用户名: 密码: 验证码:
EARLI1亚家族基因AT4G12490对拟南芥成花转变的调节功能及其编码蛋白的抑菌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
被子植物通过成花转变过程完成从营养生长向生殖生长的过渡。成花转变受环境因素和植物自身发育状态的精确控制。植物内部复杂的调控网络可以监控环境变化,能够使个体在经历足够的营养生长阶段之后再进入生殖生长阶段,以获得最大的繁殖能力。拟南芥开花时间的调控机制涉及光周期、赤霉素、年龄、自主、春化作用和环境温度等多条途径,分别在不同的生长条件下对成花转变过程起调节作用。
     本工作研究了EARLI1亚家族基因AT4G12490在拟南芥开花转变过程中的生物学功能。EARLI1亚家族蛋白均由信号肽、PRD功能域和8CM功能域构成,它们的8CM编码序列非常保守。表型观察结果显示,以Col-FRI-Sf2为遗传背景的EARLI1亚家族8CMRNA干扰植株的开花时间明显早于Col-FRI-Sf2野生型植株,说明该亚家族基因在维持拟南芥营养生长和防止拟南芥植株过早进入生殖生长方面具有功能。
     为了更为深入地研究EARLI1亚家族基因AT4G12490在拟南芥开花调控过程中的作用机制,本工作构建了以AT4G12490基因PRD和8CM编码区为靶标的RNA干扰载体AN-90-PRD和AN-90-8CM,以及包含AT4G12490基因完整开放阅读框序列的过表达载体AN-90,并通过浸花法结合抽真空处理对拟南芥Col-0生态型野生型植株进行了转化,获得了AT4G12490基因的RNA干扰株系和过表达株系。同时,通过PCR方法从杂合性T-DNA插入系筛选得到AT4G12490基因的纯合突变体。对野生型、过表达和RNA干扰植株的表型特征进行比较,证实下调AT4G12490基因能够引起早花,该基因具有维持营养生长、延迟开花的作用。
     进一步利用这些材料对AT4G12490基因上调、下调或敲除以后不同开花诱导途径主要基因的表达水平进行了分析。在长日照条件下,AT4G12490基因主要在种子苗、成熟莲座叶和茎中表达。它的表达模式与自主途径开花基因FLK与晚花基因FRI最为相似,都主要在茎和叶中表达。AT4G12490基因的表达在个体发育的不同阶段差异较大,在营养生长初期和生殖发育初期转录水平较高。在长日照条件下,AT4G12490、EARLI1和AZI1等EARLI1亚家族基因表现出相似的昼夜节律性表达特征。无论在长日照还是短日照条件下,通过RNA干扰技术降低AT4G12490基因的表达水平后,成花素基因FT和成花整合因子基因SOC1mRNA的积累会增加,并且在长日照条件下这种效果更加强烈;同时,一些促进成花转变的关键基因的昼夜节律性表达模式更为明显。但AT4G12490基因被干扰后,CCA1、LHY、GI等节律钟基因的表达和振荡规律不受影响。另外,随着AT4G12490基因表达水平的下调,春化作用和自主途径中的关键性开花抑制因子基因FLC以及GA信号转导途径的抑制基因RGA的mRNA丰度明显降低,而春化相关基因VIN3和GA生物合成相关基因的表达水平表现上升。高效液相检测结果表明,干扰AT4G12490基因能够增加内源赤霉素含量,这与RNA干扰植株细、高、早花的表型相一致。以上研究结果表明,AT4G12490基因能够影响不同的拟南芥开花途径。
     为了确定AT4G12490蛋白的亚细胞定位特征,将去除终止密码的AT4G12490基因编码序列连接到pCAMBIA1302载体的绿色荧光蛋白基因之前,构建产生融合表达载体,通过农杆菌介导的叶圆盘转化法获得了35S::AT4G12490-GFP烟草转基因植株。激光共聚焦显微观察发现,AT4G12490蛋白定位在细胞表面,表明该蛋白与感受环境刺激和信号转导有关。AT4G12490基因在烟草中的组成性表达也能够促进营养生长,延迟开花过程。
     此外,本工作还在大肠杆菌细胞中表达了不含信号肽的AT4G12490重组蛋白。首先从Col-0野生型拟南芥基因组DNA扩增产生8CM-PRD编码序列,并连接到pPROEX-HTb载体中,然后将重组质粒转化到BL21(DE3)大肠杆菌细胞中。SDS-PAGE和Western免疫印迹实验结果表明,用IPTG诱导表达的AT4G12490重组蛋白主要存在于包涵体中。由于在大肠杆菌细胞中表达的融合蛋白带有六组氨酸标签,所以在使用尿素对包涵体进行溶解后,通过Ni-NTA亲和层析柱纯化了AT4G12490重组蛋白。抑菌试验结果显示,用AT4G12490重组蛋白处理后,灰霉菌和酿酒酵母细胞的生长明显受到抑制。同时,在细胞内用半乳糖诱导表达AT4G12490基因也能够使酿酒酵母的繁殖速度降低。
     研究AT4G12490基因在拟南芥开花调控网络中的功能将为通过基因工程技术延长植物营养生长时间和增加生物量积累水平提供理论根据,在生物质能源开发中具有重要意义。对AT4G12490等EARLI1亚家族基因的抗性功能进行研究,在农作物改良方面具有潜在的应用价值。
Angiosperms accomplish the transition from vegetative growth to reproductive growth by flowering. The timing of floral induction is controlled accurately by environmental factors and development status of plants. The sophisticated regulatory networks of plants can monitor changes in the environment. To maximize seed production, plants must undergo a sufficient vegetative growth before entering the reproductive stage. In Arabidopsis, the flowering time is considered to be controlled by six major pathways, including photoperiod, gibberellin, age, autonomous, vernalization and ambient temperature pathways, which are implicated in flowering transition under different conditions.
