, Bi-Kui Zhang,et al. Compare study on dissolution and bioavailability of metoprolol Tartrate Tablets by two plants manufactured. Journal of Human Medical College,2001; 3 (1):1-5.
    [75]Segel IH (1975) Enzyme Kinetics:Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems. John Wiley and Sons, Inc., New York.
    [76]Voorman RL, Payne NA, Wienkers LC, Hauer MJ, Sanders PE. Interaction of delavirdine with human liver microsomal cytochrome P450:inhibition of CYP2C9, CYP2C19, and CYP2D6. Drug Metab Dispos.2001 Jan;29(1):41-47v.
    [77]孙瑞元,主编.定量药理学.北京:人民卫生出版社,1987.169.
    [78]周海均,申蕴如.生物检定统计方法.第2版.北京:人民卫生出版社,1988.211.
    [79]Akao T, Aoyama M, Akao T, Hattori M, Imai Y, Namba T, Tezuka Y, Kikuchi T, Kobashi K. Metabolism of glycyrrhetic acid by rat liver microsomes-Ⅱ.22 alpha-and 24-hydroxylation. Biochem Pharmacol.1990 Jul 15;40(2):291-6.
    [80]高凯,余伟,杨静等.大鼠肝微粒体CYP3A1/2和CYP2C9/10参与甘草次酸羟化代谢.中国临床药理学与治疗学.2007;12(11):1255-1260.
    [81]Guengerich FP. Characterization of human microsomal cytochrome P-450 enzymes. Annu Rev Pharmacol Toxicol.1989; 29:241-64.
    [82]Pascussi JM,Gerbal-Chaloin S, Duret C, et al. The tangle of nuclear receptors that controls xenobiotic metabolism and transport:crosstalk and consequences. Annu Rev Pharmacol Toxicol.2008; 48:1-32.
    [83]Xie W, EvansRM. Orphan nuclear receptors:the exotics of xenobiotics. J Biol Chem.2001; 276:37739-42.
    [84]Maglich JM, Stolz CM, Goodwin B, et al. Nuclear pregnarie X receptor and constitutive androstane receptor regulate over lapping but distinct sets of genes involved in xenobiotic detoxification. Mol Pharmacol.2002; 62:638-46.
    [85]Handschin C, Meyer UA. Regulatory network of lipid-sensing nuclear receptors: roles for CAR, PXR, LXR, and FXR. Arch Biochem Biophys.2005; 433:387-96.
    [86]Eloranta JJ, Meier PJ, Kullak-Ublick GA. Coordinate transcriptional regulation of transport and metabolism.Methods Enzymol.2005; 400:511-30.
    [87]Tien ES, Negishi M. Nuclear receptors CAR and PXR in the regulation of hepatic metabolism. Xenobiotica.2006; 36:1152-63.
    [88]Timsit YE, Negishi M. CAR and PXR:the xenobiotic-sensing receptors. Steroids. 2007 Mar; 72(3):231-46.
    [89]Chen H., Lin J, Xie W, et al. Regulation of hormone induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 1999;98,
    675-686.
    [90]Xie W, Evans RM. Orphan Nuclear Receptors:The Exotics of Xenobiotics. J Biol Chem 2001; 276:37739-37742.
    [91]Xie W, Evans RM. Pharmaceutical use of mouse models humanized for the xenobiotic receptor. Drug Discovery Today 2002; 7:509-515.
    [92]Sonoda J, Rosenfeld JM., Xu L, et al. A nuclear receptor-mediated xenobiotic response and its implication in drug metabolism and host protection. Current Drug Metabolism 2003; 4,59-72.
    [93]Xie W, Barwick JL, Simon CM, P et al. Reciprocal activation of xenobiotic response genes by nuclear receptors SXR/PXR and CAR. Genes Dev 2000; 14: 3014-3023.
    [94]Goodwin B, Hodgson E, D'Costa DJ, et al. Transcriptional regulation of the human CYP3A4 gene by the constitutive androstane receptor. Mol Pharmacol 2002; 62:359-365.
    [95]Makishima M., Lu TT, Xie W, W et al. Vitamin D receptor as a bile acid sensor. Science 2002; 296,1313-1316.
    [96]Wei P, Zhang J, Egan-Hafley M, L et al. The nuclear receptor CAR mediates specific xenobiotic induction of drug metabolism. Nature 2000; 407:920-923.
    [97]Kocarek TA, Schuetz EG, Strom SC, et al. Comparative analysis of cytochrome P4503A induction in primary cultures of rat, rabbit, and human hepatocytes. Drug Metab Dispos 1995; 23:415-421.
