用户名: 密码: 验证码:
陆地棉花粉氮离子注入诱变效应及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子束生物工程技术是一种新的生物技术,它通过离子束注入生物细胞,来研究其生物学效应和作用机理,用于诱变育种和基因工程等方面。1986年首次将离子束注入技术应用于诱变育种,通过离子束注入诱变,在多种植物、微生物中已获得各种不同类型的突变体。但是,离子注入对细胞的作用机理尚不清楚,离子的穿透能力很弱,离子能否进入生物细胞及诱发基因发生突变仍然是有争议的问题。本文主要研究氮离子束注入棉花花粉引起的生物学效应。
     本研究采用能量为20keV的低能氮离子,分别以不同剂量(100单位(0.26×10~(16)N~+/cm~2)、150单位(0.39×10~(16)N~+/cm~2)、200单位(0.52×10~(16)N~+/cm~2)、300单位(0.78×10~(16)N~+/cm~2))的氮离子注入陆地棉(Gossypium hirsutum)品种苏棉12号的成熟花粉,用处理花粉授粉,收获种子。对处理花粉的活力、花粉表面结构、内部结构的变化、花粉萌发率、花粉管在花柱中的生长速度、受精情况等进行系统分析。用SSR分子标记的方法检测了离子注入花粉对于授粉后胚珠DNA变异的程度,用抑制性消减杂交法分析离子注入花粉授粉后代的基因表达差异。并分析离子注入花粉授粉后的农艺形状变异。主要结果如下。
     用花粉原位萌发法、联苯胺-甲萘酚染色法、花粉管快速萌发法、FDA法(荧光素二醋酸脂法)、TTC(2,3,5-氯代三苯基四氮唑)染色法、离体萌发法等6种方法分别测定对照花粉、抽真空处理花粉及N~+注入后的棉花花粉活力。TTC染色法不能有效检测自然花粉及N~+注入后的花粉的活力,测定结果均为0%。除了TTC染色法外,其它5种方法均能测定自然花粉的活力,测定结果均为98%左右。花粉管快速萌发法不能准确测定经抽真空处理后的花粉的活力。抽真空处理对花粉的活力无明显影响。联苯胺-甲萘酚染色法、花粉管快速萌发法、TTC染色法、离体萌发法等4种方法均不能用来准确测定N~+注入后的棉花花粉活力。FDA荧光染色法测定的花粉活力结果稳定,重复性好,与原位萌发法测定的结果一致,是快速测定经N~+注入处理后的棉花花粉活力的简便方法。N~+注入花粉后,随着离子注入剂量的增加,花粉活力呈明显下降趋势。
     通过荧光显微镜观察棉花花粉活体原位萌发(柱头上萌发)和离体条件下的原位萌发状况,建立准确的观察花粉粒在柱头上的萌发和花柱中花粉管的生长状况的简便的方法,并找出棉花花粉萌发的最适培养温度。结果表明:花粉在原位和离体情况下的原位萌发时间是基本一致的。活体原位萌发在授粉1 h后极个别的花粉粒开始萌发,4 h后柱头上的花粉粒全部萌发。12 h后大量的花粉管生长至花柱基部;离体原位萌发在授粉2 h后开始有花粉粒萌发,13 h后大量的花粉管长至花柱基部。授粉后,活体原位萌发较原位萌发晚1b。此外,在花粉管生长的同时,花柱也在生长。花粉萌发的合适培养温度为25-35℃。而在培养温度为30℃时,花柱中花粉管数量最多。
     通过扫描电镜、透射电镜、原位萌发和石蜡切片等方法观察了N~+注入棉花花粉后产生的各种变化,初步研究了不同剂量的N~+注入棉花花粉的诱变机理及诱变后产生的一系列生物学效应。结果表明:随着离子注入剂量的增大,离子注入使表面结构破损的花粉粒的数量逐渐增加,离子注入对于花粉表面有明显的刻蚀作用,可产生不同大小和深度的孔洞和裂缝;花粉粒内涵物的量逐渐减少,排列致密性降低;离子注入剂量越高,花粉粒内部出现的空隙越多,造粉质体的体积变大,数量也越多;离子注入会明显降低花粉的萌发率;N~+注入花粉授粉后,花柱中花粉管的数量明显下降,注入剂量愈大,花柱中花粉管的数量愈少,对照花粉授粉后花粉管的数量为:320±42条,剂量为100单位、150单位、200单位和300单位的N离子注入花粉后,花粉管的数量分别为:145±19.8、114±12.7、94±11.4和51.3±11条。
     离子注入不影响授粉后雌雄配子受精。不同处理的花粉管生长速度是一致的,授粉后13小时,花粉管都能生长至花柱基部。不同剂量处理的花粉粒萌发后的受精时间是一致的。N~+注入花粉授粉后,对子房的生长有明显的影响,子房重量和直径都随注入剂的增加而降低。剂量为100单位、200单位和300单位的N~+注入花粉授粉后,SSR分子标记结果表明,胚珠的DNA多态性发生一定程度的改变。剂量为300单位的N~+注入花粉授粉后,SSH分析获得1个与已知功能基因同源序列,与EST库中的序列同源的4条EST序列。离子注入花粉授粉后成铃率降低,对M_1代农艺形状也产生变异,但变异程度是随机的,与离子注入剂量之间无一定的规律。本研究结果充分说明N~+注入花粉,会通过刻蚀作用进入细胞使细胞结构发生改变,改变细胞内的遗传物质,降低花粉的活力,降低子房的生长速度,使后代农艺形状发生变异,产生明显的生物学效应。
Ion beam bioengineering technology has been considered as a new method for mutation breeding.With low-energy ions impanted organisms, the biological effects and the function mechanisms of the technology were investigated by some researchers,and the technology has been used into genentic breeding and gene engineering. The researchers have observed some biological effects and revealed some basic mechanisms for the past decade,and the great development and application have been obtained .In this paper ,the biological effects of the cotton pollon implanted by nitrogen ions were studied and discussed.
