用户名: 密码: 验证码:
聚乳酸复合体系在体积拉伸流场中相态演化与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物材料的微结构与性能显著地受到聚合物成型加工流场的影响。传统的螺杆为核心的成型加工方法都是基于剪切流场为主导,叶片塑化输送设备开创了无螺杆的体积拉伸形变主导作用的成型加工新技术,实现了聚合物成型加工原理由剪切流场支配到拉伸流场支配的革新。与传统的螺杆成型加工设备相比,叶片塑化输送设备体积小,加工能耗低并具有更广的物料适应性等独特的优点。因此,结合叶片塑化输送设备的结构及聚合物材料的本征特性,深入地研究体积拉伸流场对聚合物材料相态结构的影响、聚合物复合体系的分散混炼效果等,为系统地分析体积拉伸流场支配下的聚合物成型加工原理及推进聚合物材料先进成型加工技术及设备的发展具有重要的意义。
     利用体积拉伸形变主导的叶片挤出机或剪切形变主导的双螺杆挤出机分别进行聚乳酸单组份的塑化输运加工,采用骤冷拆机取样方法进行观察挤出机各区段的聚乳酸结晶形态及取向行为。通过广角X-射线衍射仪、差示扫描量热仪及偏光显微镜分别测试了各区段聚乳酸的结晶性态、结晶性能及晶体形貌,通过小角X-射线散射仪观察了不同组叶片塑化单元内的聚乳酸的取向行为。结果发现:与剪切流场主导的双螺杆挤出机制备的相比,基于体积拉伸流场主导的叶片挤出机制备的聚乳酸产生了明显的β晶且结晶度有所提高。同时,针对叶片挤出机成型加工下的聚乳酸晶体形貌,富熔体段呈现为尺寸较大且数目较少的球形晶体,熔融段呈现为尺寸较小且数目众多的球晶。另外,小角X-射线散射图样呈现了叶片挤出机熔融段的取向度明显高于富熔融段的。这些结果表明:与剪切形变主导作用相比,体积拉伸形变主导作用具有显著的诱导结晶作用;经历更持久拉伸形变作用将获得更加强烈的取向行为,这种拉伸取向行为促使聚合物材料的有序化排列及原位成纤。
     利用体积拉伸形变主导的叶片挤出机或剪切形变主导的双螺杆挤出机分别进行固定组份比的聚乳酸/热塑性聚氨酯合金制备,采用骤冷拆机取样方法进行观察挤出机各区段的聚乳酸/热塑性聚氨酯合金的分散相形态及演化行为;针对叶片挤出机或双螺杆挤出机制备的不同组份比的聚乳酸/热塑性聚氨酯合金进行相应分散相形态、结晶性能及力学性能研究。通过高分辨率扫描电子显微镜观察了聚乳酸/热塑性聚氨酯合金的分散相形态,广角X-射线衍射仪、差示扫描量热仪及偏光显微镜分别测试了其合金的结晶性态、结晶性能及晶体形貌,动态热机械分析仪分析了其合金相容性变化。结果发现:与剪切流场主导的双螺杆挤出机制备的相比,体积拉伸流场主导的叶片挤出机制备的聚乳酸/热塑性聚氨酯合金更易产生纤维状分散粒子,且分散粒子尺寸更加细小。同时,较双螺杆挤出机制备的相比,基于叶片挤出机制备的聚乳酸/热塑性聚氨酯合金有着更高的结晶度及更好的相容性。清晰地表明:全局的连续的体积拉伸形变作用可以促使聚合物共混物中的分散相原位成纤,强烈的传质传热作用改善了共混物的分散互融从而提高了相容性,为改善不相容聚合物共混物的力学性能提供了切实可行的加工方法。
     利用体积拉伸形变主导的叶片挤出机或剪切形变主导的双螺杆挤出机分别进行聚乳酸/云母复合材料制备。通过对分散相形态、结晶性能及力学性能分析发现:与双螺杆挤出机制备的相比,基于体积拉伸形变主导的叶片挤出机制备的复合材料中云母粒子的分散更加均匀,球晶尺寸更加均匀且结晶度有所提高,最终在宏观上表现出更优越的力学性能。这些结果表明:体积拉伸形变加工方法具有分散混合效果好、机械热历程短、取向作用明显以及对物料的低剪切、低损伤等独特的加工特性。
     通过硅烷偶联剂或钛酸酯偶联剂对云母表面进行改性,再利用体积拉伸形变主导的叶片挤出机分别制备了未改性云母、改性云母的聚乳酸/热塑性聚氨酯/云母多相体系。采用傅里叶变换红外光谱仪进行了云母表面接枝测试,透射电子显微镜细致观察了多相体系中分散相形态及云母粒子的分布,动态热机械分析仪表征了多相体系的相容性,广角X-射线衍射仪、差示扫描量热仪及偏光显微镜分别测试了多相体系的结晶形态、结晶性能及晶体形貌;另外,建立了多相体系的应力应变与其微观形貌的关系。结果发现:云母粒子更易趋向分布在热塑性聚氨酯相,成功表面改性的多相体系相容性进一步得到改善,相应的结晶度也产生了一定的提高,最终表现出更好的力学性能;同时发现多相体系中大量的长纤维结构显著地提高了拉伸应力及应变。这些说明:通过化学改性可以将体积拉伸形变作用的多相体系中相界面产生更牢固的吸附,为最终的高性能聚合物多相材料的稳定应用提高保障。
     结合体积拉伸形变主导的叶片塑化单元结构及相应的实验结果,建立了体积拉伸形变作用下聚合物材料的取向及诱导结晶、分散相形态的演化的物理模型。表明叶片挤出机周期的收敛形变促使分子链有效的线性排列,有序取向;同时强的传质传热能力提高聚合物熔体的分散效果。这些实验结果及模型解析为体积拉伸形变加工技术的发展及推广提供了有力的支撑。
Polymer processing flow field plays a significant role for microstructure and propertiesof polymer materials. Screw is regarded as the core part for traditional polymer processingdevices, and processing methods are based on the shear flow field. Unlike screw processingdevices, vane plasticizing conveying equipment invented by Prof. Qu, which generateselongational deformation, inaugurates a new type of polymer processing device. It has owncharacteristics in polymer processing technology. Compared with the traditional screwprocessing equipment, the unique advantages of vane plasticizing conveying equipment aresmall in size, and low energy consumption and the wide adaptability for materials processing.Therefore, combined with the structure of vane plasticizing conveying equipment and theintrinsic characteristics of polymer materials, to deep study effects of the volume elongationalflow field on the crystallization and orientation of polymer materials, and dispersion mixingof polymer composite system, to systematically analyze polymer processing principle ofvolume elongational flow field for promoted the development of polymer materials, advancedprocessing technology and equipment have the vital significance.