    [98]Hu WY, Li YW, Hou YN, et al. The induction of liver microsomal cytochrome P450 by Glycyrrhiza uralensis and glycyrrhetinic acid in mice. Biomed Environ Sci.1999 Mar;12(1):10-4.
    [99]孙剑寒朱心强.孕烷X受体和CYP3A相关性的研究进展.中国药理学与毒理学杂志2003;17(3):235-240.
    [100]Geick A, Eichelbaum M, and Burk O.Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem 2001; 276: 14581-14587.
    [101]Cerveny L, Svecova L, Anzenbacherova E, et al. Valproic acid induces CYP3A4
    and MDR1 gene expression by activation of constitutive androstane receptor and pregnane X receptor pathways. Drug Metab Dispos.2007 Jul;35(7):1032-41.
    [102]J.萨姆布鲁克,D.W.拉塞尔.黄培堂等译.分子克隆实验指南,第三版,北京:科学出版社,2002.
    [103]范岚.黄芩苷对CYP450代谢酶和药物转运体影响的研究.中南大学-药理学博士论文2008.
    [104]Orans J, Teotico DG, Redinbo MR. The nuclear xenobiotic receptor pregnane X receptor:recent insights and new challenges. Mol Endocrinol.2005; 19:2891-900.
    [105]Qiao HL, Hu YR, Tian X, et al. Pharmacokinetics of three proton pump inhibitors in Chinese subjects in relation to the CYP2C19 genotype[J]. Eur J Clin Pharmacol,2006; 62(2):107-112.
    [106]Chiba K, Kobayashi K, Manabe K, et al. Oxidative metabolism of omeprazole in human liver microsomes:cosegregation with S-mephenytoin 4'-hydroxylation[J]. J Pharmacol Exp Ther,1993;266:52-59.
    [107]Karam WG, Goldstein JA, Lasker JM, et al. Human CYP2C19 is a major omeprazole 5-hydroxylase, as demonstrated with recombinant cytochrome P450 enzymes[J]. Drug Metab Dispos,1996;24:1081-1087.
    [108]Chang M, Tybring G, Dahl M-L, et al. Interphenotype differences in disposition and effect on gastrin levels of omeprazole-suitability of omeprazole as a probe for CYP2C19[J]. Br J Clin Pharmacol,1995; 39:511-518.
    [109]Bottiger Y, Tybring G, Gotharson E, et al. Inhibition of the sulfoxidation of omeprazole by ketoconazole in poor and extensive metabolizers of S-mephenytoin[J]. Clin Pharmacol Ther,1997; 62:384-391.
    [110]Tassaneeyakul W, Vannaprasaht S, Yamazoe Y. Formation of omeprazole sulfone but not 5-hydroxyomeprazole is inhibited by grapefruit juice [J]. Br J Clin Pharmacol,2000; 49:139-144.
    [111]Yan Shu, Lian-Sheng Wang, Wei-Ming Xiao, et al. Probing CYP2C19 and CYP3A4 activities in Chinese liver microsomes by quantification of 5-hydroxyomeprazole and omeprazole sulfone[J]. Acta Pharmacologica Sinica,
    2000; 21:753-758.
    [112]Gonzalez HM, Romero EM, Chavez Tde J, et al. Phenotype of CYP2C19 and CYP3A4 by determination of omeprazole and its two main metabolites in plasma using liquid chromatography with liquid-liquid extraction[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2002;25:459-465.
    [113]de Morais SM, Wilkinson GR, Blaisdell J,etal. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem,1994;269:15419-22.
    [114]Br(?)sen K, de Morais SM, Meyer UA, etal. A multifamily study on the relationship between CYP2C19 genotype and s-mephenytoin oxidation phenotype. Pharmacogenetics.1995 Oct;5(5):312-7.
    [115]Chang M, Tybring G, Dahl ML, etal. Interphenotype differences in disposition and effect on gastrin levels of omeprazole-suitability of omeprazole as a probe for CYP2C19.Br J Clin Pharmacol.1995 May;39(5):511-8.
    [116]Furuta T, Shirai N, Sugimoto M, et al. Influence of CYP2C19 pharmacogenetic polymorphism on proton pump inhibitor-based therapies[J]. Drug Metab Pharmacokinet,2005; 20(3):153-67.
    [117]Yasui-Furukori N, Takahata T, Nakagami T, et al. Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes[J]. Br J Clin Pharmacol,2004 Apr; 57(4):487-94.