     The biological effect of Sumian 12 pollen implanted by N ion beams were studied in present thesis . The viability of Sumian 12 pollen were implanted by nitrogen ion beam (the energy was 20KeV, the doses were 100 units( 0.26×10~(16) N~+/cm~2), 150 uints(0.39×10~(16) N~+/cm~2), 200 units(.52×10~(16) N~+/cm~2)、300 units(0.78×10~(16) N~+/cm~2) respectively,no-treated was control.) . The effects on viability of cotton pollen , the exterior and interior structure of pollen, pollen germination rate, the growth rate of the pollen tube, the situation of insemination, the mutation aroused by ions implantation in ovule using SSR and diversity gene of the offspring after ions implantation using SSHwre studied . The result showed that:
     The viability of Sumian 12 pollen before and after nitrogen ion implantation were measured by six methods:In situ pollen germination, Benzidine-α-Naphthol method, pollen tube quick germination, FDA fluorescence method, TTC method and pollen in vitro germination. Both the results of pollen viability before and after N~+ injecting were zero, so TTC method was not suitable. We found that five methods, except TTC method, be suitable for measuring pollen viability before N~+ implantation, their results were all about 98%. Pollen tube quick germination couldn't measure the viability of pollen in vacuum, but we know that vacuum not influence pollen viability. Benzidine-α-Naphthol method, pollen tube quick germination and pollen in vitro germination were also incompetent for measuring the viability after N~+ injecting. The results of FDA fluorescence method were repeatable and consonant with the results of in situ pollen germination. In conclusion, FDA fluorescence method were competent for measuring the viability of cotton pollen before and after N~+ injecting. Our results showed a significant negative correlation between ion implantation and pollen viability.
     The pollen germination on the stigma and pollen tube grow in the style by decolorized analine blue methed with fluorescence microscope were observed. A simple methed for truly research the pollen germination on the stigma and pollen tube growth and the suitable temperature of pollen germination were found .The result showed that: The beginning time of in situ pollen germination were consistent with the time of pollen in vitro germination. At 1 hour after pollination of in situ pollen germination, only few pollen grain germinated in stigma. At 4 hour after pollination of in situ pollen germination, all of the pollen grains on stigma were germination. At 12 hour after pollination of in situ pollen germination, large number of pollen tubes have grown to the end of the style. At 2 hour after pollination of in vitro pollen germination, few pollen grains begin germination. At 13 hour after pollination of in vitro pollen germination, a lot of pollen tubes have grown to the end of the style. Otherwise, the style waas growing while the pollen tubes growing. The suitable temperature for incubating pollen germination was 25~35℃. The most suitable temperature was 30℃.