     Vane extruder (VE) dominated by volume elongational flow field and/or twin-screwextruder (TSE) dominated by shear flow field plasticized and conveyed polylactic acid (PLA)material, respectively. The shock cooling, disassembling and sampling method was used forobservation of the crystalline form and orientation of PLA of extruder each section. Wideangle X-ray diffraction (WAXD) and polarizing microscope (POM), differential scanningcalorimeter (DSC) were adopted to test crystalline form, crystallization properties and crystalmorphology of PLA, small angle X-ray scattering (SAXS) was used to observe orientationbehaviors of PLA of the different set of vane plasticizing and conveying unit (VPCU). Theresults showed that: compared to those of TSE dominated by shear flow field, the PLAproduced by VE based on volume elongational flow field generated obvious β crystal andincreased crystallinity. Moreover, in view of crystal morphology based on VE, spherocrystalof PLA of rich solid state appeared as large size, and the spherical crystal of high integrity,that of rich melting state presented a number of smaller size, and that of the melting statepresented amount of small and uniform spherical crystal. In addition, SAXS patternspresented that orientation degree of PLA sampled from melting state of the VE was obviouslyhigher than those of rich solid state and rich melt state. These results indicate that VEdominated by the volume elongational deformation has strong induced crystallization capacity,compared with TSE dominated by shear deformation; more longer time elongational deformation, more strong orientation behavior. The elongational orientation behavior couldurge ordering arrangement of molecular chains materials and make insitu fibrillation.
     VE based on volume elongational flow field and/or TSE based on shear flow field wereused to prepare polylactic acid/thermoplastic polyurethane (PLA/TPU) blend for fixedcomponent ratio, respectively. The shock cooling, disassembling and sampling method wasused for in situ observation of dispersed phase morphologies and theirs evolution ofPLA/TPU blend derived from different segment of VE and/or TSE. Meanwhile, PLA/TPUblends for different component ratio were prepared by VE and/or TSE, and theirs dispersedphase morphology, crystalline properties and mechanical properties were observed andmeasured, respectively. High resolution scanning electron microscope (SEM) was adopted toobserve the dispersed phase morphology of PLA/TPU blends, WAXD, POM and DSC wereused to test crystalline form, crystallization properties and crystal morphology, respectively.Dynamic thermal mechanical analysis (DMA) was used to measure compatibility ofPLA/TPU blends. The results showed that: compared to that of TSE dominated by shear flowfield, dispersed phase morphologies of PLA/TPU blends prepared by VE had more apparentfibrous structure, and more uniform particles size. And PLA/TPU blends prepared by VE hada higher degree of crystallinity and better compatibility than that of TSE. These resultssuggest that insitu fibrillation capacity of polymer compound via elongational flow field hassuperior to that of TSE via shear flow field, its strong the mass and heat transfer ability canpromote the compatibility and improve the mechanical properties of the immiscible polymermaterials, which provide a novel and feasible polymer processing method.
     VE dominated by volume elongational flow field and/or TSE dominated by shear flowfield were used to prepare polylactic acid/mica (PLA/Mica) composites, respectively.Analysis of dispersed phase morphology, crystalline properties and mechanical propertiesfound that: mica particles in the composites prepared by VE had more uniform dispersionthan that of TSE. Compared with that of TSE, the degree of crystallinity showed a slightincrease. Eventually, mechanical properties of PLA/Mica composites prepared by VE weresuperior those of TSE. These results infer that VE via the volume elongational flow field hasthe better dispersive mixing effect, shorter mechanical thermal process, more strong theorientation effect and lower structure damage than TSE via shear flow field. The uniqueprocessing features will advance the processing device and technology of polymer material.
     Using silane coupling agent and titanate coupling agent modified Mica surface, thepreparation of the unmodified and/or modification Mica of PLA/TPU/Mica multiphasesystem were prepared by VE based on volume elongational flow field, respectively. Fourier transform infrared spectrometer (FTIR) was used to measure the Mica surface graftingcharacteristic, transmission electron microscopy (TEM) was adopted to carefully observedispersed phase morphology of the PLA/TPU/Mica multiphase system and distribution ofMica particles, DMA was used to characterize compatibility of the multiphase system, WAXD,POM and DSC were used to test crystal form, crystallization properties and crystalmorphology of the multiphase system, respectively. In addition, the relationship of betweenphase morphologies of the multiphase system and stress-strain curves was established. Theresults showed that: Mica particles were more likely to tend to distribution in thethermoplastic polyurethane phase, compatibility of the multiphase system for Mica modifiedby coupling agent were successfully improved. Moreover, crystallinity of the multiphasesystem were also a certain amount of increase, and the mechanical properties were slightincrease. In addition, a large number of long fiber structure of the multiphase system couldsignificantly increase the tensile stress and strain. These results indicate that: PLA/TPU/Micamultiphase materials based on volume elongational deformation with chemical modificationhave more strong adsorption than that of the multiphase system without surface modification.Finally, stability and security of the multiphase materials application are further promoted.
