用户名: 密码: 验证码:
液压油有效体积弹性模量及测量装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压系统广泛应用于各类机械装备中,作为工作介质液压油的有效体积弹性模量表征了系统的刚性,是影响系统动态性能的重要参数之一。正是由于具备可压缩性,通常将油液视作液压系统中的弹簧。油液弹性模量是一个动态量,影响因素多,变化复杂,是个难以确定的软参数。如何准确获得弹性模量参数,一直是液压领域基础研究的热点,对液压系统特别是动态响应和稳定性要求高的系统设计与分析具有重要意义。因此,研究液压油有效体积弹性模量在不同工况条件下的动态变化规律,是提高系统性能的一种重要途径,具有很强的工程应用背景和学术研究价值。
     本文首次引入液压油动态弹性模量的概念,提出了动态弹性模量的数学模型。这一模型在充分考虑油液工作压力、温度、含气量等工况参数综合影响的基础上,特别考虑了液压系统工作时由于执行器内油液体积实时变动而引起的油液工作压力及其分布的动态变化,有效改善了以往对弹性模量的描述过于单一、不够准确的问题。研制了一种基于定义法的弹性模量检测装置。该装置采用伺服电机加载,并通过高精度压力传感器和位移传感器直接测得封闭容器内油液的压力、体积变化,具有加载压力(0-20 MPa)和加载速度(0.35-4.45%/min)连续可控、综合测量误差小于2.08%等优点,可实现在线且准确测得液压系统中的油液弹性模量。通过抽真空处理,使油液的含气量由12.29%降至7.41%,此时液压伺服系统阶跃响应的超调量减小约5-10%,且系统调整至稳态输出的过程也有所减短。提出了一种基于动态弹性模量的控制参数调整方法。该方法根据执行器内油液弹性模量的变化来实时调节系统增益,使控制参数与液压固有频率更加匹配,从而可保持系统结构不变的基础上最大限度的提高系统动态性能。通过对该方法对应频率分别为2Hz和8 Hz正弦信号的跟踪特性分析,计算和实验结果表明系统的最大跟踪误差降低了25%-30%,相位滞后减小约3.5°-8.6°,过渡过程的超调现象得到明显改善。
     论文主要研究内容如下:
     第一章,阐述了油液有效体积弹性模量的含义、特点及其在液压系统设计与分析中发挥的重要作用。综述和总结了国内外关于弹性模量的影响因素、测量技术等研究方向的研究历程,进而提出本课题的研究内容和研究目标。
     第二章,理论分析了液压油中由溶解气体和游离气体的含量、状态变化引起的混气油液弹性模量的含气效应。运用CFD软件仿真分析了单个气泡和气泡群在油液中的运动特性,揭示了气泡尺寸、油液粘度、工作压力和气泡群体间的相互作用等因素对气泡的上升运动速度及形变特性的影响。
     第三章,建立了封闭容腔内混气油液有效体积弹性模量的数学模型,并数值仿真了在不同初始含气量、油液温度等条件下,弹性模量随油液工作压力的变化特性。基于理论分析,设计了一套抽真空除气装置和弹性模量测量装置应用于一大型液压源系统,以提高系统内油液的弹性模量值。
     第四章,基于课题研究内容和上一代实验系统的应用结果,研制了弹性模量综合实验台。对其三大关键分系统:闭式系统及其抽真空处理、基于伺服电机加载的弹性模量测量装置和伺服阀控缸系统,作了详细的解决方案、原理结构和关键参数设计。
     第五章,分别对不同工况条件下混气油液的含气量测量、抽真空处理、静态弹性模量和动态弹性模量的测量开展相关实验研究。实验结果揭示了抽真空前后油液含气量和动、静态弹性弹性模量的变化规律,重点分析了在一定温度、体积变化率及工作压力范围内油液动态弹性模量的变化机理。
     第六章,实验研究了抽真空处理前后液压伺服系统对阶跃信号和不同频率正弦信号的响应特性。结果揭示了油液弹性模量动态变化对超调量、调整时间及信号跟踪能力等系统特性的影响。针对液压伺服系统工作时执行器内油液弹性模量的动态变化,提出了一种基于动态弹性模量的控制参数实时调整方法。经调整后系统的动态性能得到明显改善,跟踪误差显著减小
     第七章,概括了全文的主要研究工作,总结了研究成果,并展望了今后在该课题方向展开进一步研究的思路。
Hydraulic systems are widely used in many types of mechanical equipment. Effective fluid bulk modulus taken as the system rigidity plays an important role in the hydraulic systems. Due to its compressibility, the hydraulic fluid is generally regarded as a hydraulic spring. The effective bulk modulus varys with different working conditions and is considered as a soft parameter, and the variations are frequent and very complex. To estimating effective bulk modulus accurately is very important when designing high performance hydraulic systems, especially when the high quality systems with fast response and high stability are concerned. Therefore, researches on the influences of bulk modulus variation, the measurement of bulk modulus and the system behavior analysis based on dynamic bulk modulus are very significant to improve the hydraulic system performance.