     In the study , all of the changes after N~+ injecting cotton pollen were observed by scanning electron microscope(SEM), transmission electron microscope(TEM), decolorized analine blue methed and paraffin section method. The radiation mechanism and its biologic effect after ion implantation were research . The result showed that: The number of break pollen grain were increasing with the increase of the N ion implantation dose, ion beam could distinctly cut pollen wall and produce different holes. The inclusion in pollen was decreasing with the increase of ion implanting dose, the higher the dose was , the more the interspace had, the larger of the starch granules volume were. Ion beam could distinctly decrease pollen germination rate. The number of pollen tubes in style declined after N ion implantation, after pollination, the number of pollen tubes of control pollen were 320±42, after implanting with dosages 100 units,150 units,200 units,300 units, the number of pollen tubes were 145±19.8,114±12.7、94±11.4,51.3±11 respectively. But the pollen tubes growth rate were accordant after implanting different dose. At 13 hours after pollination, all pollen tubes have grown to the end of the style. The fecundation time and insemination time were coinciden with different ion dose. Ovary weight and diameter size were reduce with the increase of implantation doses. SSR (simple sequence repeat) analysis indicated that the molecular genetic polymorphism of ovules, which being pollinated by N ion treated pollens, were changed. This result suggested that ion beam might cause some genetic changes of pollens. The SSH result showed: The BLASTN homology search analysis revealed that 3 nonredundant clones were classified into the following groups : 1 known function genes , 2 cotton ESTps of unknown function . The ion beam implanted could bring on M_1 genetic variation of agronomic character, but there was no orderliness between genetic variation of agronomic character and ion dosage. The result suggested that ion beam could enter into the inner of the cell and changed the structure and the genetic materials, reduced the viability of pollen and the growth rate of ovary, lead M_1 genetic variation of agronomic character and produce obviously biological effects.
引文
1.卞坡,霍裕平,秦广雍,等.低能离子束刻蚀番茄果皮的透射能谱研究.生物物理学报,1999,15(3):551-555
    2.程备久,余增量.离子注入棉花生物学效应研究-Ⅳ种子含水量与自由基含量及损伤率的关系.安徽农业大学学报,1991,8(4):276-281
    3.程备久,余增量.氮离子注入棉花种子的诱变效应.核农学报,1993,7(2):73-80
    4.程备久,田秋元,余增亮.离子注入诱发棉花过氧化物酶同功酶及农艺性状变异的研究.棉花学报,1994,6(1):41-47
    5.程备久,李展,田秋元等.氮离子注入对棉花花粉形态、生活力和育性的影响.西北植物学报,1994,14(2):85-89
    6.程备久,田秋元,余增亮.离子注入诱发棉花过氧化物酶同功酶及农艺性状变异的研究.棉花学报,1994,6(1):41-47
    7.邓德旺.棉花花粉介导的基因转化方法研究.南京农业大学图书馆,南京农业大学.1997,20-21
    8.邓建国,余增亮.离子束辐照DNA及其碱基的ESR研究,核技术,1992,10(15):600-605
    9.杜若甫编著.作物辐射遗传与育种.北京:科学出版社,1981
    10.范平.棉花辐射后代变异新类型的探讨.原子能农业应用,1981,1:13-19
    11.胡保民,张天真,张海洋,等.陆地棉单体的诱发及鉴定.棉花学报,1996,8(1):14-17
    12.胡保民,张天真,潘家驹,等.陆地棉三体的诱发、鉴定、研究与利用:I.5个三体的起源、鉴定及其形态.作物学报,1996,22(2):147-151
    13.胡保民,张天真,张海洋,等.陆地棉单体的诱发及鉴定.棉花学报,1996,8(1):14-17.
    14.胡晋,郭长根.超低温(-196℃)保存杂交水稻恢复系花粉的研究,作物学报.1996,22(1):72-77
    15.胡颖,赵洁.拟南芥有性生殖过程中花粉管生长及胚胎发育的形态特征.武汉大学学报(理学版),2006,52(2):241-246
    16.胡适宜.植物胚胎学实验方法(一)花粉活力的测定,植物学通报,1993,44(1):60-62
    17.黄群策,李玉峰.离子束生物技术在水稻育种中的应用前景.杂交水稻,2002,17(5):5-8
    18.李立祥,李爱青.氮离子注入棉花花粉诱发农艺性状变异的研究.激光生物学报,1997.6(3):1160-1164
    19.李立祥,李爱青.氮离子注入棉花花粉诱发农艺形状变异的研究.激光生物学报,1997,6(3):1160-1164
    20.李桂英.辐射促成植物异源基因转移的研究与进展.核农学通报,1997,18(4):182-186
    21.李桂英王琳清施巾帼.辐照花粉促进普通小麦与窄颖赖草属间杂交的研究.核农学报1999,13(6):325-329
    22.李静,韩秀兰,沈法富,等.提高棉花花粉管通道技术转化率的研究.棉花学报,2005,17(2):67-71
    23.李汝忠,高国强,王留明,等.不同陆地棉品种辐射效应的初步研究.棉花学报,1997,9(2):108-109
    24.李新华,孙永堂,井立玲.辐照小麦花粉与有性杂交技术相结合选育小麦新品种.山东农业科学,1998,1:5-8
    25.李新华,孙永堂,井立玲,等.辐照小麦花粉的诱变效应.核农学报,1998,12(4):210-214
    26.李煦远.高产、优质、多抗棉花新品种鄂棉15号的选育.湖北农学院学报,1994,14(4):14-17
    27.林昕.~(60)Co辐射处理对棉花育性改变产生雄性不育现象的初步观察.遗传学通讯,1974,(2):31-34
    28.刘泽雯,黄惠芳.棉花辐射育种的适宜剂量及其遗传规律.山西农业科学,1980,1(5):5-7
    29.刘泽雯,朱建生.杂交与辐射结合在棉花育种中的应用.山西农业科学,1986,6:1-2
    30.马光跃,刘和,申仲妹,李春燕,张金梅,陈红玉,王小原.酥梨受精过程的观察.果树学报,2006,23(4):506-509
    31.毛培宏,金湘,曾宪贤,等.新疆离子束生物技术的研究.生物技术,2003,15(4):50-51.