     Combination of the structure of VPCU dominated by volume elongational deformationand the corresponding experimental results, the special physical models for effects of thevolume elongational deformation on induced crystallization and orientation behavior and theevolution of dispersed phase morphology were established. These models explained that thevolume elongational deformation had more easier to accelerate ordering of molecular chainand insitu fibrillation of dispersed phase; and strong capacity of heat transfer and masstransfer could remarkably improve the disperse efficiency of polymer materials. The resultsfor the volume elongational deformation processing technology could prove an experimentand mechanism basis for development and promotion of advanced polymer processing.
引文
[1]罗河胜.塑料工艺与施用配方[M].广州:广东科技出版社,2005:1-8
    [2]徐明双,李青山,刘冬.可降解塑料的研究进展[J].塑料制造,2009,5:81-85
    [3]朱复华.挤出理论及应用[M].北京:中国轻工业出版社,2001:1-2
    [4]怀特,波滕特.螺杆挤出[M].何红,金志明译.北京:化学工业出版社,2005:1
    [5]北京化工大学,华南理工大学合编.塑料机械设计[M].第2版.北京:中国轻工业出版社,1995:1
    [6]许政仓.我国塑料机械制造工业概况及展望[J].工程塑料应用,2002,30(7):51-53
    [7]吴大鸣,李晓林,刘颖.单螺杆精密挤出成型技术进展[J].中国塑料,2003,17(2):1-8
    [8] C.劳温代尔.塑料挤出[M].第2版.陈文瑛等译.北京:中国轻工业出版社,1996:160-243
    [9]瞿金平.聚合物动态塑化成型加工理论与技术(上卷)[M].北京:科学出版社,2005:2-3
    [10] Tadmor Z., Gogos C. G. Principles of Polymer Processing[M].2nded. New Jersey: JohnWiley&Sons, Inc.,2006:473-475
    [11]瞿金平.基于拉伸流变的高分子材料塑化输运方法及设备[P].中国:2008100260254,2008.1.25
    [12] Qu J.P. A method for plasticating and conveying macromolecular materials based onelongational flow[P]. U.S.A, Europe, Japan, Russia, Canada, Australia, etc.:PCT/CN2008/000643,2008
    [13]瞿金平.聚合物塑化挤出新概念[J].华南理工大学学报(自然科学版),1992,20(4):1-8
    [14]瞿金平.聚合物电磁动态塑化挤出方法及设备[P].中国:90101034.0,1990;美国:5217302,1993;欧洲:044306B1,1995
    [15]瞿金平.电磁式聚合物动态注射成型方法及装置[P].中国: ZL96108387.5,1999;美国:005951928A,1999;俄罗斯:2145543,2000;欧洲:0818298,2000;澳大利亚:711248,2000
    [16] Qu J.P., He G.J., He H.Z., et al. Effect of the vibration shear flow field in capillarydynamic rheometer on the crystallization behavior of polypropylene[J]. EuropeanPolymer Journal,2004,40(8):1849-1855
    [17] Qu J.P., Feng Y.H., He H.Z., et al. Effects of the Axial Vibration of Screw on ResidenceTime Distribution in Single-Screw Extruders[J]. Polymer Engineering&Science,2006,46(2):198-204
    [18] Qu J.P., Zeng G.S., Feng Y.H., et al. Effect of Screw Axial Vibration on Polymer MeltingProcess in Single-Screw Extruders[J]. Journal of Applied Polymer Science,2006,100(5):3860-3876
    [19] Qu J.P., Cai Y.H. Experimental Studies and Mathematical Modeling of Melt-PulsedConveying in Screw Extruders[J]. Polymer-Plastics Technology and Engineering,2006,45(10):1137-1142
    [20] Qu J.P., Shi B.S., Feng Y.H., et al. Dependence of Solids Conveying on Screw AxialVibration in Single Screw Extruders[J]. Journal of Applied Polymer Science,2006,102(3):2998-3007
    [21] Qu J.P. Polymer Dynamic Plasticating Processing: Theory and Technology[M].Cambridge: Woodhead Publishing Ltd.,2010
    [22] Tadmor Z. Forces in dispersive mixing[J]. Industrial&Engineering Chemistry Research,1976,15(4):346-348
    [23] ErwinL.Theory of laminar mixing[J]. Polymer Engineering&Science,1978,18(13):1044-1048
    [24]何光建,殷小春,瞿金平.基于拉伸流动的聚合物复合材料分散混合研究进展[J].塑料,2010,39(3):8-10
    [25]瞿金平.塑料加工成型技术的最新研究进展[J].中国工程科学,2011,13(10):58-68
    [26] Qu, J. P., Yang, Z. T., Yin, X. C., et al. Characteristics study of polymer melt conveyingcapacity in vane plasticization extruder[J]. Polymer-Plastics Technology and Engineering2009,48,269-286
    [27] Qu, J.P., Liu, L.M., Tan, B., et al. Effect of dynamical converging channels on fiberorganization and damage during vane extrusion ofsisal fiber-reinforced polypropylenecomposites[J]. Polymer Composites,2012,33(2):185-191
    [28] Jia S.K., Qu J.P., Liu W.F., et al. Thermoplastic polyurethane/polypropylene blends basedon novel vane extruder: A study of morphology and mechanical properties[J]. PolymerEngineering&Science,2014,54(3):716-724
    [29] Jia S.K., Qu J.P., Zhai S.F., et al. Effects of dynamic elongational flow on the dispersionand mechanical properties of low-density polyethylene/nanoprecipitated calciumcarbonate composites[J]. Polymer Composites,2014,35(5):884-891
    [30] Jia S.K., Qu J.P., Wu C.R., et al. Novel Dynamic Elongational Flow Procedure forReinforcing Strong, Tough, Thermally Stable Polypropylene/Thermoplastic PolyurethaneBlends[J]. Langmuir,2013,29(44):13509–13517
    [31]徐佩弦.高聚物流变学及其应用[M].第一版.北京:化学工业出版社,2003:50-51
    [32] Hovey V.M. History of extrusion equipment for rubber and plastics[J]. Wire and wireProd,1961,36(1):192-195
    [33] Schenkel G. Plastics extrusion technology and theory[M]. London: Iliffe Books, Ltd.,1966:15-90
    [34] White J.L. Elastomer rheology and processing[J]. Rubber Chemistry and Technology,1969,42(1):256-438
