用户名: 密码: 验证码:
基于piggyBac转座子的家蚕定向遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遗传转化技术已在生物基因功能分析、生理生化过程研究以及生物反应器开发等方面大量应用,但同时还存在许多问题,包括外源基因向基因组的整合效率较低,转基因有时不能按预定的方式表达,转入基因后有可能引起生物本身的功能基因发生突变等。要解决这些问题,提高遗传转化的效率,并提高整合的定向性(Site-specific integration)是关键。
     家蚕Bombyx mori L.是重要的经济昆虫,同时也是昆虫基因功能和生命过程研究的模式昆虫。近十多年来,人们对其开展了大量的遗传转化研究,获得了很多的家蚕转基因品系,但对其定向遗传转化的报道还很少。为此,本实验在家蚕细胞中进行了定向遗传转化的初步研究,以期为提高家蚕遗传转化效率、提高遗传转化的定向性提供一些借鉴。主要结果如下:
     1.采用双荧光素酶报告基因检测(Dual-Luciferase Reporter Assay)技术,比较了热激蛋白启动子(hsp70和hsp82)、家蚕肌动蛋白启动子(A3)、多聚泛素(polyubiquitin)启动子(PUB)、a微管蛋白启动子(α-tub)、丝素轻链启动子(Fib-L)、人工合成启动子3×P3及苜蓿丫纹夜蛾多角体病毒(AcNPV)增强子-启动子组合(hr5-IE1)8种启动子在家蚕细胞BmN内的活性。结果显示hr5-IE1活性最强,A3次之,其余启动子活性均较弱。构建含有hr5-IE1启动子和piggyBac的转座酶编码区的质粒作为辅助质粒,与EGFP载体质粒一起转染家蚕细胞后,实现了EGFP基因整合到细胞基因组中。
     2.采用质粒间转座分析(Interplasmid transposition assay)方法,研究了酵母转录激活蛋白Ga14的DNA结合区(DNA-binding domain, DBD)序列和UAS组成的系统(简称Ga14-UAS系统)在提高家蚕遗传转化定向性中的作用。将三个质粒,即表达Ga14-piggyBac融合转座酶的辅助质粒,含有Kan抗性基因和E. coli ori因子的供体质粒,及含有UAS定向序列的受体质粒,共转染家蚕卵巢细胞系(Bm-12)和果蝇细胞系(S2),结果发现,在Ga14-piggyBac融合体作用下,两种细胞中的转座效率分别比对照提高了3.8倍和4.5倍,而且插入位置趋向于少数几个位点。
     3. LexA是生物体内一种重要的阻遏蛋白,其结合的DNA位点(Binding sites,BS)具明显的序列特征。我们依据LexA与其BS序列结合的原理,构建了可表达LexA-piggyBac融合转座酶的辅助质粒,以及含LexA BS序列的受体质粒pGDV1-Lex-BS。将这两个质粒和供体质粒pB[KOα]一起转染家蚕Bm-12细胞,结果发现,与对照相比转化效率提高了9.0倍,但转座并不集中在一些特定的位点。与前述Ga14-piggyBac融合转座酶相比,在Bm-12细胞系中,LexA-piggyBac介导的遗传转化效率要高一些,但对转化的定向能力较差。
     4.在家蚕细胞内建立了一个基因组中插入EGFP-Lex-BS片段的细胞系。用于今后LexA-piggyBac融合转座酶在提高转座效率、定向能力等方面的进一步研究。
     根据本研究结果,针对目前家蚕遗传转化效率较低、转基因的整合缺乏定向性的不足,可选择采用hr5-IE1作为piggyBac转座酶表达的启动子,以提高该酶的表达水平,从而提高转化效率;也可采用piggyBac和Ga14-DBD或LexA融合后所形成的转座酶来提高转化效率;另外,Ga14-piggyBac融合酶还可考虑用于定向遗传转化的研究。这些结果,对提高当前的家蚕定向遗传转化水平有一定的指导意义。
The genetic transformation technology has been used widely in researches involving gene functions, physiological and biochemical processes, and bioreactor development. However, several problems exist despite of this success, including low integration efficiency of transgenic genes, low expression levels and somehow unpredictable expression patterns of transgenes, and mutation of inherent genes due to the random integration of transgens. One of approaches to resolve these problems is to increase the efficiency of transformation and the level of site-specific integration.
     The silkworm, Bombyx mori L., is one of the most economic insects and a model for gene function and biological research in insects. So far there have been a large number of reports targeting the genetic transformation of this insect, with very few of them addressing the site-specific transformation. In this study, we conducted some assasys in the silkworm cells, with the purpose of founding some systems that have the potential of realizing site-specifc integrations in this insect.
     The major results are as follows:
     1. To find a promoter that can be used to strongly drive expression of piggyBac transposase and thereby increase the transposition efficiceny, eight promoters were compared in cultured silkworm cells (BmN) as to their transcriptional activity. These promoters were hsp70, hsp82, actin3 (A3), polyubiquitin (PUB), a-tubulin, fibroin-L, artificial promoter 3×P3 and immediately early 1 gene promoter flanked by the hr5 enhancer element (hr5-IE1). The results showed that hr5-IE1 displayed the highest transcriptional activity, followed by A3, while the activities of the other six promoters were relatively low. When transfected with an EGFP vector, and a piggyBac helper plasmid in which the expression of piggyBac transposase was driven by hr5-IE1, the EGFP cassette was successfully integrated into the genome of BmN cells.