    32.潘大陆.选育鲁棉1号的辩证法.山东农业科学,1983,(4):13-18
    33.任炜牛西午,王世研,等.氮离子東注入谷子种子后代基因组的RAPD分析.核农学报,2006,20(4):259-262
    34.邵春林,余增亮.低能氮离子束注入固态5′-dTMP的辐照损伤研究.核技术,1995,18(1):15-19
    35.申家恒,申业,王艳杰.小麦花粉管生长途径及受精过程经历时间的研究.作物学报.2006,32(4):522-526
    36.沈明山,蒋先志,徐金森,等,注入碳离子对甜菊的生物学效应.植物学报,2000,42(9):892-897
    37.宋道军,姚建铭,吴丽芳,等,离子注入对微生物细胞的刻蚀与对DNA的损伤及修复遗传,1999,21(4):37-40
    38.宋淑敏,田玉杰,姬妍茹,等.γ射线辐射亚麻花药的研究初报.中国麻业,2004,26(4):162-163
    39.苏学合,朱斗北,王增贵.辐照埃及棉选育陆地棉性状的长绒棉突变体的研究.核农学报,1994,8(1):1-6
    40.苏学合,高国强,时香玉,等.利用花粉辐照技术进行棉花种间远缘杂交研究.山东农业科学,2000,2:8-10
    41.孙君灵,杜雄明,孙其信,等.棉花γ射线诱变后代的SSR标记遗传多样性.中国农业科学 2006,39(10):1967-1976
    42.孙万仓,官春云,孟亚雄,等.芸芥(ErucasativaMill.)与芸薹属(BrassicaL.)3个油用种的远缘杂交.作物学报.2005.31(1):36-42
    43.唐灿明,杨清华,王洋,等.γ射线辐射和低温储藏对陆地棉花粉活力的影响.江苏农业科学,2005,4:15-17
    44.唐贻兰,毛德志.水稻杂交亲本花粉辐照诱变研究简报,广西农业科学,1995,(2),53-54
    45.王浩波,高秀武,王凤辰,等.N~+离子束对萌发西瓜种子和西瓜花粉的诱变效应研究.中国西爪甜爪,2005(1):4-6
    46.王侯聪,邱思密,陈如铭,等.水稻辐照花粉对籽粒发育的影响.核农学通报,1993,14(1):12-18.
    47.王侯聪,邱思密,黄育民,等.γ射线辐照水稻成熟花粉的杂交后代突变效应分析.分子植物育种,2003,1(1):33-41
    48.王琳清主编.诱发突变与作物改良.北京:原子能出版社,1995,146-149;192-197
    49.王林香,王世亨.低能Ti~+注入棉花种子的深度-浓度分布的模拟计算.植物学通报,2005,22(6):697-702
    50.王文美,李新华,井立玲,等.~(60)Co-γ射线辐照冬小麦花粉,子房及合子辐照效应的研究.山东农业科学,1990,(1):1-10
    51.卫增泉.重离子束对酵母细胞的失活与突变.生物物理学报,1995,11(2):283-288
    52.吴兰佩,崔海瑞,梁任又,等.氮离子束等诱变机理研究.安徽农业大学学报,1994,21(3):226-232
    53.吴振录.新疆农作物辐射育种成就(1961-1993).核农学通报,1994,15(5):201-204
    54.邬振祥,李素梅,伊国香.离子注入在西红柿育种中的应用.安徽农业大学学报,1994,21(3):321-325
    55.徐美玉.棉花活体照射的当代效应.上海农业科学,1980,(5):14
    56.杨平华,叶青敏.利用理化因素克服植物自交.杂交不亲和性,核农学通报,1989,13(4):190-192
    57.杨赞林,甘斌杰,佘增亮,等.皖麦43生物学特性和栽培技术.安徽农业科学,2001,5:27-28
    58.余增亮.一门新兴交叉学科的创新历程-离子束生物工程学.中国科学院院刊,2005,20(6):520-523.