    [35] Tadmor Z., Gogos C.G.聚合物加工原理[M].北京:化学工业出版社,2008:1-10
    [36] Ambrogio G., Gagliardi F. Design of an optimized procedure to predict oppositeperformances in porthole die extrusion[J]. Neural Computing and Applications,2013,23(1):195-206
    [37] Tadmor Z. Machine invention, innovation and elementary steps[J]. Advances in PolymerTechnology,2002,21:87-97
    [38] Darnell W.H., J Mol E.A. Solids conveying in extruders[J]. Soceity Plastis EngineeringJournal,1956,12:20-28
    [39] Tadmor Z. Screw elements having shearing and scraping devices[P]. U.S. patent:5356208,1994
    [40]北京化工大学,华南理工大学合编.塑料机械设计[M].第2版.北京:中国轻工业出版社,1995:1
    [41] Yao W.G., Takahashi K., Koyama K., et al. Design of a new type of pin mixing sectionfor a screw extruder based on analysis of flow and distributive mixing performance[J].Chemical Engineering Science,1997,52(1):13-21
    [42] Jana S.C., Tjahjadi M., Ottino J.M. Chaotic mixing of viscous fluids by periodic changesin geometry: baffled cavity flow[J]. AIChE Journal,1994,40:1769-1781
    [43] Hwang W.R., Kang K.W., Kwon T.H. Dynamical systems in pin mixers of single screwextruders[J]. AIChE Journal,2004,50(7):1372-1385
    [44] Rauwendaal C. Mixing in polymer processing[M]. New York: Marcel Dekker, Inc.,1991:129-240
    [45] Rauwendaal C. Scale-up of single screw extruders[J]. Polymer Engineering&Science,1987,27(14):1059-1068
    [46] Erwin L. Theory of mixing sections in single screw extruders[J]. Polymer Engineering&Science,1978,18(7):572-576
    [47] Chella R., Ottino J.M. Fluid mechanics of mixing in a single-screw extruder[J]. Industrial&Engineering Chemistry Research,1985,24(2):170–180
    [48] Kelly A.L., Brown E.C., Coates P.D. The effect of screw geometry on melt temperatureprofile in single screw extrusion[J]. Polymer Engineering&Science,2006,46(12):1706-1714
    [49] Rauwendaal C. Comparison of two melting models[J]. Advances in Polymer Technology,1996,15(2):135-144
    [50] Verbraak C.P.J.M., Meijer H.E.H. Screw design in injection molding[J]. PolymerEngineering&Science,1989,29(7):479-487
    [51] Markaria J. New mixing developments move single screw compounding forward[J].Plastics, Additives and Compounding,2004,6(5):50-53
    [52] Rauwendaal C. Polymer Extrusion[M]. Cincinnati: Hanser Gardner Publications, inc.,2001:425-536
    [53] Rauwendaal C. Analysis and experimental evaluation of twin screw extruders[J].Polymer Engineering&Science,1981,21(16):1092-1100
    [54]姜南,朱常委.浅析三螺杆挤出机的混合作用[J].中国塑料,2001,15(8):87-90
    [55]朱常委.三螺杆挤出机螺纹元件及混合机理研究[D].北京:北京化工大学,2002.
    [56]何和智.聚合物复合材料三螺杆动态挤出过程及其结构性能研究[D].广州:华南理工大学,2012
    [57] Tadmor Z., Gogos C.G. Priciples of polymer processing (second edition)[M]. New Jersey:John Wiley&Sons, Inc.,2006:1-17
    [58]冯若.超声手册[M].南京:南京大学出版社,1999:45-47
    [59]梁梅,李姜,郭少云.超声波对PA6/HDPE共混体系结构和性能的影响[J].高分子材料科学与工程,2004,20(2):126-127
    [60]赵丽娟,杜芹,郭少云.超声挤出制备聚丙烯/纳米碳酸钙复合材料及其结晶和分散形态[J].高分子材料科学与工程,2006,22(6):184-186
    [61] Zhao L.J, Du Q., Guo S.Y. Attapulgite and ultrasonic oscillation induced crystallizationbehavior of polypropylene[J]. Journal of Polymer Science Part B: Polymer Physics,2007,45(16):2300-2308
    [62] Li J., Jiang G.J., Guo S.Y. Effects of ultrasonic oscillations on structure and properties ofHDPE/montmorillonite nanocomposites[J]. Plastics, Rubber and Composites,2007,36(7-8):308-313
    [63] Xie T.T, Wu H, Guo S.Y. Enhanced compatibility of PA6/POE blends by POE-g-MAHprepared through ultrasound-assisted extrusion[J]. Journal of Applied Polymer Science,2010,118(3):1846-1852
    [64] Beloshenko V.A., Beygelzimer Ya.E., Varyukhin V.N. Thermal shrinkage of polymermixtures obtained by solid-state extrusion[J]. Polymer,2000,41(10):3837-3840
    [65] Alderson K.L., Evans K.E. The fabrication of microporous polyethylene having anegative Poisson's ratio[J]. Polymer,1992,33(20):4435-4438
    [66] Vasic I., deMan J.M. Measurement of some rheological properties of plastic fats with anextrusion modification of the shear press[J]. Journal of the American Oil ChemistsSociety,1967,44(4):225-228
    [67] Morita T., Adachi M., Kato J. Study of the coagulated structure and fiber strength withwet spinning of aliphatic polyketone with aqueous composite metal salt solutions[J].Journal of Applied Polymer Science,2005,96(4):1250-1258
    [68] Morita T., Adachi M., Kato J. Study on fiber structure formation in wet spinning ofaliphatic polyketone using aqueous solution of complex metal salts—Characteristics ofsolid structure formation in drying step and its effects on superdrawing step[J]. Journalof Applied Polymer Science,2005,96(2):446-452
    [69] Beloshenko V.A., Kozlov G.V., Varyukhin V.N., et al. Slobodina. Properties ofultra-high-molecular polyethylene and related polymerization-filled compositesproduced by solid-state extrusion[J]. Acta Polymerica,1997,48(5-6):181-187