     2. By using interplasmid transposition assays, the efficiency of applying a chimeric Gd14-piggyBac transposase to achieve site-specific integration onto a DNA target plasmid was evaluated within silkworm Bm-12 and fruitfly Drosophila S2 cells. The Gal4-piggyBac transposase has a Ga14 DNA binding domain (DBD), and the target plasmid has upstream activating sequences (UAS) to which the Gal4 DBD can bind with high affinity. The results indicated that, in the Bm-12 and S2 cells, the transpositional activity of Ga14-piggyBac transposase was observed to be 3.8- and 4.5-times higher, respectively, compared to the controls absent with Ga14-UAS interaction. Moreover, the Ga14-piggyBac transposase tended to direct the integration of piggyBac element to certain sites of the target plasmid, although the target-directing specificity was not as high as expected.
     3. The chimeric LexA-piggyBac transposase was evaluated regarding its capacity of increasing transformation efficiceny and site-specific interaction level in the silkworm cell. This fused transposase was supposed to be able to bind a binding-site (BS) sequence which was located on a plasmid DNA molecule to be targeted during interplasmid transpositions. The results showed that, in the Bm-12 cells, the transpositional activity of LexA-piggyBac transposase was 9.0-times higher than the transposase absent with LexA-BS interaction. However, the integrations on the target molecule appeared to be random.
     4. A silkworm cell line was established which was genetically transformation with EGFP-LexA-BS fragment. This cell line can be used in future studies to further evaluate the capacity of LexA-piggyBac transposase in increasing transformation efficiency and site-specific integration level.
     The above results suggest that the promoter-enhancer hr5-IE1 has the potential of serving as a sound element in future piggyBac-based transgenic research of Bombyx mori with the capability of increasing transformation efficiency. The chimeric transposases, Ga14-piggyBac and LexA-piggyBac may also serve as approach to increase transformation efficiency. Moreover, the Gd14-piggyBac transposase has the potential of realizing site-directed transgenesis in this insect.
引文
Adachi T, Tomita M, Shimizu K, Ogawa S, Yoshizato K,2006. Generation of hybrid transgenic silkworms that express Bombyx mori prolyl-hydroxylase α-subunits and human collagens in posterior silk glands:Production of cocoons that contained collagens with hydroxylated proline residues. J. Biotechnol.,126:205-219.
    Allen ML, O'Brochta DA, Atkinson PW, Levesque CS,2001. Stable germ-line transformation of Culex quinquefasciatus (Diptera:Culicidae). J. Med. Entomol.,38:701-710.
    Alwin S, Gere MB, Guhl E, Effertz K, Barbas CF, Sega DJ, Weitzman MD, Cathomen T,2005. Custom zinc-finger nucleases for use in human cells. Mol. Ther.,12(4):610-617.
    Bateman JR., Lee AM, WU C-Ting,2006, Site-specific transformation of Drosophila via φC31 Integrase-mediated cassette exchange. Genetics,173:769-777.
    Berghammer AJ,1999. A universal marker for transgenic insects. Nature,402(6 760):370-371.
    Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D,2006. Efficient gene targeting in Drosophila with zinc finger nucleases. Genetics,172:2391-2403.
    Beumer K, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, Carroll D,2008. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc. Natl. Acad. Sci. USA,105 (50):19 821-19 826.
    Bibikova M, Beumer K, Trautman JK, Carroll D,2003. Enhancing gene targeting with designed zinc finger nucleases. Science,300(5620):764.
    Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S,2001. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell Biol.,21(1):289-297.
    Bibikova M, Golic M, Golic KG, Carroll D,2002. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics,161:1169-1175.
    Blancafort P, Magnenat L, Barbas FB,2003. Scanning the human genome with combinatorial transcription factor libraries. Nat. Biotechnol.,21:269-274.
    Brent, R, and Ptashne M.1985. A eucaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell,43:729-736.
    Bushman FD,1994. Tethering human immunodeficiency virus 1 integrase to a DNA site directs integration to nearby sequences. Proc. Natl. Acad. Sci. USA,91(20):9233-9237.
    Bushman FD, Miller MD,1997. Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites. J. Virol.,71(1):458-464.
    Catteruccia F, Nolan T, Loukeris TG, Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A,2000. Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature,405(6789):959-962.
    Chen CH, Huang H, Ward CM, Su JT, Schaeffer LV, Guo M, Hay BA,2007. A synthetic maternal-effect selfish genetic element drives population replacement in drosophila. Science, 316(5824):597-600.
    Choo Y, Isalan M,2000. Advances in zinc finger engineering. Curr. Opin. Struct. Biol.,10(4): 411-416.
    Coates CJ, Jasinskiene N, Miyashiro L, James AA,1998. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. UAS,95(7): 3748-3751.