    59.余增亮.离子注入水稻诱变育种机理初探,安徽农业科学,1989,39(1):12-16
    60.余增亮.离子束与生命科学--一个新的研究领域.物理,1997,26(6):333-338
    6].余增亮.离子束生物技术引论.安徽:安徽科技出版社,1998
    62.余增亮,邓建国,吴跃进,等.离子辐照大豆-子叶细胞显微分析。安徽农业科学,1990,(1):27-30
    63.余增亮,何建军,邓建国.等离子注入水稻诱变育种机理初探,安徽农业科学,1989,39(1):12-16
    64.余增亮,霍裕平离子注入生物学研究评述.安徽农业大学学报,1994,21(3):221-225
    65.余增亮,邱励俭,霍裕平,等.离子注入生物效应及育种研究进展.安徽农学院学报.1991;4:251-257
    66.袁成凌,余增亮.低能离子束在生物技术中的应用研究.中国生物工程杂志,2003,23(4):57-61.
    67.曾宪贤,武宝山,吕杰.离子束生物技术在生命科学中的应用.核技术,2006,29(2):112-115.
    68.翟学军,李俊兰,李之树.棉花辐射效应的研究--M_1主要农艺性状及经济性状的变异.核农学通报,1994,15(1):12-15
    69.翟学军,王国印,李俊兰,等.棉花辐射效应的研究-M_2主要经济性状的变异.棉花学报,1995,7(2):82-85
    70.翟学军.辐射诱变在前苏联棉花育种中的应用.棉花文摘,1992,7(2):5-7
    71.詹亚光,陈艳,赵文,等.白桦花粉的生命力.东北林业大学学报.1998,26(2):77-79
    72.张冬梅,孙素琴,马志龙,等.低能离子束辐照氨基酸结构变化的傅里汗十变换红外光谱法研究.核技术.2000,23(4):213-2
    73.张桂玲,王超,温四民.甘蓝自交不亲和性的快速测定.东北农业大学学报.2003,34(2):142-147
    74.张月学.诱变在作物育种中的应用,黑龙江农业科学,1994(3),43-44
    75.张绍铃,陈迪新,康琅,等.培养基组分及pH值对梨花粉萌发和花粉管生长的影响.西北植物学报,2005,25(2):225-230
    76.张绍铃,梅正敏,陈迪新.果梅花粉离体萌发及花粉管生长影响因子的研究.中国农学通报.2003,19(2):21-25
    77.张志宏,杜立群.离子注入烟草种子引起的1代变异分析.生物物理报,1998,14(4):762-766.
    78.赵彩平,张绍铃,徐国华,等.G蛋白调节剂对梨花粉原位萌发和花粉管生长的影响.果树学报,2005,22(6):702-705
    79.赵洪璋主编.作物育种学,北京:农业出版社,1981:369-373
    80.赵世绪.γ射线照射花粉对玉米胚胎发育的影响.核农学通报,1987,8(3):11-12
    81.郑冬宫,方其英,黄德祥.离子注入在棉花育种的诱变效应.安徽农业人学学报,1994,21(3):315-317
    82.周保良陆地棉的诱发、鉴定和应用.硕士研究生论文,南京农业大学,南京农业大学图书馆.
    83.周保良等.陆地棉单体的诱发和鉴定.棉花学报,1990,2(2):7-12
    84.周立人,程备久,李爱青.离子注入加速棉花陆海杂种农艺性状遗传稳定性的研究.激光生物学报,1998,7(3):184-187
    85.周坚,樊汝汶.鹅掌楸属两种植物花粉品质和花粉管生长的研究.林业科学.1994,30(5):405-406.
    86.周柱华,齐延芳,许方佐,等.辐照花粉对玉米杂种后代结实及植株的影响.核农学报,2002,16(6):347-350.