    [70] Ananthakumar S., Menon A.R.R., Prabhakaran K., et al. Rheology and packingCharacteristics of alumina extrusion using boehmite gel as a binder[J]. CeramicsInternational,2001,27(2):231-237
    [71] Pawlikowski G.T., Mitchell D.J., Porter R.S. Coextrusion drawing of reactor powder ofultrahigh molecular weight polyethylene[J]. Journal of Polymer Science Part B: PolymerPhysics,1988,26(9):1865-1870
    [72] Suzaka Y. Mixing device[P]. U.S.A: US4334783,1982.6.15
    [73] Nguyen X.Q., Utracki L.A. Extensional flow mixer[P]. U.S.A: US5451106,1995.9.19
    [74] Rauwendaal C., Osswald T., Gramann P. Design of dispersive mixing devices[J].International Polymer Processing,1999,14(1):28-34
    [75]吴大鸣,孟庆云,刘颖.原位气泡拉伸分散法研究[J].中国塑料,2004,18(4):59-63
    [76] Luker K. Extruder mixer for mixing plastic or plastified flowable material[P].US6962431-B1,2005.11.08
    [77] Padmanabhan B. Method for operating twin screw extruder for mixing processedmaterials[P]. US2011063940-A12011.03.17
    [78]申长雨.塑料模CAE技术发展概况[J].模具工业,2001,1,3-8
    [79] Ward H.J., Dobbie D.J. Heat-sealable polypropylene films[P]. American: US4297415A,1979
    [80]李安定,袁毅,申开智.复合应力场下制备自增强的HDPE管材[J].塑料,2005,34(3):68-71
    [81]王克俭,吴大鸣,龙文保.管材模头拉伸取向成型方法研究的进展[J].2000,01
    [82]王克俭,吴大鸣,陈卫红.模头胀拉塑料管材取向成型的机理[J].上海交通大学学报,2000,04
    [83] Gonzalez-N.R., Favis B.D., Garreau P. J. Factors influencing the formation of elongatedmorphologies in immiscible polymer blends during melt processing[J]. PolymerEngineering&Science,1993,33(13):851-859
    [84] Mahendrasingam A., Martin C., Jaber A., et al. Time-resolved X-ray wide anglescattering studies of the effect of draw rate and temperature on the development oforientation and crystallinity in PET[J]. Nuclear Instruments and Methods in PhysicsResearch Section B: Beam Interactions with Materials and Atoms,1995,97(1-4):238-241
    [85] Blundell D.J., Oldman R.J., Fuller W., et al. Orientation and crystallisation mechanismsduring fast drawing of poly(ethylene terephthalate)[J]. Polymer Bulletin,1999,42(3):357-363
    [86] Blundell D.J., Mackerron D.H., Fuller W., et al. Characterization of strain-inducedcrystallization of poly(ethylene terephthalate) at fast draw rates using synchrotronradiation[J]. Polymer,1996,37(15):3303-3311
    [87] Mahendrasingam A., Martin C., Fuller W., et al. Effect of draw ratio and temperature onthe strain-induced crystallization of poly (ethylene terephthalate) at fast draw rates[J].Polymer,1999,40(20):5553-5565
    [88] Blundell D.J., Mahendrasingam A., Martin C., et al. Orientation prior to crystallisationduring drawing of poly(ethylene terephthalate)[J]. Polymer,2000,41(21):7793-7802
    [89] Mahendrasingam A., Blundell D.J., Martin C., et al. Effect of draw ratio and temperatureon the strain-induced crystallization of poly (ethylene terephthalate) at fast draw rates[J].Polymer,2000,41(21):7803-7814
    [90] Ajji A., Cole K.C., Dumoulin M.M., et al. Amorphous orientation of poly(ethyleneterephthalate) by X-ray diffraction in combination with Fourier transform infra-redspectroscopy[J]. Polymer,1995,36(21):4023-4030
    [91] Ajji A., Guevremont J., Cole K.C., et al. Amorphous orientation of poly(ethyleneterephthalate) by X-ray diffraction in combination with Fourier transform infra-redspectroscopy[J]. Polymer,1996,37(16):3707-3714
    [92] Matthews R.G., Ajji A., Dumoulin M.M, et al. The effects of stress relaxation on thestructure and orientation of tensile drawn poly(ethylene terephthalate)[J]. Polymer,2000,41(19):7139-7145
    [93] Ajji A., Cole K.C., Dumoulin M.M., et al. Orientation of amorphous poly(ethyleneterephthalate) by tensile drawing, roll-drawing, and die-drawing[J]. Polymer Engineering&Science,1997,37(11):1801–1808
    [94] Macro Y., Chevalier L., Chaouche M., et al. WAXD study of induced crystallization andorientation in poly(ethylene terephthalate) during biaxial elongation[J]. Polymer,2002,43(24):6569-6574
    [95] Macro Y., Chevalier L., Poitu A., et al. Induced crystallization and orientation ofpoly(ethylene terephthalate) during uniaxial and biaxial elongation[J]. MacromolecularSymposia,2002,185(1):15-34
    [96] Macro Y., Chevalier L. Microstructure changes in poly(ethylene terephthalate) in thickspecimens under complex biaxial loading[J]. Polymer Engineering&Science,2008,48(3):530-542
    [97] Guan J.G., Ma H.R., Duan H.J., et al. in situ composites containing liquid crystallinepolymers as self reinforcing components[J]. Acta Material Composites Sinica,2002,19(5):7-13
    [98] Li X.D., Chen M.C., Huang Y. H., et al. PP/PA6in situ composites i: Morphology andmechanical properties[J]. Acta Material Composites Sinica,1998,15(2):57-61
    [99] Shen J.W., Huang W.Y., Zuo S.W., et al. Reinforcing effect of pp/pet in situ fiberizedcomposites[J]. Acta Material Composites Sinica,2004,21(4):33-39.