    [118]Wang LS, Zhou G, Zhou HH, et al. St John's wort induces both cytochrome P450 3A4-catalyzed sulfoxidation and 2C19-dependent hydroxylation of omeprazole[J]. Clin Pharmacol Ther,2004 Mar;75(3):191-7.
    [119]Yin OQ, Tomlinson B, Waye MM, et al. Pharmacogenetics and herb-drug interactions:experience with Ginkgo biloba and omeprazole [J]. Pharmacogenetics,2004; 14(12):841-50.
    [120]Cho JY, YuKS, Jang LJ, et al. Omeprazole hydroxylation is inhibited by a single dose of moclobemide in homozygotic EM genotype for CYP2C19[J]. Br J Clin Pharmacol,2002; 53:.393-7.
    [121]He N, Huang SL, Zhu RH, et al. Inhibitory effect of troleandomycin on the
    metabolism of omeprazole is CYP2C19 genotype-dependent[J]. Xenobiotica, 2003;33:211-221.
    [122]Wang LS, Zhou G, Zhu B, etal.St John's wort induces both cytochrome P450 3A4-catalyzed sulfoxidation and 2C19-dependent hydroxylation of omeprazole. Clin Pharmacol Ther.2004 Mar;75(3):191-7.
    [123]Arase Y, Ikeda K, Murashima N, etal. The long term efficacy of glycyrrhizin in chronic hepatitis C patients. Cancer 1997 Apr 15;79(8):1494-500.
    [124]Ikeda K. Glycyrrhizin injection therapy prevents hepatocellular carcinogenesis in patients with interferon-resistant active chronic hepatitis C. Hepatol Res.2007 Sep;37 Suppl 2:S287-93.
    [125]Kumada H. Long-term treatment of chronic hepatitis C with glycyrrhizin [stronger neo-minophagen C (SNMC)] for preventing liver cirrhosis and hepatocellular carcinoma.Oncology 2002;62 Suppl 1:94-100.
    [126]Melhem A, Stern M, Shibolet O, etal. Treatment of chronic hepatitis C virus infection via antioxidants:results of a phase I clinical trial. J Clin Gastroenterol. 2005 Sep;39(8):737-42.
    [127]Fan L, Wang G, Wang LS, etal. Herbal medicine yin zhi huang induces CYP3A4-mediated sulfoxidation and CYP2C19-dependent hydroxylation of omeprazole. Acta Pharmacol Sin.2007 Oct;28(10):1685-92.
    [128]Yang LJ, Fan L, Liu ZQ, etal. Effects of allicin on CYP2C19 and CYP3A4 activity in healthy volunteers with different CYP2C19 genotypes. Eur J Clin Pharmacol.2009 Jan 27. [Epub ahead of print].
    [129]Palovaara S, Tybring G, Laine K. The effect of ethinyloestradiol and levonorgestrel on the CYP2C19-mediated metabolism of omeprazole in healthy female subjects. Br J Clin Pharmacol.2003 Aug;56(2):232-7.
    [130]Rettie AE, Korzekwa KR, Kunze KL, etal. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450:a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol.1992 Jan-Feb;5(1):54-9.
    [131]Chen Y, et al. Induction of human CYP2C9 by Rifampicin, Hyperforin, and Phenobarbital is mediated by the preganne X receptor. J Pharmacol Exp Ther.
    2004 Feb;308(2):495-501.
    [132]Goodwin B, Hodgson E, Liddle C. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol Pharmacol.1999 Dec;56(6):1329-39.
    [133]Moore LB, Goodwin B, Jones SA, etal.Serabjit-Singh CJ, Willson TM, Collins JL, Kliewer SA.St. John's wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci U S A.2000 Jun 20;97(13):7500-2.
    [134]Finch CK, Chrisman CR, Baciewicz AM, etal.Rifampin and rifabutin drug interactions:an update.Arch Intern Med.2002 May 13;162(9):985-92. Review.
    [135]Lamba V, Lamba J, Yasuda K, etal. Hepatic CYP2B6 expression:gender and ethnic differences and relationship to CYP2B6 genotype and CAR (constitutive androstane receptor) expression.J Pharmacol Exp Ther. 2003 Dec;307(3):906-22.
    [1]Kodama S, Negishi M. Phenobarbital confers its diverse effects by activating the orphan nuclear receptor CAR. Drug Metab Rev.2006;38:75-87.