    87.朱乾浩,季道藩.棉花辐射诱变育种研究进展.棉花学报,1997,9(3):113-119
    88.朱乾浩,俞碧霞,季道藩.~(137)Csγ射线对陆地棉花粉及其M_1的辐射效应.核农学报,1998,12(2):71-77
    89.Arjen J.van Tunen,Leon A.Mur,Gabrielle S.Brouns,et al.Pollen- and Anther -Specific chi Promoters from Petunia:Tandem Promoter Regulation of the chiA Gene.The Plant Cell,1990,2(5),393-401
    90.Ashraf M,Saeed MM,Qureshi MJ.Tolerance to high temperature in cotton(Gossypium hirsutum L)at initial growth stages.Environmental and experimental botany,1994,(34):275283
    91.Baker R.L.and Morgen D.T.Jr.Monosomics in maize induced by X-radiation of the pollen Cytologia,1966,1(31):172-175
    92.Basu A K.No teon.Induced variability in up land co t ton by one and two cycles of gamma radiation.Indian J A gric Sci,1981,52(6):402-403
    93.BautistaA.T.S..Induction of chromosomal variants through pollen irradiation in rice College,Laguna (Philippics)Mar Laguna,1993
    94.B rownM S.Cotton from Bikini.Chromosome irregularities found in plants grown from seed exposed to gamma radiation.J Hered,1950,41(5):115-121
    95.Bryan C.Gibbon,David R.Kovar,and Christopher J.Staiger.Latrunculin B has different effects on pollen germination and tube growth.The Plant Cell,1999.11:2349-2363
    96.Chih-Wei Tung,Kathleen G.Dwyer,Mikhail E.NasraIlah,et al.Genome-Wide Identification of Genes Expressed in Arabidopsis Pistils Specifically along the Path of Pollen Tube Growth.Plant Physiology,2005,138(2),977-989
    97.Chung-Ju RachelWang,Lisa Harper,and W.Zacheus Cande.High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9.The Plant Cell,2006,18(3),529-544
    98.Fenyo D,Sundqvist BUR,Karlsson BR,et al.Molecular-dynamics study of electronic sputtering of large organic molecules.Phys.Rev.,1990,42(1)1895-1902
    99.Foti A.M,MilanoF.Amino acid decom positioning duced by ion implantation.Nucl.Instr.Meth.,1990,46:361-363
    100.Galen D.F.and Endrizzi J.E.Induction of monosomes and mutations in cotton by Gamma irradiation of pollen.Jour.Heered,1968,59:343-346
    101. Goodspead T.H. and Avery P. Inherieance in nicotiana tabacum ⅩⅢ, The cytogenetics of deformed an x-ray derivative Genetics, 1933, 18(6):487-521
    102.Herrero MP, Johnson RR. High temperature stress and pollen viability of maize. Crop Science, 1980, 20:796-800
    103.Hirasuka S,Takahashi E,Hirata N,et al. Pollen tube growth in detached styles of Japanese pear. J Palynology,1982,18(1-2):113-119
    104.Hirasuka S, Zhang SL, Nakagawa E, et al. Selective inhibition of the grown or incompatible pollen tubes by S-protein in the Japanese pear. Sex Plant Reprot, 2000,(13):209-215
    105.Holton T A, Tanaka Y. Blue rose a pigment of our imagination. Trend Biotechnol, 1994,12:40-42
    106.HorlacherW R. Radiation- induced variation in cotton. J Hered, 1931,22 : 253-263
    107.Hossain KG. Radiation hybrid mapping of the species cytoplasm-specific (scsae) gene in wheat. Genetics, 2004,168(1):415-23
    108.Huijuan Li, Antony Bacic, and Steve M. Read. Activation of pollen Tube callose synthase by detergents evidence for different mechanisms of action. plant physiol. 1997, 114: 1255-1265
    109.I. Y. Vizir, M. L. Anderson, Z. A. Wilson and et al. Isolation of deficiencies in the arabidopsis genome by γ-irradiation of pollen. Genetics, 1994,137:1111 - 1119
    110. Ji-Yeon Lee and Dong-Hee Lee. Use of serial analysis of gene expression technology to reveal changes in gene expression in arabidopsis pollen undergoing cold stress. Plant Physiology, 2003, 132:517-529
    
    111. John J.Burke. Moisture sensitivity of cotton pollen. Agronomy Journal, 2002, 94:883-388
    112. John J.Burke, Jeff Velten, Melvin J.Oliver. In vitro analysia of cotton pollen germination.Agron. J, 2004, 96:359-368
    113.Joseph P. Mascarenhas. Molecular mechanisms of pollen tube growth and differentiat ion. The Plant Cell, 1993,5:1303-1314
    114. Julia Buitink, Mireille M.A.E. Claessens, Marcus A. Hemminga, and Folkert A. Hoekstra .Influence of water content and temperature on molecular mobility and intracellular glasses in seeds and pollen. Plant Physiol. 1998, 118: 531-541