     The concept of dynamic fluid bulk modulus was first introduced and its mathematical model was proposed in this study. The model is taking the effect of working pressure, fluid temperature and air content into account, especially the dynamic pressure oscillation produced by the fluid volume change in the actuator. The model can effectively improve the accuracy of the bulk modulus in description. A measuring device was developed based on the bulk modulus definition. In this device, a servo motor was employed to load the fluid sample and two sensors with high accuracy were used to detect its pressure and volume in real-time. The loading force (0-20 MPa) and speed (0.35-4.45%/min) can be easily conrolled, and the measuring error was expected less than 2.08%. Adopting the vacuum-pumping treatment, the air content of the hydraulic system was reduced from 12.29% to 7.41%. The step response results show that the overdhoot reduces 5-10% as air content decreases 4.88%, and the settling time is also decreased. A method according to the dynamic fluid bulk modulus was proposed to adjust the control parameters of hydraulic systems. The system gain was adjusting with the variation of the fluid bulk modulus in real-time in order to meet the hydraulic nature frequency. The sine response results show that when the control parameters are adjusted following this method, the error of the system output reduces about 25-30% and the phase lag reduces about 3.5°8.6°. The displacement overshoot is also decreased.
     In chapter 1, the definition, typicality and action of effective fluid bulk modulus in hydraulic systems were discussed. The current research progresses on bulk modulus measurement and the influences of different working parameters were reviewed. The main research subjects were presented.
     In chapter 2, the air effect caused by the variation of air volume and air bubble state was presented, and its influence on bulk modulus was analyzed. The air movement characterics of both the single air buble and air bubbles in swarm were simulated. The influences of bubble diameter, fluid viscosity, pressure and interaction between different air bubbles on the behaviors of ascending velocity and distortion were analyzed.
     In chapter 3, the mathematical model of effective fluid bulk modulus was presented, and the bulk modulus variation with pressure under different air content and working temperature was simulated. Based on the analysis, a power unit adopting vacuum pumping and bulk modulus measurement was designed to improve the effective fluid bulk modulus.
     In chapter 4, a test rig consisting of vacuum pumping treatment, bulk modulus measurement and hydraulic servo motion was designed. The bulk modulus measuring device consists of a pressure sensor, a displacement sensor, a temperature sensor and a test chamber loading by a servo motor.
     In chapter 5, the air volume measurement, vacuum pumping treatment and bulk modulus measurement were carried out. Based on the experimental results, the bulk modulus variation with pressure under different air contents, working temperature and fluid volume changing rate was analyzed.
     In chapter 6, Step responses and sine wave responses of a valve-controlled cylinder were tested under different air content. The experimental results show that the bulk modulus varies instantaneously with working pressure. The overshoot and the settling time influenced by dynamic bulk modulus were analyzed. A method for improving the system behavior by regulating the control parameters with the dynamic bulk modulus variation was proposed.
     In chapter 7, conclusions according to the work were summarized and future research proposals were suggested.
引文
[1]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002.
    [2]王春行.液压控制系统[M].北京:机械工业出版社,1999.
    [3]林济猷.液压油概论[M].北京:煤炭工业出版社,1986.
    [4]竹中立夫,浦田暎三[日].液压流体力学[M].北京:科学出版社,1980.
    [5]盛敬超.液压流体力学[M].北京:机械工学出版社,1980.
    [6]范素玲.油液体积弹性模量的实验研究[D]:[硕士学位论文].杭州:浙江大学,1989.
    [7]吴根茂,邱敏秀,王庆丰,魏建华等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006.
    [8]李洪人.液压控制系统[M].北京:国防工业出版社,1981.
