用户名: 密码: 验证码:
光二聚肉桂酸酯类聚合物的光化学行为与记忆效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光二聚肉桂酸酯类聚合物在紫外光照下会发生顺反异构变化,同时还可以发生[2+2]环化反应。而这一系列光化学反应,可以引起分子体积的改变,进而改变物质的结构、溶解性、光学性质等诸多方面,且相较于光异构的可逆性具有稳定性,从而使得光二聚肉桂酸酯类聚合物具有更为广泛的应用前景。近年来,光控取向材料成为当前的研究热点,人们发现通过偏振紫外光照射,引发聚合物薄膜的光异构、光交联和光降解,产生表面各向异性,使得液晶分子在薄膜上发生取向排列。本文提出与上述光控取向完全相反的思路—光控解取向。将光活性基团引入光学各项异性材料,制备光敏各项异性材料。随后通过紫外曝光,引发光敏各项异性材料局部的光异构或光交联,实现对光敏各项异性材料进行光控解取向,得到具有不同相位差的图像。围绕肉桂酸酯类聚合物的光二聚机理,系统研究其光化学行为;对紫外光肉桂酸酯类聚合物和聚乙烯醇类感光高分子的记忆效应进行了详细研究。
     首先,我们通过实验证明了自由基并不会引发肉桂酸酯的光二聚反应反应。紫外光谱分析可以对肉桂酸酯光化学反应进行动力学分析。肉桂酸酯稀溶液在紫外曝光下只发生顺反异构反应,且为一级对行反应。肉桂酸衍生物晶体的光化学反应以光二聚为主。肉桂酸衍生物的液晶类型态对其液晶态的光化学反应有重要影响。对了解肉桂酸酯光二聚机理有很大的帮助。然后我们以此为指导分别从有机液晶分子及感光高分子两个方面探讨了肉桂酸基团在光控解取向记忆效应领域的应用。
     制备了肉桂酸酯功能液晶,并研究其记忆效应。光二聚合成的肉桂酸胆甾醇酯制备了二苯基环丁烷二羧酸二胆甾醇酯,并利用液晶记忆效应实现了信息记录。热力学研究表明,有刚性链的中等分子量液晶的结晶温度,随着降温速率的加快,明显下降。足够高的速率降温,会使结晶温度低于玻璃化温度,从而导致处于液晶相的化合物在降至室温时,形成玻璃态液晶,而非结晶。实时广角X射线衍射的测试数据也支持了该机理解释。
     研究了光敏高分子光控解取向与偏光记忆效应。成功搭建一套具有偏振光可控光路系统的光化学反应平台。制备聚乙烯醇肉桂酸酯及聚乙烯醇/铜离子薄膜,通过拉伸取向实现各项异性,制得具有双折射效应的感光性高分子膜。然后通过紫外光照,引发光化学反应,明显的降低了高分子薄膜取向度,实现高分子的解取向。提出了光弹性率的概念,并通过带有偏振棱镜的分光光度计研究了感光高分子的偏光特性和记忆效应,建立了光弹性率量化模型。
Cinnamoyl moiety could both be photoisomerized and [2+2] cyclized under UV irradiation. These photoreactions could make changable molecular volume which was independent of heat. Thus, cinnamoyl moieties could be applied widely. Photosensitive polymer chains could be oriented by exposed to the linearly polarized ultraviolet light. Since this was reported, a considerable amount of research has been directed towards photo-induced liquid crystal alignment. Photo-orientation becomes a new investigative hotspot because it is an important part of photo-induced liquid crystal alignment. Conversely, photo-de-orientation mechanism was presented in this study. Photosensitive anisotropy materials were synthesized, exposed by UV light and de-oriented because of either photoreaction, then images of difference phase were prepared. Photochemistry Behaviors of cinnamoyl moiety and memory efects of cinnamoyl moiety and PVA were systematicly studied.
     Results of experiments demonstrated that the existence of free radical initiator could not initiate photodimerization of cinnamoyl moieties. UV-Vis spectral analysis was used for studying the kinetic behaviors of cinnamoyl moiety photoreaction. The photoreaction kinetics of cinnamoyl moiety in solution fit to first order excellently. Cinnamoyl moiety in solid state only involves photodimerization. Different phases of liquid crystal would influence photoreactions of cinnamoyl moiety in liquid crystal phase hugely. These investigations have enabled us to present new data and interpretations regarding the [2+2] photocycloaddition reaction. What's more, it can also be used to analyze the photoreaction of the C=C bond which is expected to control the reflected band and the color of cholesteric liquid crystals. The investigation was taken as the guidance to study memory effects of cinnamoyl moieties, from both liquid crystal and photosensitive polymer.