     The biological function of EARLI1subfamily gene AT4G12490in floral induction of Arabidopsis was studied in the present work. The proteins of EARLI1subfamily are constituted by a signal peptide, a proline-rich domain (PRD) and an eight cysteine motif (8CM), and the8CM coding sequences of them are very conservative. Phenotypic observation indicated that the8CM RNA interference lines of EARLI1subfamily in the genetic background of Col-FRI-Sf2initiated flowering transition earlier than the wild-type plants. It suggested that EARLI1subfamily genes functioned in maintenance of vegetative growth and prevention of premature reproductive growth.
     In order to comprehensively understand the mechanism of EARLI1subfamily gene AT4G12490in regulation of Arabidopsis flowering, two RNA interference vectors, AN-90-PRD and AN-90-8CM, targeted to the coding sequences of PRD and8CM of AT4G12490, respectively, and an overexpression vector, AN-90, containing the intact open reading frame of AT4G12490, were constructed in this work. RNA interference lines and overexpressing lines of AT4G12490were prepared by Agrobacterium-mediated transformation of Col-0wild-type Arabidopsis plants using floral dip method in combination with vacuum treatment. At the same time, homozygous mutant has been screened from the progeny of heterozygous T-DNA insertion lines of AT4G12490. Comparison to the phenotypic characteristics of wild-type, overexpressing and RNA interference plants demonstrated that downregulation of AT4G12490could lead to earlier flowering, indicating that efficient expression of AT4G12490could maintain the vegetative growth and delay the flowering time.
     Subsequently, the influences of upregulation, downregulation and knockout of AT4G12490on the expression of the important genes involved in different pathways of floral induction were analyzed using the materials above-mentioned. Under long-day photoperiods, AT4G12490mainly expressed in seedlings, mature rosette leaves and stems, the most similar to FLK of autonomous pathway and late-flowering gene FRI of vernalization pathway. The expression of AT4G12490varied in different stages of development, the transcription level of it was higher in early stage of vegetative growth, also in early stage of reproductive development. Under long-day photoperiods, EARLI1subfamily genes, such as AT4G12490> EARLI1and AZI1, showed daily rhythmicity in expression. Either under long-day photoperiods or under short-day photoperiods, downregulation of AT4G12490resulted in increase of mRNA abundance of florigen gene FT and flowering integrator gene SOC1, and this effect was more strong under long-day photoperiods. Simultaneously, the circadian rhythm expression pattern of the genes involved in promotion of flowering transition was more obvious. In contrast, downregulation of AT4G12490had no effect on expression and oscillation of the circadian clock genes, including CCA1、LHY、G1. Besides, along with the decrease of AT4G12490expression, the transcription of FLC, the potent repressor of flowering in vernalization and autonomous pathways, and RGA, a repressor of GA signal transduction, were inhibited, while VIN3involved in vernalization pathway and the genes related with GA biosynthesis were activated. The results of high performance liquid chromatography analysis showed that interference of AT4G12490expression could increase the content of endogenous GA, it is consistent with the phenotype of RNA interference lines, including slender, tall and early flowering. All these results indicated that AT4G12490could influence different flowering pathways.
     In order to determine the subcellular localizaion of AT4G12490protein, the coding sequence of it without the stop codon were amplified and inserted into pCAMBIA1302to produce a fusion expression vector, and transgenic tobacco plants harbouring35S::AT4G12490-GFP construct were regenerated by Agrobacterium-mediated leaf disc method. Observation under laser scanning confocal microscope indicated that AT4G12490protein expressed in tobacco was localized to cell surface, suggesting this protein might be related with sensing of environmental stimuli and signal transduction. Moreover, constitutive expression of AT4G12490in tobacco plants also could promote the vegetative growth and delay the flowering process.