    [9]陆元章.液压系统的建模与分析[M].上海:上海交通大学出版社,1989
    [10]A. T. J. Hayward. Compressibility Equations for Liquids:a Comparative Study[J], British Journal of Applied Physics,1967(7):965-977.
    [11]A. T. J. Hayward. How to Measure the Isothermal Compressibility of Liquids Accurately[J], J. Phys. D: Appl.Phys.,1971(7):938-949.
    [12]H.E. Merritt. Hydraulic Control Systems[M], John Wiley & Son, New York,1967.
    [13]李松年,史维祥,葛思华,等.油液弹性模量测量仪[P].中国专利:85202795,1986-07-30.
    [14]李松年,葛思华,史维祥.油液体积弹性模量βe的在线测量技术[J].机械工程学报,1989(9):88-93.
    [15]Theissen, H., Murrenhoff, H., Determination of Effects of a High Bulk Modulus Fluid, IFAS/RWTH Aachen undisclosed report,2006.
    [16]Christopher Niezrecki., John K. Schueller., Karthik Balasubramanian., Piezoelectric-based Fluid Bulk Modulus Sensor [J], Journal of Intelligent Material Systems and Structures,2004,15(12):893-899.
    [17]Karthik Balasubramanian, Christopher Niezrecki, and John K. Schueller., Piezoelectric-based fluid bulk modulus and diagnostic sensor[A], Proceedings of SPIE, San Diego, CA, USA,03 March 2003:109-116
    [18]Gi-Woo Kim., Kon-Well Wang., On-line monitoring of fluid effective bulk modulus using piezoelectric transducer impedance[A], Proceedings of IMECE'07, Seattle, Washington, United States, November 11-16,2007.
    [19]Gi-Woo Kim., Kon-Well Wang., On-line Estimation of Effective Bulk Modulus in Fluid Power Systems Using Piezoelectric Transducer Impedance[J], Journal of Intelligent Material Systems and Structures, 2009,20(17):2101-2106.
    [20]余经洪,陈兆能,陆元章.油液综合体积弹性模量压力模型的研究[J].液压与气动,1991(1):2-6.
    [21]Yu Jinghong., Chen Zhaoneng, and Lu Yuanzhang., The Variation of Oil Effective Bulk Modulus With Pressure in Hydraulic Systems[J], Journal of Dynamic Systems, Measurement, and Control, March 1994, 116(1):146-150.
    [22]BH Cho., HW Lee., JS Oh., Estimation technique of air content in automatic transmission fluid by measuring effective bulk modulus[J], International Journal of Automotive Technology,2002,3(2):57-61.
    [23]安骥,孙玉清,张洪明等.液压介质弹性模量在线测量[J].中国航海,2008(3):248-251.
    [24]Karjalainen, J-P., et al. The Dynamics of Hydraulic Fluids-Significance, Differences and Measuring[A]. PTMC 2005. University of Bath, UK.:437-450.
    [25]N. D. Manring, The Effective Fluid Bulk-Modulus Within a Hydrostatic Transmission[J], Journal of Dynamic Systems, Measurement, and Control,1997,119(3):462-466.
    [26]N. D. Manring., G. R. Luecke., Modeling and Designing a Hydrostatic Transmission With a Fixed-Displacement Motor[J], Journal of Dynamic Systems, Measurement, and Control,1998,120: 45-49.
    [27]Hong-Zhou Tan., Nariman Sepehri., Parametric fault diagnosis for electrohydraulic cylinder drive units[J], IEEE Transactions on Industrial Electronics,2002,49(1):96-106.
    [28]Toshiyuki T, Hideto K and Jitsuo S. Development of Oily High Bulk Modulus Fluid[A], Proceedings of the 7th JFPS International Symposium on Fluid Power, TOYAMA, September 15-18,2008:329-334.
    [29]Toshiyuki T, Hideto K and Jitsuo S. Study on the development of oily high bulk fluid[A], Proceedings of the 6th International Fluid Power Conference, Dresden, Germany,31 March,2008:379-386.
    [30]Toshiyuki T, Jitsuo S. Oily High Bulk Modulus Fluid of New Concept for Hydraulic Fluid[A], Proceedings of the 7th International Fluid Power Conference, Aachen, Germany,22-24 March,2010, 367-378.