    Coates CJ, Kaminski JM, Summers JB, Segal DJ, Miller AD, Kolb AF,2005. Site-directed genome modification:derivatives of DNA-modifying enzymes as targeting tools. Trends Biotechnol.,23(8):407-419.
    Cooney M, Czernuszewicz G, Postel EH, Flint SJ, Hogan ME,1988. Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science,241(4864): 456-459.
    Dai H, Ma L, Wang J, Jiang R, Wang Z, Fei J,2008. Knockdown of ecdysis-triggering hormone gene with a binary UAS/GAL4 RNA interference system leads to lethal ecdysis deficiency in silkworm. Acta. Biochim. Biophys. Sin.,40(9):790-795.
    Daubnerova I, Roller L, Zitnan D,2009. Transgenesis approaches for functional analysis of peptidergic cells in the silkworm Bombyx mori. Gen. Comp. Endocrinol.,162(1):36-42.
    Davidson AE, Balciunas D, Mohn D, Shaffer J, Hermanson S, Sivasubbu S, Cliff MP, Hackett PB, Ekker SP,2003. Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Develop. Biol.,263:191-202.
    Ding S, Wu XH, Li G, Han M, Zhuang Y, Xu T,2005. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell,122(3):473-483.
    Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL,2008. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat. Biotechnol.,26(6):702-708.
    Dumoulin P, Oertel-Buchheit P, Granger-Schnarr M, Schnarr M,1993. Orientation of the LexA DNA-binding motif on operator DNA as inferred from cysteine-mediated phenyl azide crosslinking. Proc.Natl Acad. Sci. USA,90(5):2 030-2 034.
    Fogh RH, Ottleben G, Ruterjans H, Schnarr M, Boelens R, Kaptein R,1994. Solution structure of the LexA repressor DNA binding domain determined by 1H NMR spectroscopy. EMBO J., 13(17):3936-3944.
    Goldsmith MR, Shimada T, Abe H,2005. The genetics and genomics of the silkworm, Bombyx mori. Ann. Rev. Entomol.,50:71-100.
    Golemis EA, Brent R,1992. Fused protein domains inhibit DNA binding by LexA. Mol. Cell Biol, 12:3006-3014.
    Goulaouic H, Chow SA,1996. Directed integration of viral DNA mediated by fusion proteins consisting of human immunodeficiency virus type 1 integrase and Escherichia coli LexA protein. J. Virol.,70(1):37-46.
    Gray CE, Coates CJ,2004. High-level gene expression in Aedes albopictus cells using a baculovirus Hr3 enhancer and IE1 transactivator. BMC Mol. Biol.,5:8.
    Grossman GL, Rafferty CS, Clayton JR, Stevens TK, Mukabayire O, Benedict MQ,2001. Germline transformation of the malaria vector Anopheles gambiae, with the piggyBac transposable element. Insect Mol. Biol.,10(6):597-604.
    Guo H, Karberg M, Long M, Jones JP 3rd, Sullenger B, Lambowitz AM,2000. Group Ⅱ introns designed to insert into therapeutically relevant DNA target sites in human cells. Science,289: 452-457.
    Guo TQ, Wang SP, Guo XY, Lu CD,2005. Productive infection of Autographa californica nucleopolyhedrovirus in silkworm Bombyx mori strain Haoyue due to the absence of a host antiviral factor. Virology,341(2):231-237.
    Handler AM, Harrell RA,2001. Transformation of the Caribbean fruit fly, Anastrepha suspensa, with a piggybac vector marked with polyubiquitin-regulated gfp. Insect Biochem. Molec. Biol., 31:199-205.
    Handler AM, James AA,2000. Insect Transgenesis:Methods and Applications. CRC Press.
    Handler AM, Mccombs SD,2000. The piggybac transposon mediates germ-line transformation in the oriental fruit fly and closely related elements exist in its genome. Insect Mol. Biol.,9: 605-612.
    Handler AM, McCombs SD, Fraser MJ, Saul SH,1998. The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Proc. Natl. Acad. Sci. USA,95:7520-7525.
    Hediger M, Niessen M, Wimmer EA, Diibendorfer A, Bopp D,2001. Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac. Insect Mol. Biol.,10(2):113-119.
    Heinrich JC, Li X, Henry RA, Haack N, Stringfellow L, Heath A, Scott MJ,2002. Germ-line transformation of the Australian sheep blowfly, Lucilia cuprina. Insect Mol. Biol.,11:1-10.
    Holmes-Son ML, Chow SA,2000. Integrase-LexA fusion proteins incorporated into human immunodeficiency virus type 1 that contains a catalytically inactive integrase gene are functional to mediate integration. J. Virol.,74(24):11 548-11 556.
    Holmes-Son ML, Chow SA,2002. Correct integration mediated by integrase-LexA fusion proteins incorporated into HIV-1. Mol. Ther.,5:360-370.
    Horn C, Handler AM, 2005. Site-specific genomic targeting in Drosophila. Proc. Natl. Acad. Sci. USA,102(35):12483-12488.