     Furthermore, recombinant protein of AT4G12490lacking the signal peptide was expressed in Escherichia coli. At first, the coding sequence of PRD-8CM was amplified from genomic DNA of Col-0wild-type Arabidopsis plants and ligated into pPROEX-HTb. Then the recombinant plasmid was introduced into BL21(DE3) strain of E. coli. SDS-PAGE and Western blotting analyses indicated that the recombinant protein of AT4G12490expressed in E. coli after induction with IPTG mainly existed in inclusion bodies. Because the fusion protein expressed in E. coli has6×histidine tag, it was purified with Ni-NTA affinity column after lysis of inclusion bodies with urea. The result of antimicrobial test showed that the growth of Botrytis cinerea and Saccharomyces cerevisiae could be inhibited effectively by recombinant AT4G12490. At the same time, inducible expression of AT4G12490with galactose in yeast cells also could repress the propagation of Saccharomyces cerevisiae.
     Function identification of AT4G12490in regulatory network of flowering time in Arabidopsis can provide theoretical supports to prolongation of the vegetative growth stage and increase of the biomass accumulation of plants by genetic engineering, it is significant in development of biomass energy. Study on the antimicrobial resistance of AT4G12490has potential applications in crop improvement.
引文
[1]Meyerowitz E. M. Prehistory and History of Arabidopsis Research[J]. Plant Physiology, 2001,125(1):15-19
    [2]Zhang X., Henriques R., Lin S. S., et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nature Protocols,2006,1(2):641-646
    [3]AGI. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature,2007,408(6814):796-815
    [4]Willmann M. R., Poethig R. S. The effect of the floral repressor FLC on the timing and progression of vegetative phase change in Arabidopsis[J]. Development,2011, 138:677-685
    [5]Willmann M. R., Poethig R. S. Time to grow up:the temporal role of small RNAs in plants[J]. Current Opinion in Plant Biology,2005,8:548-552
    [6]Sandring S., Agren J. Pollinator-mediated selection on floral display and flowering time in the perennial herb Arabidopsis lyrata[J]. Evolution,2009,63:1292-1300
    [7]Korves T. M., Schmid K. J., Caicedo A. L., et al. Fitness effects associated with the major flowering time gene FRIGIDA in Arabidopsis thaliana in the field[J]. The American Naturalist,2007,169:E141-E157
    [8]Hall M. C., Willis J. H. Divergent selection on flowering time contributes to local adaptation in Mimulus guttatus populations [J]. Evolution,2006,60:2466-2477
    [9]Fornara F., De Montaigu A., Coupland G. Snapshot:Control of flowering in Arabidopsis[J]. Cell,2010,141(3):550.e1-550.e2
    [10]Koornneef M., Alonso-Blanco C., Peeters A. J. M., et al. Genetic control of flowering time in Arabidopsis [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998,49:345-370
    [11]Simpson G. G., Gendall A. R., Dean C. When to switch to flowering[J]. Annual Review of Cell and Developmental Biology,1999,15:519-550
    [12]Franklin K. A., Larner V. S., Whitelam G. C. The signal transducing photoreceptors of plants[J]. International Journal of Developmental Biology,2005,49:653-664
    [13]Johnson E., Bradley M., Harberd N. P., et al. Photoresponses of light-grown phyA mutants of Arabidopsis[J]. Plant Physiology,1994,10:141-149
    [14]Reed J. W., Nagpal P., Poole D. S., et al. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development[J]. Plant Cell,1993,5:147-157
    [15]Mockler T. C., Guo H. W., Yang H. Y., et al. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction[J]. Development, 1999,126:2073-2082
    [16]Reed J. W., Nagatani A., Elich T. D., et al. Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development[J]. Plant Physiology,1994, 104:1139-1149
    [17]Casal J. J., Boccalandro H. Co-action between phytochrome B and HY4 in Arabidopsis thaliana[J]. Planta,1995,197:213-218
    [18]Guo H. W., Yang H., Mockler T. C., et al. Regulation of flowering time by Arabidopsis photoreceptors[J]. Science,1998,279:1360-1363
    [19]Koornneef M., Hanhart C. J., Van der Veen J. H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana[J]. Molecular Genetics and Genomics, 1991,229:57-66
    [20]Guo H., Duong H., Ma N., et al. The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism [J]. The Plant Journal,1999,19:279-287
    [21]El-Din El-Assal S., Alonso-Blanco C., Peeters A. J., et al. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2[J]. Nature Genetics,2001,29:435-440
    [22]El-Din El-Assal S., Alonso-Blanco C, Peeters A. J., et al. The role of cryptochrome 2 in flowering in Arabidopsis [J]. Plant Physiology,2003,133:1504-1516
    [23]Endo M., Mochizuki N., Suzuki T., et al. CRYPTOCHROME2 in vascular bundles regulates flowering in Arabidopsis[J]. Plant Cell,2007,19:84-93