    [100] Li Z.M., Yang M.B., Huang R., et al. In-situ Composite Based on Poly(ethyleneterephthalate), Polyamide and Polyethylene with Microfibers Formed through Extrusionand Hot Stretching [J]. Journal of Materals Science&Technology,2002,18(5):419-422
    [101] Li Z.M., Yang M.B., Lu A., et al. Tensile Properties of Poly(ethylene terephthalate)Polyethylene In-situ Microfiber Reinforced Composite Formed via Slit Die Extrusionand Hot-Stretching [J]. Materials Letters,2002,56(5):756-762
    [102] Li Z.M., Yang M.B., Feng J.M., et al. Morphology of In situ Poly(ethylene terephthalate)Polyethylene Microfiber Reinforced Composite Formed via Slit-die Extrusion andHot-stretching[J]. Materials Research Bulletin,2002,37(13):2185-2197
    [103] Li Z.M., Yang W., Xie B.H., et al. Morphology and Tensile Strength Prediction of Insitu Microfibrillar Poly(ethylene terephthalate)/Polyethylene Blends Fabricated viaSlit-die Extrusion-hot Stretching-quenching[J]. Macromolecular Materials andEngineering,2004,289(4):349-354
    [104] Li Z.M., Yang W., Huang R., et al. Essential Work of Fracture Parameters of In-situMicrofibrillar Poly(ethylene terephthalate)/Polyethylene Blend: Influences of BlendComposition[J]. Macromolecular Materials and Engineering,2004,289(5):426-433
    [105] Fakirov S., Evstaiev M., Petrovich S. Microfibrillar Reinforced Composites fromBinary and Ternary Blends of Polyesters and Nylon6[J]. Macromolelcules,1993,26(19):5219-5266
    [106] Fakirov S., Evstaiev M., Petrovich S. From polymer Blends to MicrofibrillarReinforced Composites[J]. Polymer Blends: Performance,1999(40):455-464
    [107] Fakirov S., Kamo H., Evstatiev M., et al. Microfibrillar Reinforced Composites FromPET/LDPE Blends: Morphology and Mechanical Properties[J]. Journal ofMacromolecular Science-Physics,2004,43(4):775-789
    [108] Fakirov S., Evstaiev M., Schultz J. M. Microfibrillar Reinforced Composite FromDrawn Poly(ethylene terephthalate)/Nylon-6Blend[J]. Polymer,1993,34(22):4669-4679
    [109] Fakirov S., Kamo H. Microfibrillar Reinforced Composites from PET/LDPE Blends:Morphology and Mechanical Properties[J]. Journal of Macromolecular Science, Part B:Physics,2004:43(4):775-789
    [110] Lee J.K., Han C.D. Evolution of polymer blend morphology during compounding in aninternal mixer[J]. Polymer,1999,40(23):6277-6296
    [111] Lee J.K., Han C.D. Evolution of polymer blend morphology during compounding in atwin-screw extruder[J]. Polymer,2000,41(5):1799–1815
    [112] Li Z.M., Yang W., Yang M.B., et al. Morphology-tensile behavior relationship ininjection molded poly(ethyleneterephthalate)/polyethylene and polycarbonate/polyethyleneblends (I) Part I Skin-core Structure[J]. Journal of Materials Science,2004,39(2):413-431
    [113] Yin B., Lan J., Yang M.B., et al. Evolution in PC/PE Blends with and withoutCompatibilization During Twin-Screw Extrusion[J]. Polymer-Plastics Technology andEngineering,2010,49(5):503-509
    [114] Wu D.F., Zhang Y.S., Zhang M., et al. Phase behavior and its viscoelastic response ofpolylactide/poly(-caprolactone) blend[J]. European Polymer Journal,2008,44(7):2171-2183
    [115] Zhang Y.S., Wu D.F., Zhang M., et al. Effect of Steady Shear on the Morphology ofBiodegradable Poly(Caprolactone)/Polylactide Blend[J]. Polymer Engineering&Science,2009,49(12):2293-2300
    [116] Wu G.Z., Xu H.B., Zu T. Morphology evolution, crystalline orientation, and thermalexpansion of PA6/SEBS blends with nanolayer networks[J]. Polymer,2010,51(15):3560–3567
    [117] Su R., Jiang K., Fu Q., et al. Shear-induced fibrillation and resultant mechanicalproperties of injection-moldedpolyamide1010/isotactic polypropyleneblends[J].Polymer International,2011,60(11):1655-1662
    [118] Testa C., Sigillo I., Grizzuti N. Morphology evolution of immiscible polymer blendsincomplex flow fields[J]. Polymer,2001,42(13):5651–5659
    [119] Wang D., Sun G., Chiou B.S., et al. Controllable fabrication and properties ofpolypropylene nanofibers[J]. Polymer Engineering&Science,2007,47(11):1865-1872
    [120] Xue C.H., Wang D., Sun G., et al.Morphology evolution of polypropylene inimmiscible polymer blends for fabrication of nanofibers[J]. Journal of Polymer SciencePart B: Polymer Physics,2010,48(9):921-931
    [121] Hong S.J., Kim Y.K., Ahn K.H., et al. Shear-Induced Migration of Nanoclay DuringMorphology Evolution of PBT/PS Blend[J]. Journal of Applied Polymer Science,2008,108(1):565–575,