    [2]Sueyoshi T, Negishi M. Phenobarbital response elements of cytochrome P450 genes and nuclear receptors. Annu Rev Pharmacol Toxicol.2001;41:123-43.
    [3]Swales K, Kakizaki S, Yamamoto Y, et al. Novel CAR-mediated mechanism for synergistic activation of two distinct elements within the human cytochrome P450 2B6 gene in HepG2 cells. JBiol Chem.2005;280:3458-66.
    [4]Qatanani M, Zhang J, Moore DD. Role of the constitutive androstane receptor in xenobiotic-induced thyroid hormone metabolism. Endocrinology. 2005;146:995-1002.
    [5]Maglich JM, Watson J, McMillen PJ,et al. he nuclear receptor CAR is a regulator of thyroid hormone metabolism during caloric restriction. J Biol Chem. 2004;279:19832-8.
    [6]Quattrochi LC, Guzelian PS. CYP3A regulation:from pharmacology to nuclear receptors. Drug Metab Dispos.2001;29:615-22.
    [7]Miao J, Fang S, Bae Y, et al. Functional inhibitory cross-talk between constitutive androstane receptor and hepatic nuclear factor-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-la J Biol Chem. 2006;281:14537-46.
    [8]Kodama S, Koike C, Negishi M, et al. Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol Cell Biol.2004;24:7931-40.
    [9]Lahtela JT, Arranto AJ, Sotaniemi EA. Enzyme inducers improve insulin sensitivity in non-insulin-dependent diabetic subjects. Diabetes.1985;34:911-6.
    [10]Staudinger JL, Goodwin B, Jones SA, et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U SA.2001;98:3369-74.
    [11]Xie W, Radominska-Pandya A, Shi Y,et al. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci U S A.2001;98:3375-80.
    [12]Goodwin B, Gauthier KC, Umetani M, et al. Identification of bile acid precursors as endogenous ligands for the nuclear xenobiotic pregnane X receptor. Proc Natl Acad Sci U S A.2003; 100:223-8.
    [13]Inoue K, Borchers CH, Negishi M. Cohesin protein SMC1 represses the nuclear receptor CAR-mediated synergistic activation of a human P450 gene by xenobiotics. Biochem J.2006;398:125-33.
    [14]Zelko I, Sueyoshi T, Kawamoto T,et al.The peptide near the C terminus regulates receptor CAR nuclear translocation induced by xenochemicals in mouse liver. Mol Cell Biol.2001;21:2838-46.
    [15]Yoshinari K, Kobayashi K, Moore R, et al. Identification of the nuclear receptor CAR:HSP90 complex in mouse liver and recruitment of protein phosphatase 2A in response to phenobarbital. FEBS Lett.2003;548:17-20.
    [16]Hosseinpour F, Moore R, Negishi M, et al.Serine 202 regulates the nuclear translocation of constitutive active/androstane receptor. Mol Pharmacol. 2006;69:1095-102.
    [17]Min G, Kemper JK, Kemper B. Glucocorticoid receptor-interacting protein 1 mediates ligand-independent nuclear translocation and activation of constitutive androstane receptor in vivo. JBiol Chem.2002;277:26356-63
    [18]Xia J, Kemper B. Structural determinants of constitutive androstane receptor required for its glucocorticoid receptor interacting protein-1-mediated nuclear accumulation. JBiol Chem.2005;280:7285-93.
    [19]Jia Y, Guo GL, Surapureddi S, et al. Transcription coactivator peroxisome proliferator-activated receptor-binding protein/mediator 1 deficiency abrogates acetaminophen hepatotoxicity. Proc Natl Acad Sci USA.2005;102:12531-6.
    [20]Goodwin B, Redinbo MR, Kliewer SA. Regulation of CYP3A gene transcription by the pregnane X receptor. Annu Rev Pharmacol Toxicol. 2002;42:1-23.
    [21]Kliewer SA, Goodwin B, Willson TM. The nuclear pregnane X receptor:a key regulator of xenobiotic metabolism. Endocr Rev.2002;23:687-702.
    [22]Squires EJ, Sueyoshi T, Negishi M. Cytoplasmic localization of pregnane X receptor and ligand-dependent nuclear translocation in mouse liver. J Biol Chem. 2004;279:49307-14.
    [23]Orans J, Teotico DG, Redinbo MR. The nuclear xenobiotic receptor pregnane X receptor:recent insights and new challenges. Mol Endocrinol. 2005;19:2891-900.