    115.Kahani VG, Prasad PVV, Craufurd PQ, et al. Response of in vitro pollen germination and pollen tube growth of groundnut(Arachi hypogaea L)genotypes to temperature. Plant,Cell and Einvironment, 2002, 16:67-68
    116.Ken Naito, Makoto Kusaba, Naoya Shikazono, et al. Transmissible and nontransmissible mutations: induced by irradiating arabidopsis thaliana pollen with y-rays and carbon ions. Genetics, 2005, 169:881-889
    117.Khush G.S. and Rick C.M. The origin,identification of spinacia oleracea. Jour.Hered, 1966, 50:47- 50
    118.Koichiro Ushijima, Hidenori Sassa,Abhaya M. Dandekar. Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen- expressed F-box gene with haplotype-specific polymorphism. The Plant Cell, 2003, 15: 771-781
    119.Li-geng Ma, Xiao-dong Xu, Su-juan Cui, and Da-ye Sun. The presence of a heterotrimeric G protein and its role in signal transduction of extracellular calmodulin in pollen germination and tube growth. The Plant Cell, 1999, 11:1351-1363
    120.Lixi Jiang,Shu-Lan Yang, Li-Fen Xie,et al.Vanguard1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis Style and Transmitting Tract. The Plant Cell, 2005,17,584-596
    121.L. M. Stone, K. A. Seaton, J. Kuoand J. A. Mccomb. Fast pollen tube growth in conospermum species. Annals of Botany, 2004, 93(4): 369-378,
    122.Lyderson Facio Viccini, Carlos Roberto de Carvalho. Meiotic chromosomal variation resultingfrom irradiation of pollen in maize.J. Appl. Genet. 2002, 43(4):463-469
    123. Malgarejo P, Martinez JJ, Hernandez F, A study of different culture media for pomegranate (Punica granatum L.) pollen. Cieam-options Mediterraneennes, 2000, 42: 63-69
    124.Maneephong G.and Sadanaga K. Induction of Aneuploids in hexaploid Oats, Avena sativa L.,Through X-irradiation . Crop Sci., 1967, 7:522-523
    125.Maria Herrero, H. G. Dickinson. Pollen tube development in petunlahybrida following compatible and incompatible intraspecific matings. Cell Sd, 1998,47:365-383
    126.Mirza M Y. Effects of gamma radiation on morphology and cyology of some multiple species hybrids of Gossypium. The Pak istan Cottons, 1986, 30 (4) : 129- 138
    127.Nancy A. Eckardt. Vanguard1-at the forefront of pollen tube growth. The Plant Cell, 2005, 17:327-329
    128.Naoya Shikazono,Yukihiko Yokota, Satoshi Kitamura, et al. Mutation rate and novel tt mutants of arabidopsis thaliana induced by carbon ions. Genetics, 2003, 163(4):1449-1455
    129.Naoya Shikazono, Chihiro Suzuki, Satoshi Kitamura, et al. Analysis of mutations induced by carbon ions in Arabidopsis thaliana. Journal of Experimental Botany, 2005, 56 (412) :587-596
    130.Naoya Shikazono, Atsushi Tanaka, Hiroshi Watanabe ,et al. Rearrangements of the DNA in carbon ion-induced mutants of Arabidopsis thaliana. Genetics, 2001, 157:379-387
    131.Nicholas J. Provart, Pedro Gil, Wenqiong Chen. Gene expression phenotypes of arabidopsis associated with sensitivity to low temperatures. Plant Physiology, 2003, 132: 893-906
    132.Pate J B . Mutations in cotton induced by gamma- irradiation of pollen. Crop Sci, 1963, 3:136- 138
    
    133.Patricia Bedinger. The remarkable biology of pollen. The Plant Cell, 1992 ,4(8):879-887
    134.Patrice A. Salome and C. Robertson McClung. Pseudo-response regulator 7 and 9 are partially redundant genes essential for the temperature responsiveness of the arabidopsis circadian clock. The Plant Cell, 2005,17:791-803
    135.Patrycja Niewiadomski,Silke Knappe,Stefan Geimer,et al. The arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 Is essential for pollen maturation and embryo sac development. The Plant Cell, 2005, 17:760-775
    136.Pressman E, Peet MM, Pharr DM. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in developing anthers. Annals of Botany, 2002,90:631-636
    137.Richard W. Lutzand Richard D. Sjolund. Development of the gnerative cell wall in monotropa uniflora L. pollen. Plant Physiol. 1973, 52: 498-500