    [24]Liu L. J., Zhang Y. C., Li Q. H., et al. COP 1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis [J]. Plant Cell,2008, 20:292-306
    [25]Bagnall D. J., King R. W., Hangarter R. P. Blue-light promotion of flowering is absent in hy4 mutants of Arabidopsis[J]. Planta,1996,200:278-280
    [26]Zagotta M. T., Hicks K. A., Jacobs G. I., et al. The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering[J]. The Plant Journal,1996,10:691-702
    [27]Mockler T. C., Guo H. W., Yang H. Y., et al. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction[J]. Development, 1999,126:2073-2082
    [28]Blazquez M. A., Ahn J., Weigel D. A thermosensory pathway controlling flowering time in Arabidopsis thaliana[J]. Nature Genetics,2003,33:168-171
    [29]Yang H. Q., Wu Y. J., Tang R. H., et al. The C termini of Arabidopsis cryptochromes mediate a constitutive light response[J]. Cell,2000,103:815-827
    [30]Alabadi D., Oyama T., Yanovsky M. J., et al. Reciprocal regulation between TOC1 and LHY/CCA1[J]. Science,2001,293:880-883
    [31]Michael T. P., McClung C. R. Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis [J]. Plant Physiology,2003,132:629-639
    [32]Roden L. C., Song H. R., Jackson S., et al. Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis[J]. Proceedings of the National Academy of Sciences of USA,2002,99:13313-13318
    [33]Yanovsky M. J., Kay S. A. Molecular basis of seasonal time measurement in Arabidopsis[J]. Nature,2000,419:308-312
    [34]Doyle M. R., Davis S. J., Bastow R. M., et al. The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana[J]. Nature,2002,419:74-77
    [35]Niwa Y, Ito S., Nakamichi N., et al. Genetic linkages of the circadian clock-associated genes, TOC1, CCA1 and LHY, in the photoperiodic control of flowering time in Arabidopsis thaliana[J]. Plant and Cell Physiology,2007,48:925-937
    [36]Suarez-Lopez P., Wheatley K., Robson F., et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis [J]. Nature,2001, 410:1116-1120
    [37]Morris K., Thornber S., Codrai L., et al. DAY NEUTRAL FLOWERING represses CONSTANS to prevent Arabidopsis flowering early in short days[J]. Plant Cell,2010,22: 1118-1128
    [38]Yanovsky M. J., Kay S. A. Molecular basis of seasonal time measurement in Arabidopsis[J]. Nature,2002,419:308-312
    [39]Turck F., Fornara F., Coupland G. Regulation and identity of florigen:FLOWERING LOCUS T moves center stage[J]. Annual Review of Plant Biology,2008,59:573-594
    [40]Hassidim M., Harir Y., Yakir E., et al. Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis[J]. Planta,2009,230:481-491
    [41]Fornara F., Panigrahi K. C., Gissot L., et al. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response[J]. Developmental Cell,2009,17:75-86
    [42]Kobayashi Y, Weigel D. Move on up, it's time for change:mobile signals controlling photoperiod-dependent flowering[J]. Genes & Development,2007,21:2371-2384
    [43]Jang S., Marchal V., Coupland G., et al. Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response[J]. EMBO Journal,2008, 27:1277-1288
    [44]Liu L. J., Zhang Y. C., Li Q. H., et al. COP 1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis[J]. Plant Cell,2008, 20:292-306
    [45]Liu H., Yu X., Li K., et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis[J]. Science,2008,322:1535-1539
    [46]Michaels S., Amasino R. FLOWERING LOCUS C encodes a novel MADS domain protein that acts a repressor of flowering[J]. Plant Cell,1999,11:949-956
    [47]Sheldon C., Burn J., Perez P., et al. The FLF MADS box gene:A repressor of flowering in Arabidopsis regulated by vernalization and methylation[J]. Plant Cell,1999, 11:445-458
    [48]Hepworth S., Valverde F., Ravenscroft D., et al. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs[J]. EMBO Journal,2002,21:4327-4337
    [49]Reeves P., Coupland G. Response of plant development to environment:control of flowering by daylength and temperature[J]. Current Opinion in Plant Biology,2000, 3:37-42
    [50]Michaels S., He Y., Scortecci K., et al. Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis[J]. Proceedings of the National Academy of Sciences of USA,2003,100:10102-10107
    [51]Johanson U., West J., Lister C., et al. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time[J]. Science,2000, 290:344-347
    [52]Chandler J., Wilson A., Dean C. Arabidopsis mutants showing an altered response to vernalization[J]. The Plant Journal,1996,10:637-644
    [53]Gendall A., Levy Y, Wilson A., et al. The VERNALIZATION2 gene mediates the epigenetic regulation of vernalization in Arabidopsis [J]. Cell,2001,107:525-535
    [54]Levy Y, Mesnage S., Mylne J., et al. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control[J]. Science,2002,297:243-247