    [24]Ding X, Staudinger JL. Induction of drug metabolism by forskolin:the role of the pregnane X receptor and the protein kinase A signal transduction pathway. J Pharmacol Exp Ther.2005;312:849-56.
    [25]Ding X, Staudinger JL. Repression of PXR-meCYP3A gene expression by protein kinase C. Biochem Pharmacol.2005;69:867-73.
    [26]Zhou J, Cidlowski JA. The human glucocorticoid receptor:one gene, multiple proteins and diverse responses. Steroids.2005;70:407-17.
    [27]Kumar V, Green S, Stack G, et al. Chambon P. Functional domains of the human estrogen receptor. Cell.1987;51:941-51.
    [28]Kumar R, Thompson EB. Gene regulation by the glucocorticoid receptor: structure:function relationship. J Steroid Biochem Mol Biol.2005;94:383-94.
    [29]Tanenbaum DM, Wang Y, Williams SP, et al. Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proc Natl Acad Sci USA.1998;95:5998-6003.
    [30]Shiau AK, Barstad D, Loria PM. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell.1998;95:927-37.
    [31]Shiau AK, Barstad D, Radek JT, et al. Katzenellenbogen BS, Katzenellenbogen JA, Agard DA, Greene GL. Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nat Struct Biol. 2002;9:359-64.
    [32]Bledsoe RK, Stewart EL, Pearce KH. Structure and function of the glucocorticoid receptor ligand binding domain. Vitam Horm.2004;68:49-91.
    [33]Noble SM, Carnahan VE, Moore LB, et al. Human PXR forms a tryptophan zipper-mediated homodimer. Biochemistry.2006;45:8579-89.
    [34]Oxelmark E, Roth JM, Brooks PC, et al. The cochaperone p23 differentially regulates estrogen receptor target genes and promotes tumor cell adhesion and invasion. Mol Cell Biol.2006;26:5205-13.
    [35]Ogawa S, Oishi H, Mezaki Y, et al. Repressive domain of unliganded human estrogen receptor a associates with Hsc70. Genes Cells.2005; 10:1095-102.
    [36]Oxelmark E, Knoblauch R, Arnal S, et al. Genetic dissection of p23, an Hsp90 cochaperone, reveals a distinct surface involved in estrogen receptor signaling. J Biol Chem.2003;278:36547-55.
    [37]Schlegel A, Wang C, Katzenellenbogen BS, et al. Caveolin-1 potentiates estrogen receptor a (ERa) signaling. caveolin-1 drives ligand-independent nuclear translocation and activation of ERa JBiol Chem.1999;274:33551-6.
    [38]Knoblauch R, Garabedian MJ. Role for Hsp90-associated cochaperone p23 in estrogen receptor signal transduction. Mol Cell Biol.1999; 19:3748-59.
    [39]Devin-Leclerc J, Meng X, Delahaye F, et al. Interaction and dissociation by ligands of estrogen receptor and Hsp90:the antiestrogen RU 58668 induces a protein synthesis-dependent clustering of the receptor in the cytoplasm. Mol Endocrinol.1998;12:842-54.
    [40]Inano K, Curtis SW, Korach KS. Heat shock protein 90 strongly stimulates the binding of purified estrogen receptor to its responsive element. J Biochem (Tokyo).1994; 116:759-66.
    [41]Schaaf MJ, Cidlowski JA. Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol.2002;83:37-48.
    [42]Evinger AJ,3rd, Levin ER. Requirements for estrogen receptor alpha membrane localization and function. Steroids.2005;70:361-3.
    [43]Thomas P, Pang Y, Filardo EJ, et al. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146:624-32.
    [44]Revankar CM, Cimino DF, Sklar LA, et al.A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science.2005;307:1625-30.
    [45]Pedram A, Razandi M, Levin ER. Nature of functional estrogen receptors at the plasma membrane. Mol Endocrinol.2006;20:1996-2009.
    [46]Koike C, Moore R, Negishi M. Localization of the nuclear receptor CAR at the cell membrane of mouse liver. FEBS Lett.2005;579:6733-6
    [47]Brychzy A, Rein T, Winklhofer KF. Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. Embo J. 2003;22:3613-23.
    [48]Likhite VS, Stossi F, Kim K, et al. Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand, DNA, and coregulators associated with alterations in estrogen and tamoxifen activity. Mol Endocrinol.2006
    [49]Lipfert L, Fisher JE, Wei N, et al. Antagonist-induced, activation function-2-independent estrogen receptor a phosphorylation. Mol Endocrinol. 2006;20:516-33.