    [31]Hossein Gholizadeh, Doug Bitner and Richard Burton. Investigation of Experimental Techniques for the Measurement of the Effective Bulk Modulus of Oil-Filled Pipes and Hoses[A], Proceedings of the 7th International Fluid Power Conference, Aachen, Germany,22-24 March,2010,179-192.
    [32]刘金国.油液等效体积弹性模量βe的实验研究[J].液压与气动,]993(1):33-34.
    [33]Watton, J. Fluid Power Systems Modeling, Simulation, Analog and Microcomputer Control[M], Prentice Hall, New York,1989.
    [34]Habibi, S.R. Sliding Mode Control of a Hydraulic Industrial Robot[J], Journal of Dynamic Systems, Measurement and Control,1999.121 (2):312-317.
    [35]Christopher D, David J. Hathcock and Andrew J. Leavitt., Measurement of the Bulk Modulus of a Liquid Using a Pump-Probe Laser Technique[J], Chemical Educator,2001(6):235-237.
    [36]Hayase T, Hayashi S and Kojima K, Suppressionof Micro Stick-slip Vibrations in Hydraulic Servo-system[J], Journalof Dynamic Systems, Measurement and Control,2000,122(2):249-256.
    [37]Abbott R.D., McLain, T.W. and Beard R.W. Application of an Optimal Control Synthesis Strategy to an Electro-hydraulic Positioning System[J], Journal of Dynamic Systems, Measurement and Control,2001, 123(3):377-384.
    [38]Ruan J, Burton R, Bulk modulus of air content oil in a hydraulic cylinder[A].2006 ASME International Mechanical Engineering Congress and Exposition(IMECE2006), paper 15854, Fluid Power Control System Technology, vol.14.
    [39]QATU Mohamad S, DOUGHERTY Mike L and SMID G. Edzko, Measurement of Fluid Bulk Modulus Using Impedance of Hydraulic Circuits[J], SAE transactions,1999,108 (2):1738-1741.
    [40]张凤兰,计新.液体的体积弹性模量测定[J],延边大学学报(自然科学版),2002,28(3): 168-170.
    [41]王寅观,邵良华.氨水体积弹性模量的超声检测研究[J].声学学报,1996(4):625-631.
    [42]陈海学,谷学华,孙玉清.液压介质的仿真[J].大连海事大学学报,2002,28(2):91-93.
    [43]戴玮,赵学民,马书炳.液体体变弹性模量测量实验及研究[J].2001,21(4):14-18.
    [44]顾宏斌,丁运亮.油液压缩性对减摆器工作特性的影响[J].南京航空航天大学学报,1999,31(6):626-633.
    [45]孙海平,邓景流.液体弹性模量和异管径连接面对压力瞬变影响[J].华南理工大学学报(自然科学版),2000,28(6):100-104.
    [46]冀宏,王峥嵘,李少年.油液弹性模量对高压叶片泵性能的影响[J].兰州理工大学学报,2006,32(6):65-67.
    [47]王峥嵘,那焱青,李少年等.油液中气穴含量对高压叶片泵瞬时流量影响的分析[J].机床与液压,2005(8):89-90.
    [48]Ali Volkan Akkaya. Effect of bulk modulus on performance of a hydrostatic transmission control system[J]. Sadhana-Academy Proceedings in Engineering Sciences,2006,31(5):543-556.
    [49]Saber Abd Rabbo, Tarek Tutunji. Identification and analysis of hydrostatic transmission system[J], International Journal of Advanced Manufacturing Technology,2008,37(3):221-229.
    [50]H Khan, Seraphin C. Abou and N Sepehri. Nonlinear observer-based fault detection technique for electro-hydraulic servo-positioning systems[J], Mechatronics,2005(15):1037-1059.
    [51]Chinniaha Y, Burtonb R and Habibi S.R. Failure monitoring in a high performance hydrostatic actuation system using the extended Kalman filter[J], Mechatronics,2006,16:643-65.
    [52]檀润华,周健伟,马国清等.油液容积弹性模量对减振器性能影响研究[J].河北工业大学学报,2001,30(1):1-4.
    [53]时培成,王幼民,王立涛.液压油液数字建模与仿真[J].农业机械学报,2007,38(12):148-151.
    [54]蒋丹,李松晶,包钢.伴随气泡和气穴低压管路瞬态的建模与分析[J].航空动力学报,2007,22(12):2062-2067.