    [55]Swiezewski S., Liu F., Magusin A., et al. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target[J]. Nature,2009,462:799-802
    [56]De Lucia F., Crevillen P., Dean C., et al. A PHD-Polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization[J]. Proceedings of the National Academy of Sciences of USA,2008,105:16831-16836
    [57]Martinez-Zapater J. M., Somerville C. Effect of light quality and vernalization on late-flowering mutants of Arabidopsis thaliana[J]. Plant Physiology,1990,92:770-776
    [58]Sheldon C., Rouse D., Finnegan E., et al. The molecular basis of vernalization:The central role of FLOWERING LOCUS C (FLC)[J]. Proceedings of the National Academy of Sciences of USA,2000,97:3753-3758
    [59]Burd C., Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins[J]. Science,1994,265:615-621
    [60]Macknight R., Bancroft I., Page T., et al. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains [J]. Cell,1997, 89:737-745
    [61]Sarnowski T. J., Swiezewski S., Pawlikowska K., et al. AtSWI3B, an Arabidopsis homolog of SWI3, a core subunit of yeast Swi/Snf chromatin remodeling complex, interacts with FCA, a regulator of flowering time[J]. Nucleic Acids Research,2002, 30:3412-3421
    [62]Macknight R., Duroux M., Laurie R., et al. Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA[J]. Plant Cell,2002, 14:877-888
    [63]Quesada V., Macknight R., Dean C., et al. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time[J]. EMBO Journal,2003,22:3142-3152
    [64]Simpson G, Dijkwel P., Quesada V., et al. FY is an RNA 3'end-processing factor that interacts with FCA to control the Arabidopsis floral transition[J]. Cell,2003,113:777-787
    [65]Schomburg F., Patton D., Meinke D., et al. FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs[J]. Plant Cell,2001, 13:1427-1436
    [66]Lee I., Aukerman M. J., Gore S. L., et al. Isolation of LUMINIDEPENDENS:a gene involved in the control of flowering time in Arabidopsis [J]. Plant Cell,1994,6:75-83
    [67]Kenzior A., Folk W. AtMSI4 and RbAp48 WD-40 repeat proteins bind metal ions[J]. FEBS Letters,1998,440:425-429
    [68]Morel P., Trehin C., Moneger, F., et al. Control of floral induction and plant yield:role of the MSI4 gene coding for a WD-repeat protein[C]. In:XIII(13th) International Conference on Arabidopsis Research (Seville, Spain),2002
    [69]Martinez-Zapater J. M., Jarillo J., Cruz-Alvarez M., et al. Arabidopsis late-flowering fve mutants are affected in both vegetative and reproductive development[J]. The Plant Journal,1995,7:543-551
    [70]Welch S. M., Roe J. L., Dong Z. A genetic neural network model for flowering time control in Arabidopsis thaliana[J]. Agronomy Journal,2003,95:71-81
    [71]Dong Z. Incorporation of genomic information into the simulation of flowering time in Arabidopsis thaliana[D]. Ph.D. dissertation, Kansas State University,2003
    [72]Reeves P., Coupland G Analysis of flowering time control in Arabidopsis by comparison of double and triple mutants[J]. Plant Physiology,2001,126:1085-1091
    [73]Peng J., Carol P., Richards D., et al. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses [J]. Genes & Development,1997, 113:194-207
    [74]Silverstone A., Ciampaglio C., Sun T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway[J]. Plant Cell,1998,10:155-169
    [75]Silverstone A., Mak P., Martinez E., et al. The RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana[J]. Genetics,1997,146:1087-1099
    [76]Lee S., Cheng H., King K., et al. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition[J]. Genes & Development,2002,16:646-658
    [77]Blazquez M. A., Green T., Nilsson O., et al. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter [J]. Plant Cell,1998,10:791-800
    [78]Moon J., Suh S. S., Lee H., et al. The SOC1 MADS-box gene integrates vernalization and gibberelling signals for flowering in Arabidopsis[J]. The Plant Journal,2003, 35:613-623
    [79]Mutasa-Gottgens E., Hedden P. Gibberellin as a factor in floral regulatory networks[J]. Journal of Experimental Botany,2009,60:1979-1989
    [80]Eriksson S., Bohlenius H., Moritz T., et al. GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation[J]. Plant Cell,2006, 18:2172-2181
    [81]Hedden P., Phillips A. L. Gibberellin metabolism:new insights revealed by the genes[J]. Trends in Plant Science,2000,5:523-530
    [82]Schomburg F. M., Bizzell C. M., Lee D. J., et al. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants [J]. Plant Cell, 2003,15:151-163
    [83]Wang H., Caruso L. W., Downie A. B., et al. The embryo MADS domain protein AGAMOUS-Likel5 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism[J]. Plant Cell,2004,16:1206-1219
    [84]Zhao X. Y., Yu X. H., Foo E., et al. A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyls elongation[J]. Plant Physiology, 2007,145:106-111