     Cinnamoyl moiety liquid crystal was synthesized and memory effect was studied. Dicholesteryl diphenyl cyclobutanediate was synthesized by photodimerization of cholesteryl cinnamate. Glassy cholesteric liquid crystal was prepared. The test showed it could be used as a rewritable color recording material. The principle of glassy liquid crystal was discussed. In-situ studies of structural and morphological changes during the process forming glassy liquid crystal were carried out using synchrotron wide-angle X-ray diffraction (WAXD) techniques and DSC. It can be concluded from DSC and synchrotron WAXD that the crystallization peak moves from high temperature to low temperature with the increasing cooling rate. If the cooling rate is fast enough, it can make the glass transition temperature higher than the crystallization temperature. Thus, glassy liquid crystal was vitrified instead of becoming into crystal state and the cholesteric color was fixed.
     Photo-de-orientation and memory effect was studied. UV-Vis spectrophotometer with polarization adjunct was used to measure the polarization character of photosensitive film. The Poly (vinyl cinnamate) (PVCi) film and PVA/Cu2+ film were prepared. They were stretched and photoelastic birefringence formed. Then the oriented films were exposed to UV light. The birefringence decreased under the UV irradiation. The results can be obtained quantitatively by a measurement using polarization spectrometer. The conception of birefringence ratio was presented. The birefringence ratio quantization model was established and the model was attested by experiments.
引文
[1]Robertson, E.; Deusen, W.; Minsk, L. Photosensitive polymers. Ⅱ. Sensitization of poly(vinyl cinnamate) [J]. J. Appl. Polym. Sci.1959,2,308-311.
    [2]Zheng, Y. J.; Andreopoulos, F. M.; Micic, M.; Huo, Q.; Pham, S. M.; Leblanc, R. M. A novel photoscissile poly(ethylene glycol)-based hydrogel[J]. Adv. Funct. Mater.2001, 11,37-40.
    [3]Kimura, T.; Kim, J.-Y.; Fukuda, T.; Matsuda, H. UV-curable azobenzene polymer bearing photo-crosslinkable moiety for stabilization of photo-fabricated surface relief structure[J]. Macromol. Chem. Phys.2002,203,2344-2350.
    [4]Liu J H, Wang Y K, Chien C, et al. Synthesis and characterization of optically active liquid crystalline polyacrylates containing mesogenic phenylbenzoate groups [J]. Polymer 2008,49:3938-3949
    [5]Yang P C, Liu J H. Synthesis and characterization of novel photoisomerizable liquid crystalline polymers containing cinnamoyl groups[J]. Journal of Polymer Science Part A Polymer Chemistry,2008,46:1289-1303
    [6]Cohen M D, Schmidt G M J. Topochemistry. Ⅰ. A survey[J]. J. Chem. Soc.,1964, 1996-2000
    [7]Tanaka K, Toda F. Solvent-free organic synthesis[J]. Chem. Rev.,2000,100: 1025-1047
    [8]Nieuwendaal R C, Bertmer M, Hayes S E. An unexpected phase transition during the [2+2] photocycloaddition reaction of cinnamic acid to truxillic acid:changes in polymorphism monitored by solid-state NMR[J]. Journal of Physical Chemistry B, 2008,41:12920-12926
    [9]Benedict J B, Coppens P. Kinetics of the single-crystal to single-crystal two-photon photodimerization of trans-cinnamic acid to truxillic acid[J]. Journal of Physical Chemistry A,2009,113,3116-3120
    [10]Kaupp G. Solid-state photochemistry:new approaches based on new mechanistic insights[J]. International Journal of Photoenergy,2001,3:55-62
    [11]Guo M, Xu Z, Wang X. Photofabrication of two-dimensional quasi-crystal patterns on UV-curable molecular azo glass films[J]. Langmuir,2008,24:2740-2745
    [12]Atkinson S D M, Almond M J, Bruneel J-L, et al. The photodimerisation of trans-cinnamic acid and its derivatives:a study by vibrational microspectroscopy[J]. Spectrochimica Acta Part A 2000,56:2423-2430
    [13]Atkinson S D M, Almond M J, Hollins P, et al. The photodimerization of the a-and b- forms of trnas-cinnamic acid:a study of single crystals by vibrational microspectroscopy[J]. Spectrochimica Acta Part A,2003,59:629-63