    [55]K. Wu, Q. Zhang and A. Hansen. Modelling and identification of a hydrostatic transmission hardware-in-the-loop simulator[J], Int. J. Vehicle Design,2004,34(1):63-75.
    [56]Bora Eryilmaz, Bruce H. Wilson. Improved Tracking Control of Hydraulic Systems[J], Journal of Dynamic Systems, Measurement, and Control,2001,123:457-462.
    [57]王静.大流量液压源恒温恒压控制及油液弹性模量研究[D]:[博士学位论文].杭州:浙江大学,2009.
    [58]陈超.液压油体积弹性模量在线检测装置设计及研究[D]:[硕十学位论文].杭州:浙江大学,2008.
    [59]金瑶兰,龚国芳,王静.油液抽真空除气装置的设计及仿真分析[J].机床与液压,2007,35(7):77-79.
    [60]郭关柱.强剪切流变仪的研制及剪切空化的实验研究[D]:[博十学位论文].杭州:浙江大学,2008.
    [61]程文,周孝德,郭瑾珑等.水中气泡上升速度的实验研究[J].西安理工大学学报,2000,16(1):57-60.
    [62]潘守清,欧阳俊.气泡上升运动的观察与分析[J].武汉水利电力大学学报,1993,26(4):306-308.
    [63]刘小兵,程良骏.空泡在任意流场中的运动研究[J].水动力学研究与进展,1994,9(2):150-162.
    [64]张淑君.气泡动力学特性的三维数值模拟研究[D]:[博士学位论文].南京:河海大学,2006.
    [65]Wolfgang Bock, Jurgen Braun and Nancy Puhl. Air Release Properties of Hydraulic Fluids, Dynamic Air Release Behaviour[A], Proceedings of the 7th International Fluid Power Conference, Aachen, Germany, 22-24 March,2010.
    [66]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [67]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [68]张健,方杰,范波芹.VOF方法理论与应用综述[J].水利水电科技进展,2005,25(2):67-70.
    [69]戚定满,鲁传敬,何友声.两空泡运动特性研究[J].力学季刊,2000,21(1):16-20.
    [70]卢作伟,崔桂香,张兆顺.气泡在液体中运动过程的数值模拟[J].计算力学学报,1997,14(2):]25-133.
    [71]李维仲,赵大勇,陈贵军.竖直流道宽度对气泡运动行为影响的数值模拟[J].计算力学学报,2006,23(2):196-201.
    [72]Huang Q T, Jiang H Z, Zhang S Y, et al. Spacecraft Docking Simulation using HIL Simulator with Stewart Platform[J]. Journal of Chinese Mechanical Engineering,2005,18(3):415-418.
    [73]延皓,叶正茂,丛大成,等.空间对接半物理仿真原型实验系统研究[A].第四届全国流体传动及控制学术会议论文集,2006:152-157.
    [74]金福伟.对接机构综合试验台系统分析与实验研究[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [75]三菱电机株式会社MELSERVO-J2-SUPER系列伺服放大器技术资料集,2001.
    [76]常晓玲.三菱交流伺服系统的容量选择、信号连接及参数调整[J].电工技术,2001(11):40-41.
    [77]陈辉,胡庆,徐利梅.测量误差的研究[J],工程技术,2006(28):37-38.
    [78]谢彬蓉,王瑾.测量不确定度在评测测量系统能力中的应用[J],工业计量,2006,16(1):43-46.
    [79]刘敏.随机误差和系统误差概念演变及在磨料物性检测中的应用[J],金刚石与磨料磨具工程,2003,137(5):18-20.
    [80]胡仁喜,温正,王渊峰Solidworks 2007中文版标准教程[M],北京:科学出版社,2008.
    [81]刘松.基于COSMOS/Works的构件有限元分析和网格划分的探讨[J],矿业科学技术,2008,36(1):29-62.
    [82]王传礼,丁凡,李其朋等.对称四通阀控非对称液压缸伺服系统动态特性研究[J],中国机械工程,2004,15(6):471-474.
    [83]吕云嵩.阀控非对称缸频域建模[J],机械工程学报,2007,43(9):122-126.
    [84]杨军宏,李圣怡,戴一帆.阀控非对称缸系统的稳定性分析和设计[J],机械科学与技术,2007,26(12):1625-1629.
    [85]肖晟,强宝民.基于对称四通阀控非对称液压缸的电液比例位置控制系统建模与仿真[J],机床与液压,2009(6):95-97.