    Horn PJ, Peterson CL,2002. Molecular biology Chromatin higher order folding wrapping up transcription. Science,297:1 824-1 827.
    Huynh CQ, Zieler H, 1999. Construction of modular and versatile plasmid vectors for the high-level expression of single or multiple genes in insects and insect cell lines. J. Mol. Biol., 288:13-20.
    Imamura M, Nakahara Y, Kanda T, Tamura T, Taniai K,2006. A transgenic silkworm expressing the immune-inducible cecropin B-GFP reporter gene. Insect Biochem. Mol Biol.,36(5): 429-434.
    Imamura M, Nakai J, Inoue S, Guo XQ, Kanda T, Tamura T,2003. Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori. Genetics,165(3):1 329-1 340.
    Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M,2002. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature,417(6887):452-455.
    Jasinskiene N, Coates CJ, Benedict MQ, Cornel AJ, Rafferty CS, James AA, Collins FH,1998. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc. Natl. Acad. Sci. USA,95(7):3 743-3 747.
    Kaminski JM, Huber MR, Summers JB, Ward MB,2002. Design of a nonviral vector for site-selective, efficient integration into the human genome. FASEB J.,16(10): 1242-1247.
    Kapetanaki MG, Loukeris TG, Livadaras I, Savakis C,2002. High frequencies of Minos transposon mobilization are obtained in insects by using in vitro synthesized mRNA as a source of transposase. Nucl. Acids Res.,30:3 333-3 340.
    Katz RA, Merkel G, Skalka AM, 1996. Targeting of retroviral integrase by fusion to a heterologous DNA binding domain:in vitro activities and incorporation of a fusion protein into viral particles. Virology,217:178-190.
    Kim MH, Aimar C, Best-Belpomme M, Maisonhaute C,1994. The microinjected Drosophila melanogaster 1731 retrotransposon is activated after the midblastula stage of the amphibian Pleurodeles waltl development. Genetica,92(2):107-114.
    Klueg KM, Alvarado D, Muskavitch MAT, Duffy JB, 2002. Creation of a GAL4/UAS-coupled inducible gene expression system for use in Drosophila cultured cell lines. Genesis,34(1-2): 119-122.
    Kolb AF, Coates CJ, Kaminski JM, Summers JB, Miller AD, Segal DJ,2005. Site-directed genome modification:nucleic acid and protein modules for targeted integration and gene correction. Trends Biotechnol.,23(8):399-406.
    Kurihara H, Sezutsu H, Tamura T, Yamada K,2007. Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system. Biochem. Biophys. Res. Commun.,355:976-980.
    Lavrovsky Y, Mastyugin V, Stoltz RA, Abraham NG,1996. Specific inhibition of c-fos proto-oncogene expression by triple-helix-forming oligonucleotides. J. Cell Biochem.,61: 301-309.
    Lee MS, Gippert GP, Soman KV, Case DA, Wright PE, Lee MS,1989. Three dimensional solution structure of a single zinc finger DNA-binding domain. Science,245(4918):635-637.
    Li X, Harrell RA, Handler AM, Beam T, Hennessy K, Fraser MJ Jr., 2005. piggyBac internal sequences are necessary for efficient transformation of target genomes. Insect Mol. Biol.,14: 17-30.
    Lima SQ, Miesenbock G,2005. Remote control of behavior through genetically targeted photostimulation of neurons. Cell,121(1):141-52.
    Lloyd A, Plaisier CL, Carroll D, Drews GN,2005. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl. Acad. Sci. USA,102(6):2232-2237.
    Lobo NF, Hua-Van A, Li X, Nolen BM, Fraser MJ,2002. Germ line transformation of the yellow fever mosquito, Aedes aegypti, mediated by transpositional insertion of a piggyBac vector. Insect Mol. Biol.,11(2):133-139.
    Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L,2007. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol., 25(11):1 298-1 306.
    Loukeris TG, Livadaras I, Arca B, Zabalou S, Savakis C,1995. Gene transfer into the medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science,270(5244):2002-2 005.
    Lund CV, Blancafort P, Popkov M, Barbas CF,2004. Promoter-targeted phage display selections with preassembled synthetic zinc finger libraries for endogenous gene regulation. J. Mol. Biol., 340:599-613.
    Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Muller-Lerch F, Fu F, Pearlberg J, Gobel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK,2008. Rapid "Open-Source" engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell,31:294-301.
    Mandrioli M,2002. Cytogenetic characterization of telomeres in the holocentric chromosomes of the lepidopteran Mamestra brassicae. Chromosome Res., 10(4):279-86.
    Mange A, Julien E, Prudhomme JC, Couble P,1997. A strong inhibitory element down-regulates SRE-stimulated transcription of the A3 cytoplasmic actin gene of Bombyx mori. J. Mol. Biol., 265(3):266-274.
    Maragathavally KJ, Kaminski JM, Coates C J,2006. Chimeric Mosl and piggyBac transposases result in site-directed integration. FASEB,20:1 188-1 195.
    Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA,2008. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat. Biotechnol.,26:695-701.