    [122] Hong Z.Y., Shaw M.T., Weiss R.A. Effect of Shear Flow on the Morphology and PhaseBehavior of a Near-Critical SAN/PMMA Blend[J]. Macromolecules,1998,31(18):6211–6216
    [123] Hong Z.Y., Shaw M.T., Weiss R.A. Structure evolution and phase behavior ofpolymer blends under the influence of shear[J]. Polymer,2000,41(15):5895–5902
    [124] Reignier J. Favis D.B. Control of the Subinclusion Microstructure in HDPE/PS/PMMATernary Blends[J]. Macromolecules,2000,33(19):6998–7008
    [125] Tchomakov K.P., Favis D.B., Huneault M.A., et al. Mechanical Properties andMorphology of Ternary PP/EPDM/PE Blends[J]. The Canadian Journal of ChemicalEngineering,2005,83(2):300–309
    [126] Barick A.K., Tripathy D.K. Effect of organoclay on thermal and dynamic mechanicalproperties of novel thermoplastic polyurethane nanocomposites prepared by meltintercalation technique[J]. Polymers for Advanced Technologies,2010,21(12):835–847
    [127] Barick A.K., Tripathy D.K. Effect of organically modified layered silicate nanoclay onthe dynamic viscoelastic properties of thermoplastic polyurethane nanocomposites[J].Applied Clay Science,2011,52(3):312–321
    [128] Palacios J., Perera R., Rosales C., et al. Thermal degradation kinetics of PP/OMMTnanocomposites with mPE and EVA[J]. Polymer Degradation and Stability,2012,97(5):729–737
    [129] Wu D.F., Wu L.F., Zhang M., et al. Morphology evolution of nanocomposites based onpoly(phenylene sulfide)/poly(butylene terephthalate) blend[J]. Journal of PolymerScience Part B: Polymer Physics,2008,46(12):1265–1279
    [130] Xu B., Leisen J., Beckham H.W. Evolution of Clay Morphology in Polypropylene/Montmorillonite Nanocomposites upon Equibiaxial Stretching: A Solid-State NMR andTEM Approach[J]. Macromolecules,2009,42(22):8959–8968
    [131]杨智韬.聚合物叶片挤出机熔体正位移输送与混合特性研究[D].广州:华南理工大学,2010
    [132]赵晓强.基于拉伸流变的聚合物塑化输运过程能耗特性研究[D].广州:华南理工大学,2012
    [133]张桂珍.体积拉伸形变支配的聚合物塑化熔融机理研究[D].广州:华南理工大学,2013
    [134]刘伟锋.拉伸形变主导作用的TPU增韧复合材料制备及其结构性能研究[D].广州:华南理工大学,2013
    [135] Inoue M. Morphology of polypropylene spherulites[J]. Jouranl Polymer Science,1962;60(170):81–89
    [136] Wang Y., Chen C., Li Z.M., et al. Suppressing of γ-Crystal Formation inMetallocene-Based Isotactic Polypropylene during Isothermal Crystallization underShear Flow[J]. Journal Physical Chemistry B,2012,116(16):5056–5063
    [137] Keum J.K., Mao Y.M., Hsiao B.S., et al. Flow-induced crystallization precursorstructure in high molecular weight isotactic polypropylene(HMW-Ipp)/low molecularweight linear low density polyethylene (LMW-LLDPE) binary blends[J]. Polymer,2013,54(4):1425–1431
    [138] Chen Y.H., Mao Y.M., Li Z.M., et al. Competitive Growth of α-and β-Crystals inβ-Nucleated Isotactic Polypropylene under Shear Flow[J]. Macromolecules,2010,43(16):6760–6771
    [139] Zhang J., Yan D.X., Li Z.M., et al. Highly crystallized poly (lactic acid) under highpressure[J]. AIP Advances,2012,2(4):1-5
    [140] Marubayashi H.M.,Akaishi S., Asai S., et al. Crystalline Structure and Morphology ofPoly(L-lactide) Formed under High-Pressure CO2[J]. Macromolecules,2008,41(23):9192–9203
    [141] Hu X., Xu J.Z., Li Z.M., et al. Shear induced crystallization of poly(L-lactide) andpoly(ethylene glycol)(PLLA-PEG-PLLA)copolymers with different block length[J].Journal of Polymer Research,2011,18(4):675-680
    [142] Tsuji H., Tashiro K., Bouapao L., et al. Synchronous and separate homo-crystallizationof enantiomeric poly(L-lactic acid)/poly(D-lactic acid) blends[J]. Polymer,2012,53(2):747–754
    [143] Jang H.S., Do C., Kim T.H., et al. Single-Walled Carbon Nanotube-Induced LyotropicPhase Behavior of a Polymeric System[J]. Macromolecules,2012,45(2):986–992
    [144] Xu J.Z., Chen C., Li Z.M., et al. Graphene Nanosheets and Shear Flow InducedCrystallization in Isotactic Polypropylene Nanocomposites[J]. Macromolecules,2011,44(8):2808–2818
    [145] Oda T., Kono F., Saito H. Nucleation Effect of Clay on Crystallization of PolypropyleneUnder Carbon Dioxide[J]. Polymer Engineering&Science,2012,52(10):2228–2236
    [146] Hu W.B., Frenkel D. Effect of Metastable Liquid-Liquid Demixing on the Morphologyof Nucleated PolymerCrystals[J]. Macromolecules,2004,37(12),4336-4338
    [147] Li Y.J., Shimizu H. Toughening of Polylactide by Melt Blending with a BiodegradablePoly(ether)urethane Elastomer[J]. Macromolecular Bioscience,2007,7(7):921–928