    [85]Sakamoto T., Kobayashi M., Itoh H., et al. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice[J]. Plant Physiology,2001, 125(3):1508-1516
    [86]Biemelt S., Tshiersch H., Sonnewald U. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants[J]. Plant Physiology,2004,135:254-265
    [87]Agharkar M. P., Lomba F., Altpeter H. N., et al. Stable expression of AtGA2ox1 in a low-input turfgrass (Paspalum notatum Flugge) reduces bioactive gibberellin levels and improves turf quality under field conditions[J]. Plant Biotechnology Journal,2007, 5(6):791-801
    [88]Dijkstra C., Adams E., Bhattaacharya A., et al. Over-expression of a gibberellin 2-oxidase gene from Phaseolus coccineus L. enhances gibberellins inactivation and induces dwarfism in Solanum species[J]. Plant Cell Reports,2008,27:463-470
    [89]Hartmann U., Hohmann S., Nettesheim K, et al. Molecular cloning of SVP:a negative regulator of the floral transition in Arabidopsis[J]. The Plant Journal,2000,21:351-360
    [90]Wang J. W., Czech B., Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell,2009,138:738-749
    [91]Wu G., Poethig R.S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Development,2006,133:3539-3547
    [92]Chuck G., Cigan A. M., Saeteurn K., et al. The heterochronic maize mutant Corngrassl results from overexpression of a tandem microRNA[J]. Nature Genetics,2007, 39:544.549
    [93]Guo A. Y., Zhu Q. H., Gu X., et al. Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family [J]. Gene,2008,418:1-8
    [94]Wu G., Poethig R. S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[1]. Development,2006,133:3539-3547
    [95]Usami T., Horiguchi G., Yano S., et al. The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty[J]. Development,2009,136:955-964
    [96]Shikata M., Koyama T., Mitsuda N., et al. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase[J]. Plant and Cell Physiology,2009,50:2133-2145
    [97]Wang J. W., Schwab R., Czech B., et al. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana[J]. Plant Cell,2008,20:1231-1243
    [98]Wu G, Park M. Y, Conway S. R., et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell,2009,138:750-759
    [99]Kader J. C. Lipid-transfer proteins in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:627-654
    [100]田爱梅,曹家树.植物脂质转移蛋白[J].细胞生物学杂志,2008,30:483-488
    [101]Torres-Schumann S., Godoy J. A., Pintor-Toro J. A. A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants[J]. Plant Molecular Biology, 18:749-757
    [102]Douliez J. P., Michon T., Elmorjani K., et al. Mini review:structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels[J]. Journal of Cereal Science,2000,32(1):1-20
    [103]Pasquato N., Berni R., Folli C., et al. Crystal structure of peach Pru p 3, the prototypic member of the family of plant non-specific lipid transfer protein pan-allergens [J]. Journal of Molecular Biology,2006,356(3):684-694
    [104]Hoh F., Pons J. L., Gautier M. F., et al. Structure of a liganded type 2 non-specific lipid-transfer protein from wheat and the molecular basis of lipid binding[J]. Acta Crystallographica Section D-Biological Crystallography,2005,61(4):397-406
    [105]李诚斌,施庆珊,疏秀林等.植物抗菌蛋白nsLTPs[J].植物生理学通讯,2006,6:539-544
    [106]Arondel V., Vergnolle C., Cantrel C. et al. Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana[J]. Plant Science,2000,157(1):1-12
    [107]Liu K. D., Jiang H., Moore S. L., et al. Isolation and characterization of a lipid transfer protein expressed in ripening fruit of Capsicum chinense[J]. Planta,2006,223(4):672-683
    [108]Boutrot F., Meynard D., Guiderdoni E., et al. The Triticum aestivum non-specific lipid transfer protein(TaLtp) gene family:comparative promoter activity of six TaLtp genes in transgenic rice[J]. Planta,2007,225(4):843-862
    [109]Feng J. X., Ji S. J., Shi Y. H., et al. Analysis of five differentially expressed gene families in fast elongating cotton fiber [J]. Acta Biochimica et Biophysica Sinica,2004, 36(1):51-57
    [110]Boutrot F., Chantret N., Gautier M. F. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein(nsLtp) gene families and identification of wheat nsLtp genes by EST data mining[J]. BMC Genomics,2008,9(1):86-105
    [111]Zhang D., Wengier D., Shuai B., et al. The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth[J]. Plant Physiology,2008,148(3):1368-1379
    [112]Zhang D. S., Liang W. Q., Yin C. S., et al. OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice[J]. Plant Physiology,2010,154(1): 149-162
    [113]刘志勇,叶雪凌,冯辉等.大白菜核雄性不育相关基因BrLTP1的克隆及特征分析[J].园艺学报,2011,38(2):343-352
    [114]Kumar S., Tamura K., Nei M. MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment[J]. Briefings in Bioinformatics,2004,5:150-163
    [115]Thoma S., Hecht U., Kippersn A., et al. Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arobidopsis[J]. Plant Physiology, 105(1):35-45