    Michel K, Stamenova A, Pinkerton AC, Franz G, Robinson AS, Gariou-Papalexiou A, Zacharopoulou A, O'Brochta DA, Atkinson PW,2001. Hermes-mediated germ-line transformation of the Mediterranean fruit fly Ceratitis capitata. Insect Mol. Biol.,10(2): 155-162.
    Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-Okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin-I T, Abe H, Shimada T, Morishita S, Sasaki T, 2004. The genome sequence of silkworm, Bombyx mori. DNA Res.,11:27-35.
    Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC, 2007. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc. Natl. Acad. Sci. USA,104(9):3055-3060.
    Mohammed A, Coates CJ,2004. Promoter and piggyBac activities within embryos of the potato tuber moth, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). Gene,342(2): 293-301.
    Mori H, Yamao M, Nakazawa H, Sugahara Y, Shirai N, Matsubara F, Sumida M, Imamura T,1995. Transovarian transmission of a foreign gene in the silkworm, Bombyx mori, by Autographa californica nuclear polyhedrosis virus. Nat. Biotechnol.,13:1 005-1 007.
    Morton J, Davis MW, Jorgensen EM, Carroll D,2006. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc. Natl. Acad. Sci. USA,103(4.4):16 370-16 375.
    Moto K, Kojima H, Kurihara M, Iwami M, Matsumoto S,2003. Cell-specific expression of enhanced green fluorescence protein under the control of neuropeptide gene promoters in the brain of the silkworm, Bombyx mori, using Bombyx mori nucleopolyhedrovirus derived vectors. Insect Biochem. Mol. Biol.,33(1):7-12.
    Nakayama G, Kawaguchi Y, Koga K, Kusakabe T,2006. Site-specific gene integration in cultured silkworm cells mediated by phiC31 integrase. Mol. Genet. Genomics,275(1):1-8.
    Nicholson L, Singh GK, Osterwalder T, Roman GW, Davis RL, Keshishian H,2008. Spatial and temporal control of gene expression in Drosophila using the inducible GeneSwitch GAL4 system. I. Screen for larval nervous system drivers. Genetics,178(1):215-234.
    Nimmo DD, Alphey L, Meredith JM, Eggleston P,2006. High efficiency site-specific genetic engineering of the mosquito genome. Insect Mol. Biol.,15(2):129-136.
    Oberstein A, Pare A, Kaplan L, Small S,2005. Site-specific transgenesis by Cre-mediated recombination in Drosophila. Nature,2:583-585.
    O'Brochta DA, Atkinson PW, Lehane MJ,2000. Transformation of Stomoxys calcitrans with a Hermes gene vector. Insect Mol. Biol.,9:531-538.
    Ogawa S, Tomita M, Shimizu K, Yoshizato K,2007. Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: Production of recombinant human serum albumin. J. Biotechnol.,128:531-544.
    Papworth M, Moore M, Isalan M, Minczuk M, Choo Y, Klug A,2003. Inhibition of herpes simplex virus 1 gene expression by designer zinc-finger transcription factors. Proc. Natl. Acad. Sci. USA,100:1621-1626.
    Park KS, Lee DK, Lee H, Lee Y, Jang YS, Kim YH, Lee SI, Seol W, Kim JS,2003. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat. Biotechnol,21:1208-1214.
    Pavletich NP, Pabo CO,1991. Zinc finger-DNA recognition:crystal structure of a Zif268-DNA complex at 2.1 A. Science,252:809-817.
    Peloquin JJ, Thibault ST, Staten R, Miller TA,2000. Germ-line transformation of pink bollworm (Lepidoptera:gelechiidae) mediated by the piggybac transposable element. Insect Mol. Biol., 9(3):323-333.
    Peng WJ, Chang CM, Lin TH,2002. Target integration by a chimeric sp1 zinc finger domain-moloney murine leukemia virus integrase in vivo. J. Biomed. Sci.,9(2):171-184.
    Perera OP, Harrell IR, Handler AM,2002. Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient. Insect Mol. Biol.,11(4):291-297.
    Perez EE, Wang JB, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH,2008. Establishment of HIV-1 resistance in CD4 T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol.,26(7):808-816.
    Perutka J, Wang W, Goerlitz D, Lambowitz AM,2004. Use of computer-designed group Ⅱ introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. J. Mol. Biol.,336:421-439.
    Phelps CB, Brand AH,1998. Ectopic gene expression in Drosophila using Ga14 system. Methods, 14(4):367-379.
    Porteus MH,2006. Mammalian gene targeting with designed zinc finger nucleases. Mol. Ther., 13(2):438-446.
    Porteus MH, Baltimore D,2003. Chimeric nucleases stimulate gene targeting in human cells. Science,300(5620):763.
    Reynolds L, Ullman C, Moore M, Isalan M, West MJ, Clapham P, Klug A, Choo Y,2003. Repression of the HIV-1 50 LTR promoter and inhibition of HIV-1 replication by using engineered zinc-finger transcription factors. Proc. Natl. Acad. Sci. USA,100:1615-1620.