    138. R. Zaka a, C. Chenal b, M.T. Misset. A study of external low irradiation dose effects on induction of chromosome aberrations in pisum sativum root tip meristem.Mutation Research . 2002, 517: 87-99
    139.Sailaja Koti, K. Raja Reddy, V. R. Reddy, et al. Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination,and tube lengths. Journal of Experimental Botany, 2005, 56(412): 725- 736
    140.Sanamian MF. Evaluation of the effect of pollen irradiation on karyotype variability in M_2 cotton plant. Genetics, 2003, 39(8):1081-90
    141.Sanam'ian MF. Evaluation of the effect of pollen irradiation on karyotype variability in cotton plants. Genetics, 2003, 39(7):947-55
    142.Sari N. ,Abak K.,Pitrat M.,et al. Induction of parthenogenetic haploid embryos after pollination by irradiated pollen in waterrnelon. Hort Science, 1994, 29(10): 1189-1190
    143.S. B. Preuss and A. B. Britt. A DNA-damage-induced cell cycle checkpoint in arabidopsis. Genetics, 2003, 164(11):323-334
    144.Schivcharan S. Maan and Shahryar F. Kianian. Radiation hybrid mapping of the species cytoplasm-specific(scsae) gene in wheat. Genetics, 2004, 415-423
    145.ShaocL, Yu Z L. Mass deposition in tyrosine irradiated by N~+ ion. Radiat.Phys.Chem., 1997, 50(6):595-599
    146.SJ Rundle and RE Zielinski. Alterations in barley ribulose-1,5-bisphosphate carboxylase /oxygenase activase gene expression during development and in response to illumination. J. Biol. Chem., 1991,266(22), 14802-14807
    147.Snape,JW. The use of irradiated pollen for differential gene transfer in wheat (Triticumaestivum). Theoretical and Applied Genetics, 1983,65:103-111
    148.Standing KG. Chait BT, Ens W, et al. Time-of-flight measurement of secondary organic ions Produced by 1kev to 16kev Primaryions. Nucl. Instr.Meth, 1982,198:33-38
    149.StevenA.Whitham, Robert JAnderberg, Stephen T.Chisholm, et al. Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein. The Plant Cell, 2000,12: 569-582
    150.Venue the Royal Society, London organiger japan science foundation, London vise mens confence for the human fronter science program, 1987, 1: 398-402
    151.Vernonica E. Franklin-Tong. Signaling and the modulation of pollen tube growth. The Plant Cell, 1999, 11:727-738
    152.Virginie N. Guyon, James D. Astwood, Ethan C. Garner, et al. Isolation and characterization of cDNAs expressed in the early stages of flavonol-induced pollen germination in petunia. Plant Physiology, 2000, 123: 699-710
    153. V.G.Kakani, K.R.Reddy, S.Koti,T.P, et al. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Annals of botany , 2005, 96:59- 67
    154.Wenxiang Gao, Z. Jeffrey Chen, John Z. Yu , et alWide-cross whole-genome radiation hybrid mapping of the cotton(Gossypium barbadense L.) genome.Mol Gen Genomics, 2006, 275: 105- 113
    155.Wenxiang Gao, Z. Jeffrey Chen, John Z. Yu, et al Wide-cross whole-genome radiation hybrid mapping of cotton(Gossypium hirsutum Z,.).the Genetics Society of America. Genetics, 2004, 167:1317-1329
    156.Willi Jahnen, W. Mary Lush,and Adrienne E. Clarke. Inhibition of in vitro pollen tube growth by isolated s-glycoproteins of Nicotiana alata. The Plant Cell, 1989,1:501-510
    157.W. Mary Lush, Franz Grieser, and Mieke Wolters-Arts. Directional guidance of nicotiana pollen tubes in vitro and on the stigma. Plant Physiol, 1998, 118: 733-741
    158.Yoshihiro Hase, Kazuhiko Shimono, Masayoshi Inoue, et al. Biological effects of ion beams in Nicotiana tabacum L. Radiat Environ Biophys , 1999, 38:111-115
    159.Yukika Yamauchi, Mikihiro Ogawa, Ayuko Kuwahara, et al. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana Seeds.The Plant Cell,2004.16:367-378
    160.Yu ZL,Shao C L.Dose effect of the tyrosine sample implanted by a low energy N~+ ion beam,Radiat Phys Chem,1994,43(4):349-351
    161.Zhi liu,You-Lu Yuan,Shao-Qiong Liu,et al.Screening for high-tenperature tolerant cotton cultivars by testing in vitro pollen germination,pollen tube growth and boll retention.Journal of integrative plant biology.2006,48(6):706-714

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700