    [116]Tsuboi S., Osafune T., Tsugeki R., et al. Nonspecific lipid transfer protein in castor bean cotyledon cells:subcellular localization and a possible role in lipid metabolism[J]. Journal of Biochemistry,1992,111:500-508
    [117]Yi S. I., Park M. Y., Kim J. K., et al. AlLTPs from Allium species represent a novel class of lipid transfer proteins that are localized in endomembrane compartments[J]. Plant Biotechnology Reports,2009,3:213-223
    [118]Carvalho A. O., Teodoro C. E. S., Da Cunha M., et al. Intracellular localization of a lipid transfer protein in Vigna unguiculata seeds[J]. Physiologia Plantarum,2004, 122:328-336
    [119]Pagnussat L. A., Lombardo C., Regente M., et al. Unexpected localization of a lipid transfer protein in germinating sunflower seeds[J]. Journal of Plant Physiology,2009, 166:797-806
    [120]Nishimura S., Tatano S., Gomi K., et al. Chloroplast-localized nonspecific lipid transfer protein with anti-fungal activity from rough lemon[J]. Physiological and Molecular Plant Pathology,2008,72:134-140
    [121]Trevino M. B., Oconnell M. A. Three drought-resposive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression[J]. Plant Physiology,1998,116(4):1461-1468
    [122]Jiang H., Song W., Li A., et al. Identification of genes differentially expressed in cauliflower associated with resistance to Xanthomonas campestris pv. Campestris[J]. Molecular Biological Reports,2010,38(1):621-629
    [123]Cameron K. D., Teece M. A., Smart L. B. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacoo[J]. Plant Physiology,2006,140(l):176-183
    [124]Maldonado A. M., Doerner P., Dixon R. A., et al. A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis[J]. Nature,2002,419:399-403
    [125]Sarowar S., Kim Y. J., Kim K. D., et al. Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in longdistance systemic signaling in tobacco[J]. Plant Cell Reports,2009,28(3):419-427
    [126]Neumanna G. M., Condron R., Thomas I., et al. Purification, characterization and sequencing of a family of Petunia petal lipid transfer proteins phosphorylated by plant calcium-dependent protein kinase[J]. Plant Science,1995,107(2):129-145
    [127]Van Loon L. C., Van Strien E. A. The families of pathogenesis-related proteins, their activities and comparative analysis of PR-1 type proteins [J]. Physiological and Molecular Plant Pathology,1999,55:85-97
    [128]Rajesh N. P., Bharat B. C. Transgenic indica rice expressing nsLTP like protein shows enhanced resistance to both fungal and bacterial pathogens[J]. Molecular Breeding,2006, 17:159-171
    [129]Molina A., Garcia O. F. Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2[J]. The Plant Journal,1997, 12:669-675
    [130]Sarowar S., Kim Y. J., Kim K. D., et al. Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco[J]. Plant Cell Reports,2009,28:419-427
    [131]Cammue B. P. A., Thevissen K., Hendriks M., et al. A potend antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins[J]. Plant Physiology,1995,109:445-455
    [132]葛晓春,陈继超,林奕等.水稻非特异性脂质转移蛋白的原核表达、纯化及抑菌功能[J].生物化学与生物物理学报,2002,34(1):83-87
    [133]Blein J. P., Coutos-Thevenot P., Marion D., et al. From elicitins to lipid-transfer proteins:a new insight in cell signaling involved in plant defence mechanisms[J]. Trends in Plant Science,2002,7(7):293-296
    [134]Park S. Y., Jauh G. Y., Mollet J. C., et al. A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix[J]. Plant Cell,2000,12(1):151-164
    [135]Nieuwland J., Feron R., Huisman B. A. H., et al. Lipid transfer proteins enhance cell wall extension in tobacco[J]. Plant Cell,2005,17(7):2009-2019
    [136]Eklund D. M., Edqvist J. Localization of nonspecific lipid transfer proteins correlate with programmed cell death responses during endosperm degradation in Euphorbia lagascae seedlings[J]. Plant Physiology,2003,132:1249-1259
    [137]Chae K., Zhang K. L., Zhang L., et al. Two SCA (stigma/style cysteine-rich adhesin) isoforms show structural differences that correlate with their levels of in vitro pollen tube adhesion activity[J]. Journal of Biological Chemistry,2007,282(46):33845-33858
    [138]Ariizumi T., Amagai M., Shibata D., et al. Comparative study of promoter activity of three anther-specific genes encoding lipid transfer protein, xyloglucan endotransglucosylase/hydrolase and polygalacturonase in transgenic Arabidopsis thaliana[J]. Plant Cell Reports,2002,21(1):90-96
    [139]Salcedo G., Sanchez-Monge R., Diaz-Perales A., et al. Plant non-specific lipid transfer proteins as food and pollen allergens[J]. Clinical and Experimental Allergy,2004, 34(9):1336-1341
    [140]Lauer I., Dueringer N., Pokoj S., et al. The non-specific lipid transfer protein, Ara h 9, is an important allergen in peanut[J]. Clinical and Experimental Allergy,2009, 39(9):1427-1437