    Robertson LK, Dey BK, Campos AR, Mahaffey JW, 2002. Expression of the Drosophila gene disconnected using the UAS/GAL4 system. Genesis,34(1-2):103-106.
    Rogers FA, Manoharan M, Rabinovitch P, Ward DC, Glazer PM,2004. Peptide conjugates for chromosomal gene targeting by triplex-forming oligonucleotides. Nucleic Acids Res.,32:6 595-6604.
    Royer C, Jalabert A, Da Rocha M, Grenier AM, Mauchamp B, Couble P, Chavancy G,2005. Biosynthesis and cocoon-export of a recombinant globular protein in transgenic silkworms. Transgenic Res.,14(4):463-472.
    Rubin GM, Spradling AC,1982. Genetic transformation of Drosophila with transposable element vectors. Science,218(4570):348--353.
    Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN, 2008. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc. Natl. Acad. Sci. USA, 105(15):5809-5814.
    Schmidt-Dorr TP, Oertel-Buchheit C, Pernelle L, Bracco, M. Schnarr, Granger-Schnarr M,1991. Construction, purification, and characterization of a hybrid protein comprising the DNA binding domain of the LexA repressor and the Jun leucine zipper: a circular dichroism and mutagenesis study. Biochemistry,30:9657-9664.
    Schnarr M, Granger-Schnarr M, Hurstel S, Pouyet J, 1988. The carboxy-terminal domain of the LexA repressor oligomerises essentially as the entire protein. FEBS Lett.,234:56-60.
    Segal DJ, Gon(?)alves J, Eberhardy S, Swan CH, Torbett B, Li X, Barbas CF,2004. Attenuation of HIV-1 replication in primary human cells with a designed zinc finger transcription factor. J. Biol. Chem.,279:14 509-14 519.
    Segal, DJ, Stege JT, Barbas CF,2003. Zinc fingers and a green thumb:manipulating gene expression in plants. Curr. Opin. Plant Biol,6:163-168.
    Shuklal VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE,. Mitchell1 JC,. Arnold NL, Gopalan S, Meng XD,. Choi VM,. Rock JM, Wu YY, Katibah GE, Gao ZF, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD,2009. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature,459,437-441
    Smith GM, Mileham KA, Cooke SE, Woolston SJ, George HK, Charles AD, Brammar WJ,1988. The Escherichia coli LexA repressor-operator system works in mammalian cells. EMBO J., 7(12):3975-3982.
    SPSS Inc.,1999. SPSS Base 9.0 Applications Guide. Chicago, Illinois, USA.
    Sumitani M, Yamamoto DS, Oishi K, Lee JM, Hatakeyama M,2003. Germline transformation of the sawfly, Athalia rosae (Hymenoptera:Symphyta), mediated by a piggyBac-derived vector. Insect Biochem. Molec,33:449-458.
    Szabo M, Muller F, Kiss J, Balduf C, Strahle U, Olasz F,2003. Transposition and targeting of the prokaryotic mobile element IS30 in zebrafish. FEBSLett.,550:46-50.
    Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P,2000. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat. Biotechnol,18:81-84.
    Tan A, Tanaka H, Tamura T, Shiotsuki T,2005. Precocious metamorphosis in transgenic silkworms overexpressing juvenile hormone esterase. Proc. Natl. Acad. Sci. USA,102:11 751-11756.
    Thibault ST, Luu HT, Vann N, Miller TA,1999. Precise excision and transposition of piggyBac in pink bollworm embryos. Insect Mol Biol.,8(1):119-123.
    Thliveris AT, Mount DW,1992. Genetic identification of the DNA binding domain of Escherichia coli LexA protein. Proc. Natl. Acad. Sci. USA,89(10):4500-4504.
    Thomas JL, Da Rocha M, Besse A, Mauchamp B, Chavancy G,2002.3xP3-EGFP marker facilitates screening for transgenic silkworm Bombyx mori L. from the embryonic stage onwards. Insect Biochem. Mol. Biol.,32:247-253.
    Tomita M, Hino R, Ogawa S, Iizuka M, Adachi M, Shimizu K, Sotoshiro H, Yoshizato K,2007. A germline transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon. Transgenic Res.,16:449-465.
    Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K,2003. Transgenic silkworms produce recombinant human type Ⅲ procollagen in cocoons. Nat. Biotechnol.,21:52-56.
    Tomita S, Kanda T, Imanishi S, Tamura T,1999. Yeast FLP recombinase-mediated excision in cultured cells and embryos of the silkworm, Bombyx mori (Lepidoptera:Bombycidae). Appl. Entomol. Zool.,34:371-377.
    Townsend JA, Wright DA, Winfrey RJ, Fu FL, Maeder ML, Joung JK, Voytas DF,2009. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature, 459:442-445.
    Uchino K, Imamura M, Shimizu K, Kanda T, Tamura T,2007. Germ line transformation of the silkworm, Bombyx mori, using the transposable element minos. Mol. Genet. Genomics,277(3): 213-220.
    Uchino K, Sezutsu H, Imamura M, Kobayashi I, Tatematsu KI, Iizuka T, Yonemura N, Mita K, Tamura T,2008. Construction of a piggyBac-based enhancer trap system for the analysis of gene function in silkworm Bombyx mori. Insect Biochem. Mol. Biol.,38:1 165-1 173.