    [148] Wang J., Zheng L.C., Li C.C., et al. Fully biodegradable blends of poly(butylenesuccinate) and poly(butylenecarbonate): Miscibility, thermal properties, crystallizationbehavior and mechanical properties[J]. Polymer Testing,2012,31(1):39-45
    [149] Xie M.J., Chen J.Y., Li H.L. Morphology and Mechanical Properties ofInjection-Molded Ultrahigh Molecular Weight Polyethylene/Polypropylene Blends andComparison with Compression Molding[J]. Journal of Applied Polymer Science,2009,111(2):890–898
    [150] Chen Y.H., Zhang Z.C., Li Z.M., et al. Microstructure and mechanical properties ofisotactic polypropylene composite with two-scale reinforcement[J]. Polymers forAdvanced Technologies,2012,23(12):1580–1589
    [151] Modesti M., Lorenzetti A., Bon D., et al. Effect of processing conditions on morphologyand mechanical properties of compatibilized polypropylene nanocomposites[J]. Polymer,2005,46(23):10237–10245
    [152] Borges S., Dias M.L., Pita V.J., et al. Water vapor permeability and tensile properties ofpoly(l-lacticacid)/synthetic mica Nanocomposites prepared by melt blending[J]. Journalof Plastic Film and Sheeting,2013,29(2):112-126
    [153] Chang J.H., An Y. U. Cho D., et al. Poly(lactic acid) nanocomposites: comparison oftheir properties with montmorillonite and synthetic mica (II)[J]. Polymer,2003,44(13):3715–3720
    [154] Kim M.W., Song Y.S., Youn J.R. Effects of interfacial adhesion and crystallization onthe thermoresistance of poly(lactic acid)/mica composites[J]. Composites Part A:Applied Science and Manufacturing,2010,41(12):1817–1822
    [155] Fischer E.W., Sterzel H.J., Wegner G., et al. Investigation of the structure of solutiongrown crystals of lactide copolymers by means of chemical reactions[J].Kolloid-Zeitschrift und Zeitschrift Für Polymere,1973,251(11):980–990
    [156] Brochu S., Prudhomme R.E., Barakat I., et al. Stereocomplexation and Morphology ofPolylactides[J]. Macromolecules,1995,28(15):5230–5239
    [157] Sarasua J.R., Prudhomme R.E., Wisniewski M., et al. Crystallization and MeltingBehavior of Polylactides[J]. Macromolecules,1998,31(12):3895–3905
    [158] Schmidt S.C., Marc A. Hillmyer M.A. Polylactide stereocomplex crystallites asnucleating agents for isotactic polylactide[J]. Journal of Polymer Science Part B:Polymer Physics,2001,39(3):300–313,
    [159] Fraschini C., Plesu R., Prudhomme R.E., et al. Cracking in polylactide spherulites[J].Journal of Polymer Science Part B: Polymer Physics,2005,43(22):3308–3315
    [160] Wang X.H., Prudhomme R.E. Differences Between Stereocomplex Spherulite Obtainedin Equimolar and Non-Equimolar Poly(L-lactide)/Poly(D-lactide) Blends[J].Macromolecular Chemistry and Physics,2011,212(7):691–698
    [161] Yamane H., Sasai K., Effect of the addition of poly(D-lactic acid) on the thermalproperty of poly(L-lactic acid)[J]. Polymer2003,44,2569-2575.;
    [162] Rahman N., Kawai T., Matsuba G., et al, Effect of Polylactide Stereocomplex on theCrystallization Behavior of Poly(L-lactic acid)[J]. Macromolecules,2009,42(13):4739–4745
    [163] Tsuji H., Takai H., Saha S.K. Isothermal and non-isothermalcrystallization behavior ofpoly(L-lactic acid): Effects of stereocomplex as nucleating agent[J]. Polymer,2006,47(11):3826–3837.
    [164]韩娟娟. PLA/TPU共混物及其纳米复合材料的流变-形态-性能研究[D].广州:华南理工大学,2011
    [165]詹中贤,郝军令.热塑性聚氨酯弹性体力学性能和结晶性能研究[J].弹性体,2007,17(4):31-35
    [166]李旭娟,李忠明.聚乳酸结晶的研究进展[J].中国塑料,2006,20(10):6-10
    [167] Tsuji H., Ikada Y. Crystallization from the melt of poly(lactide)s with different opticalpurities and their blends[J]. Macromolecular Chemistry and Physics,1996,197(10):3483–3499
    [168] Jia S.K., Qu J.P., Chen R.Y., et al. Effects of thermoplastic polyurethane on theproperties of poly(lactic acid)/organo-montmorillonite nanocomposites based on novelvane extruder[J]. Polymer Engineering&Science,2013, DOI:10.1002/pen.23781
    [169] Zalkind O.A., Gershenkop A.S. IR spectral determination of mica in multicomponentsystem[J]. Journal of Analytical Chemistry,2006,61(7):644-646
    [170]陆锦成.钛酸酯偶联剂[J].涂料工业,1994,6:42-45
    [171]李红玲,董斌.钛酸酯偶联剂的偶联机理及研究进展[J].表面技术,2012,41(4):99-102
    [172] Zhang J.M., Duan Y.X., Ozaki Y., et al. Crystal Modifications and Thermal Behavior ofPoly(L-lactic acid) Revealed by Infrared Spectroscopy[J]. Macromolecules,2005,38(19):8012–8021
    [173]石德珂.材料科学基础[M].第二版.北京:机械工业出版社,2003:267-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700