    [141]Richards K. D., Gardner R. C. pEARLIl(accession no. L43080):an Arabidopsis member of a conserved gene family(PGR95-099)[J]. Plant Physiology,1995, 109:1497-1499
    [142]Dvorakova L., Cvrckova F., Fischer L. Analysis of the hybrid proline-rich protein families from seven plant species suggests rapid diversification of their sequences and expression patterns[J]. BMC Genomics,2007,8:412-427
    [143]Zhang Y., Schlappi M. Cold responsive EARLI1 type HyPRPs improve freezing survival of yeast cells and form higher order complexes in plants [J]. Planta,2007, 227:233-245
    [144]Wilkosz R., Schlappi M. A gene expression screen identifies EARLI1 as a novel vernalization-responsive gene in Arabidopsis thaliana[J]. Plant Molecular Biology,2000, 44:777-787
    [145]Bubier J., Schlappi M. Cold induction of EARLI1, a putative Arabidopsis lipid transfer protein, is light and calcium dependent[J]. Plant Cell,2004,27:929-936
    [146]Weyman P. D., Pan Z., Feng Q., et al. DEA1, a circadian-and cold-regulated tomato gene, protects yeast cells from freezing death[J]. Plant Molecular Biology,2006, 62:547-559
    [147]Wang C. F., Huang L. L., Buchenauer H., et al. Histochemical studies on the accumulation of reactive oxygen Species (O2- and H2O2) in the incompatible and compatible interaction of wheat:Puccinia striiformis f. sp. Tritici.[J]. Physiological and Molecular Plant Pathology,2008,71:230-239
    [148]Nishiuchi T., Masuda D., Nakashita H., et al. Fusarium phytotoxin trichothecenes have an elicitor-like activity in Arabidopsis thaliana, but its activity differed significantly among their molecular species[J]. Molecular Plant-Microbe Interaction,2006,19:512-520
    [149]Brenda P. H., Samina N. S., Madiha A., et al. Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in Arabidopsis[J]. Plant Physiology,2012, 159:682-695
    [150]Richards K. D., Schott E. J., Sharma Y. K., et al. Aluminum induces oxidative stress genes in Arabidopsis thaliana[J]. Plant Physiology,1998,116:409-418
    [151]Jung H. W., Tschaplinski T. J., Wang L., et al. Priming in systemic plant immunity[J]. Science,2009,324:89-91
    [152]Arondel V., Vergnolle C., Cantrel C., et al. Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana[J]. Plant Science,2000,157:1-12
    [153]Chassot C., Nawrath C., Metraux1 J. P. Cuticular defects lead to full immunity to a major plant pathogen[J]. The Plant Journal,2007,49:972-980
    [154]Du Z., Xu D., Li L., et al. Inhibitory effects of Arabidopsis EARLI1 against Botrytis cinerea and Bradysia difformis[J]. Plant Cell Tissue and Organ Culture,2012, 110:435-443
    [155]Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures[J]. Physiologia Plantarum,1962,15:473-497
    [156]Stewart C. N. Jr., Via L. E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications [J]. Biotechniques,1993,14:748-750
    [157]马利加P,克莱森D.F.,格瑞森姆W.,等.植物分子生物学实验指南[M].刘进元,吴庆余等译.北京:科学出版社,2000:37-52
    [158]Clough S. J., Bent A. F. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant Jounal,1998,16(6):735-743
    [159]Laux T. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis[J]. Development,1996,122:87-96
    [160]Tan F. C., Swain S. M. Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis)[J]. Physiologia Plantarum,2007,131:481-495
    [161]Ross J. J., MacKenzie-Hose A. K., Davies, P., et al. Further evidence for feedback regulation of gibberellin biosynthesis in pea[J].1999, Plant Physiology,105:532-538
    [162]Thomas S.G., Sun T. P. Update on gibberellin signaling:a tale of the tall and the short[J]. Plant Physiology,2004,135:668-676
    [163]Peng J., Harberd N. P. The role of GA-mediated signaling in the control of seed germination[J]. Current Opinion in Plant Biology,2002,5:376-381
    [164]Olszewski N., Sun T. P., Gubler F. Gibberellin signaling:biosynthesis, catabolism, and response pathways[J]. Plant Cell,2002,14:S61-S80
    [165]Richards D. E., King K. E., Ait-ali T., et al. How gibberellin regulates plant growth and development:a molecular genetic analysis of gibberellin signaling[J]. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52:67-88
    [166]Hedden P., Phillips A. L. Gibberellin metabolism:new insights revealed by the genes[J]. Trends in Plant Science,2000,5:523-530
    [167]Carrera E., Bou J., Garcia-Martinez J. L., et al. Changes in GA20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants[J]. The Plant Journal,2000,22:247-256
    [168]Mutasa-Gottgens E. S., Hedden P. Gibberellin as a factor in floral regulatory networks[J]. Invited Review Journal of Experimental Botany,2009,60(7):1979-1989
    [169]Dill A., Jung H. S., Sun T. P. The DELLA motif is essential for gibberellin-induced degradation of RGA[J]. Proceedings of the National Academy of Sciences of USA,2001, 98:14162-14167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700