    Uhlirova M, Asahina M, Riddiford LM, Jindra M,2002. Heat-inducible transgenic expression in the silkmoth Bombyx mori. Dev. Genes. Evol.,212(3):145-151.
    Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC,2005. Highly efficient endogenous gene correction using designed zinc-finger nucleases. Nature,435(7042):646-651.
    Voskuil MI, Chambliss GH,1993. Rapid isolation and sequencing of purified plasmid DNA from Bacillus subtilis. Appl. Environ. Microbiol.,59(4):1138-1142.
    Wang AB, Liu DP, Liang CC,2003. Regulation of human apolipoprotein B gene expression at multiple levels. Exp. Cell Res.,290(1):1-12.
    Wang HM, Stillman DJ,1993. Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Mol. Cell. Biol.,13:1 805-1 814.
    Wang SP, Guo TQ, Guo XY, Huang JT, Lu CD,2006. Structural analysis of fibroin heavy chain signal peptide of silkworm Bombyx mori. Acta. Biochim. Biophys. Sin.,38:507-513.
    Wang W, Swevers L, Iatrou K,2000. Mariner (Mosl) transposase and genomic integration of foreign gene sequences in Bombyx mori cells. Insect Mol. Biol.,9(2):145-155.
    Wertman KF, Mount DW,1985. Nucleotide sequence binding specificity of the LexA repressor of Escherichia coli K-12. J. Bacteriol.,163:376-384.
    Wilson MH, Coates CJ, George Jr AL,2007. PiggyBac transposon-mediated gene transfer in human cells. Mol. Ther.,15(1):139-145.
    Wolffe AP, Guschin D,2000. Review: chromatin structural features and targets that regulate transcription. J. Struct. Biol.,129(2-3):102-122.
    Wright DA, Townsend JA, Winfrey RJ, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF,2005. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J.,44(4):693-705.
    Wu SC, Maragathavally KJ, Coates CJ, Kaminski JM,2007. Steps toward targeted insertional mutagenesis with class Ⅱ transposable elements. Methods Mol. Biol.,435:139-151.
    Wu SCY, Meir YJJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, Kaminski JM,2006. piggyBac is a flexible and highly active transposon as compared to Sleeping Beauty, Tol2 and Mosl in mammalian cells. Proc. Natl. Acad. Sci. USA,103(41):15 008-15 013.
    Xia QY, Wang J, Zhou ZY, Li RQ, Fan W, Cheng DJ, Cheng TC, Qin JJ, Duan J, Xu HF, Li QB, Li N, Wang MW, Dai FY, Liu C, Lin Y, Zhao P, Zhang HJ, Liu SP, Zha XF, Li CF, Zhao AC, Pan MH, Pan GQ, Shen YH, Gao ZH, Wang ZL, Wang GH, Wu ZL, Hou Y, Chai CL, Yu QY, He NJ, Zhang Z, Li SG, Yang HM, Lu C, Wang J, Xiang ZH, Mita K, Kasahara M, Nakatani Y, Yamamoto K, Abe H, Ahsan B, Dai-Mon T, Doi K, Fujii T, Fujiwara H, Fujiyama A, Futahashi R, Hashimoto SI, Ishibashi J, Iwami M, Kadono-Okuda K, Kanamori H, Kataoka H, Katsuma S, Kawaoka S, Kawasaki H, Kohara Y, Kozaki T, Kuroshu RM, Kuwazaki S, Matsushima K, Minami H, Nagayasu Y, Nakagawa T, Narukawa J, Nohata J, Ohishi K, Ono Y, Osanai-Futahashi M, Ozaki KH, Qu W, Roller L, Sasaki S, Sasaki T, Seino A, Shimomura M, Shimomura M, Shin-I T, Shinoda T, Shiotsuki T, Suetsugu Y, Sugano S, Suwa M, Suzuki Y, Takiya SH, Tamura T, Tanaka H, Tanaka Y, Touhara K, Yamada T, Yamakawa M, Yamanaka N, Yoshikawa H, Zhong YS, Shima-Da T, Morishita S,2008. The genome of a lepidopteran model insect, the silkworm Bombyx mori. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem. Molec.,38(12):1036-1045.
    Xia QY, Zhou ZY, Lu C, Cheng DJ, Dai FY, Li B, Zhao P, Zha XF, Cheng TC, Chai CL, Pan GQ, Xu JS, Liu C, Lin Y, Qian JF, Hou Y, Wu ZL, Li GR, Pan MH, Li CF, Shen YH, Lan XQ, Yuan LW, Li T, Xu HF, Yang GW, Wan YJ, Zhu Y, Yu MD, Shen WD, Wu DY, Xiang ZH, Yu J, Wang J, Li RQ, Shi JP, Li H, Li GY, Su JN, Wang XL, Li GQ, Zhang ZJ, Wu QF, Li J, Zhang QP, Wei N, Xu JZ, Sun HB, Dong L, Liu DY, Zhao SL, Zhao XL, Meng QS, Lan FD, Huang XG, Li YZ, Fang L, Li CF, Li DW, Sun YQ, Zhang ZP, Yang Z, Huang YQ, Xi Y, Qi QH, He DD, Huang HY, Zhang XW, Wang ZQ, Li WJ, Cao YZ, Yu YP, Yu H, Li JH, Ye JH, Chen H, Zhou Y, Liu B, Wang J, Ye J, Ji H, Li ST, Ni PX, Zhang JG, Zhang Y, Zheng HK, Mao BY, Wang W, Ye C, Li SG, Wang J, Wong GKS, Yang HM,2004. A draft sequence for the genome of the domesticated silkworm(Bombyx mori). Science,306(5703):1 937-1 940.