    [50]Lee H, Bai W. Regulation of estrogen receptor nuclear export by ligand-induced and p38-mediated receptor phosphorylation. Mol Cell Biol.2002;22:5835-45.
    [51]Bodwell JE, Orti E, Coull JM, et al. Identification of phosphorylated sites in the mouse glucocorticoid receptor. J Biol Chem.1991;266:7549-55.
    [52]Almlof T, Wright AP, Gustafsson JA. Role of acidic and phosphorylated residues in gene activation by the glucocorticoid receptor. J Biol Chem. 1995;270:17535-40.
    [53]Galigniana MD, Housley PR, DeFranco DB, et al. Inhibition of glucocorticoid receptor nucleocytoplasmic shuttling by okadaic acid requires intact cytoskeleton. J Biol Chem.1999;274:16222-7.
    [54]Pascussi JM, Gerbal-Chaloin S, Drocourt L, et al. The expression of CYP2B6, CYP2C9 and CYP3A4 genes:a tangle of networks of nuclear and steroid receptors. Biochim Biophys Acta.2003; 1619:243-53.
    [55]Pascussi JM, Drocourt L, Gerbal-Chaloin S, et al. Dual effect of dexamethasone on CYP3A4 gene expression in human hepatocytes. Sequential role of glucocorticoid receptor and pregnane X receptor. Eur J Biochem. 2001;268:6346-58.
    [56]Agrawal AK, Shapiro BH. Phenobarbital induction of hepatic CYP2B1 and CYP2B2:pretranscriptional and post-transcriptional effects of gender, adult age, and phenobarbital dose. Mol Pharmacol.1996;49:523-31.
    [57]Chang TKH, Anderson MD, Bandiera SM, et al. Effect of ovariectomy and androgen on phenobarbital induction of hepatic CYP2B1 and CYP2B2 in Sprague-Dawley rats. Drug Metab Dispos.1997;25:994-1000.
    [58]Yoshinari K, Sueyoshi T, Moore R, et al. Nuclear receptor CAR as a regulatory factor for the sexually dimorphic induction of CYB2B1 gene by phenobarbital in rat livers. Mol Pharmacol.2001;59:278-84.
    [59]Min G, Kim H, Bae Y, et al. Inhibitory cross-talk between estrogen receptor (ER) and constitutively activated androstane receptor (CAR). CAR inhibits ER-mediated signaling pathway by squelching p160 coactivators. J Biol Chem. 2002;277:34626-33.
    [60]Ganem LG, Trottier E, Anderson A, et al. Phenobarbital induction of CYP2B1/2 in primary hepatocytes:endocrine regulation and evidence for a single pathway for multiple inducers. Toxicol Appl Pharmacol.1999;155:32-42.
    [61]Kietzmann T, Hirsch-Ernst KI, Kahl GF, et al. Mimicry in primary rat hepatocyte cultures of the in vivo perivenous induction by phenobarbital of cytochrome P-450 2B1 mRNA:role of epidermal growth factor and perivenous oxygen tension. Mol Pharmacol.1999;56:46-53.
    [62]Bauer D, Wolfram N, Kahl GF, et al. Transcriptional regulation of CYP2B1 induction in primary rat hepatocyte cultures:repression by epidermal growth factor is mediated via a distal enhancer region. Mol Pharmacol. 2004;65:172-80.
    [63]Assenat E, Gerbal-Chaloin S, Larrey D, et al. Pascussi JM. Interleukin 1beta inhibits CAR-induced expression of hepatic genes involved in drug and bilirubin clearance. Hepatology.2004;40:951-60.
    [64]Thasler WE, Dayoub R, Muhlbauer M, et al. Repression of cytochrome P450 activity in human hepatocytes in vitro by a novel hepatotrophic factor, augmenter of liver regeneration. JPharmacol Exp Ther.2006;316:822-9.
    [65]Pascussi JM, Gerbal-Chaloin S, Pichard-Garcia L, et al.Interleukin-6 negatively regulates the expression of pregnane X receptor and constitutively activated receptor in primary human hepatocytes. Biochem Biophys Res Commun.2000;274:707-13.
    [66]Columbano A, Ledda-Columbano GM, Pibiri M, et al. Gadd45β is induced through a CAR-dependent, TNF-independent pathway in murine liver hyperplasia. Hepatology.2005;42:1118-26.
    [67]Masuyama H, Inoshita H, Hiramatsu Y, et al. Ligands have various potential effects on the degradation of pregnane X receptor by proteasome. Endocrinology.2002;143:55-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700