    [86]苏东海,杨京兰.基于SIMULINK的阀控非对称缸系统的研究[J],流体传动与控制,2008(1):3-5.
    [87]徐晓东.大型液压源温度控制系统研究[D]:[硕士学位论文].杭州:浙江大学,2007.
    [88]徐鸿岳,范晶晶.电路接地原理及抗干扰分析[J],硅谷,2008(17):13-13.
    [89]Ryushi Suzuki, Koichi Nagaish and Yutaka Tanaka. Bubble Elimination for Efficiency through Fluid Power[A], Proceedings of the 7th International Fluid Power Conference, Aachen, Germany,22-24 March, 2010.
    [90]Toshiyuki T, Hitoshi H. Study on the fundamental molecular structures of synthetic traction fluids[J], Tribology International,1995,28(5):335-340.
    [91]Habibi S, Goldenberg A, Design of a New High-Performance ElectroHydraulic Actuator[J], IEEE/ASME TRANSACTIONS ON MECHATRONICS,2000,5(2):158-164.
    [92]Wang J, Gong GF and Yang HY. Control of Bulk Modulus of Oil in Hydraulic Systems,2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, XIan, China JUL 02-05, 2008,1390-1395.
    [93]K. Dasgupta, A. Chattapadhyay and S.K. Mondal. Selection of fire resistant hydraulic fluids through system modeling and simulation[J], Simulation Modelling Practice and Theory,2005,13(1):1-20.
    [94]Karl-Erik Rydberg. Energy efficient water hydraulic systems, The Fifth International Conference on Fluid Power Transmission and Control, Hangzhou, China,2001,440-446.
    [95]马吉恩.轴向柱塞泵流量脉动及配流盘优化设计研究[D]:[博士学位论文].杭州:浙江大学,2009.
    [96]倪博溢,萧德云.MATLAB环境下的系统辨识仿真工具箱[J],系统仿真学报,2006(6):1493-1496.
    [97]董景新,赵长德,熊沈蜀等.控制工程基础[M],北京:清华大学出版社,2003.
    [98]胡琼,范世东.基于虚拟仪器的管道流量和压力数据采集系统[J],交通信息与安全,2009,27(5):120-123.
    [99]高瑞,苗长云,王中伟.基于LabVIEW的多轴运动控制系统的设计与开发[J],天津工业大学学报,2008,27(6):58-61.
    [100]熊先锋,邢继峰,左洪波等.普通运动控制卡在LabVIEW平台上的应用[J],微计算机信息,2006,22(11):139-141.
    [101]李扬,谢晖,陈侃.基于LabVIEW的PID控制系统设计与实现[J],中国测试技术,2008,34(3):74-76.
    [102]陈永明,王红超,李继芳等.基于LabVIEW的波形发生器[J],电子测量技术,2006,29(5):84-86.
    [103]沈保山,姬长英,郭玉平等.基于LabVIEW数据采集系统的设计[J],机械与电子,2009(4):76-78.
    [104]时培成,王幼民,王立涛.液压油液数字建模与仿真[J],农业机械学报,2007,38(12):148-151.
    [105]刘显贵.液压油非线性特性仿真研究[J],机床与液压,2008,36(9):257-259.
    [106]苏东海,杨京兰.基于SIMULINK的阀控非对称液压缸系统的研究[J],流体传动与控制,2008(1):3-5.
    [107]刚立,许唯临,邓军.含气量测量的图像处理方法[J],四川大学学报(工程科学版),2004,36(2):21-24.
    [108]王壮.真空脱气原理和技术[J],真空,1999(4):37-41.
    [109]李流远.油液含气量对液压系统的影响[J],液压与气动,2001(1):27-28.
    [110]关长旭.空气对工程机械液压系统污染的危害及预防[J],润滑与密封,2002(3):45-46.
    [111]吴根茂.动态封闭容腔及其压力基本公式[J],流体传动与控制,2007(3):54-56.
    [112]戴云飞.液压缸液压刚度的计算[J],有色金属设计,1999,26(1):61-63.
    [113]Karjalainen, J. P., Karjalainen, R., Huhtala, K., etc. Second Order Polynomial Model for Fluid Dynamics in High Pressure[A], Proceedings of the ASME 2009 Dynamic Systems and Control Conference (DSCC2009), Hollywood, California, USA,2009:9-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700