    Yamagata T, Sakurai T, Uchino K, Sezutsu H, Tamura T, Kanzaki R,2008. GFP labeling of neurosecretory cells with the GAL4/UAS system in the silkmoth brain enables selective intracellular staining of neurons. Zool. Sci.,25(5):509-516.
    Yant SR, Wu X, Huang Y, Garrison B, Burgess SM, Kay MA,2005. High-resolution genome-wide mapping of transposon integration in mammals. Mol. Cell Biol.,25:2085-2094.
    Zhang L, Spratt SK, Liu Q, Johnstone B, Qi H, Raschke EE, Jamieson AC, Rebar EJ, Wolffe AP, Case CC,2000. Synthetic zinc finger transcription factor action at an endogenous chromosomal site:activation of the human erythropoietin gene. J. Biol. Chem.,275(43):33 850-33860.
    Zhong BX, Li JY, Chen JE, Ye J, Yu SD,2007. Comparison of transformation efficiency of piggyBac transposon among three different silkworm Bombyx mori strains. Acta. Bioch. Bioph. Sin.,39(2):117-122.
    Zhong J, Yedvobnick B,2009. Targeted gain-of-function screening in Drosophila using GAL4-UAS and random transposon insertions. Genetics Res.,91(4):243-258.
    Zhong Jin, Karberg M, Lambowitz AM,2003. Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition activated selectable marker. Nucleic Acids Res.,31:1656-1664.
    Zitnan D, Kim YJ, Zitnanova I, Roller L, Adams ME, 2007. Complex steroid-peptide-receptor cascade controls insect ecdysis. Gen. Comp. Endocrinol.,153:88-96.
    曹广力,薛仁宇,何泽,郑小坚,沈卫德,贡成良,2006.基于piggyBac转座子转hGM-CSF基因的家蚕研究.蚕业科学,32(3):324-327.
    代红久,徐国江,Thomas Jean-luc,王铸钢,蒋容静,费俭,2005.利用鳞翅目来源的转座子piggyBac建立高效稳定的转基因家蚕技术.科学通报,50(14):1470-1474.
    李维,王宇,张世英,朱玲巧,黄敏,刘辉芬,2003.家蚕胞质肌动蛋白基因启动子的克隆及piggyBac转座子表达载体的构建.农业生物技术学报,11(2):173-178.
    刘辉芬,李维,王宇,蒋平,郭聪,2006.蜘蛛拖牵丝蛋白基因转家蚕表达质粒的构建.湖南大学学报(自然科学版),33(5):105-109.
    马三垣,徐汉福,段建平,赵爱春,张美蓉,夏庆友,2009.家蚕转基因技术中若干因素对转基因效率的影响.昆虫学报,52(6):595-603.
    彭云,潘远旺,钱琰琰,郑清银,姜岚,曹广力,薛仁宇,贡成良,2009.带有丝素重链信号态序列的家蚕丝胶蛋白启动子驱动DsRed的瞬时分泌表达.昆虫学报,52(11):1177-1182
    王宇,刘辉芬,李维,邱兴林,2006.家蚕转基因方法的初步研究.四川动物,25(3):455-459.
    王云,叶向群,吴亦亮,桂慕燕,左正宏,2006.四种启动子调控RFP报告基因在家蚕细胞(Bm-e-HNU5)内的瞬时表达.昆虫学报,49(2):167-171.
    谢敏,贡成良,薛仁宇,盛洁,张晓荣,李艳梅,虞晓华,曹广力,2009家蚕hsp20.4启动子克隆及其驱动表达产物EGT对家蚕蛹体发育的影响.昆虫学报,52(3):246-253
    徐汉福,李娟,刘春,夏庆友,2004.昆虫转基因研究进展、应用和展望.蚕学通讯,24(4):19-26.
    徐汉福,夏庆友,刘春,吴雪峰,杨远萍,赵萍,向仲怀,2005.家蚕转基因载体pBacA3EG的构建及其表达.昆虫学报,48(5):799-803.
    许丽艳,李恩民,刘雏全,殷震,2004.人生长激素转基因家蝇表达载体的构建与鉴定.汕头大学医学院学报,17(1):911.
    周海燕,邵爱云,孟清,2007.Ⅱ组内含子(Group Ⅱ Intron)的分布及多样性.中国生物化学与分子生物学报,23(8):605-611.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700