    [14]Fan H, Zhu X, Gao L, et al. The photodimerization of a cinnamoyl moiety derivative in dilute solution based on the intramolecular chain interaction of Gemini surfactant[J]. Journal of Physical Chemistry B,2008,112:10165-10170
    [15]Bertmer M, Nieuwendaal R C, Barnes A B, et al. Solid-state photodimerization kinetics of a-trans-cinnamic acid to a-truxillic acid studied via solid-state NMR[J]. Journal of Physical Chemistry B,2006,110:6270-6273
    [16]Schmidt G M, Photodimerization in the solid state[J]. J. Pure Appl. Chem.,1971,27: 647-649
    [17]Hepher M. The Photo-Resist Story--From Niepce to The Modern Polymer Chemist[J]. Journal of Photographic Science,1964,12:181-190
    [18]Barachensky V A. Photoanisotropic effect in polymeric systems and its application[J]. J. Photopolym. Sci. Technol.,1991,4,177-185
    [19]Furumi S, Ichimura K. Surface-Assisted Photoalignment of Discotic Liquid Crystals by Nonpolarized Light Irradiation of Photo-Cross-Linkable Polymer Thin Films [J]. Journal of Physical Chemistry B,2007,111:1277-1287
    [20]Kim H-W, Choi K-S, Mun J, et al. Photo-aligned and photo-conductive polymer layers for photorefractive liquid crystal cells of high transmittance[J]. Optical Materials, 2002,21:657-662
    [21]Liu J-H, Yang P-C. Synthesis and characterization of novel monomers and polymers containing chiral (-)-menthyl groups[J]. Polymer,2006:4925-4935
    [22]Kawatsuki N, Tsutsumi R, Takatsuka H, et al. Influence of alkylene spacer length on thermal enhancement of photoinduced optical anisotropy in photo-cross-linkable liquid crystalline polymeric films and their composites with non-liquid-crystalline monomer[J]. Macromolecules,2007,40:6355-6360
    [23]Oriol L, Pinol M, Serrano, J L, et al. Synthesis, characterization and photoreactivity of liquid crystalline cinnamates[J]. Journal of Photochemistry and Photobiology A: Chemistry,2003,155:37-45
    [24]Whitcombe M J, Gilbert A, Mitchell G R. Synthesis and photochemistry of side-chain liquid crystal polymers based on cinnamate esters[J]. Journal of Polymer Science Part A:Polymer Chemistry,1992,30:1681-1691
    [25]Natansohn A, Rochon P, Pe'zolet M, et al. Azo polymers for reversible optical storage. 4. cooperative motion of rigid groups in semicrystalline polymers[J]. Macromolecules, 1994,27:2580-2585
    [26]Liu J H, Hsieh C D, Wang H Y. Preparation and characterization of chiral end-capped with bornyl groups in the side chains [J]. Journal of Polymer Science:Part A:Polymer Chemistry,2004,42:1075-1092
    [27]Liu J H, Wu F C, Lin T H, et al. Lasing in chiral photonic liquid crystals and associated frequency tuning [J]. Optical Express,2004,12:1857-1863
    [28]Liu J H, Yang P C, Lin T H, et al. Cholesteric liquid crystal laser with wide tuning capability[J]. Applied Physical Letter,2005,86:161120-161123
    [29]Liu J H, Yang P C, Wang Y K, et al. Optical behavior of cholesteric liquid crystal cells with novel photoisomerizable chiral dopants[J]. Liquid Crystals,2006,33:237-248
    [30]Liu J H, Hsieh C D. Synthesis and Physical Properties of Liquid-Crystalline Copolymers with Azobenzene Segments[J]. Journal of Applied Polymer Science, 2006,99:2443-2453
    [31]Jaycox G D. Stimuli-responsive polymers. Ⅶ. Photomodulated chiroptical switches: Periodic copolyaramides containing azobenzene, phenylene, and chiral binaphthylene main-chain linkages[J]. Journal of Polymer Science Part A:Polymer Chemistry,2004, 42:566-577
    [32]Zhou J L, Chen X F, Fan X H, et al. Synthesis and chiroptical properties of optically active poly(N-propargylamide) bearing photoisomerizable azobenzene moieties[J]. Journal of Polymer Science Part A:Polymer Chemistry 2006,44:6047-6054
    [33]Bobrovsky A Y, Boiko N I, Shibaev V P. Photo-optical properties of new combined chiral photochromic liquid crystalline copolymers [J]. Liquid Crystals,1998,25: 393-401
    [34]Lub J, Nijssen W P M, Wegh R T, et al. Photoisomerizable chiral compounds derived from isosorbide and cinnamic acid[J]. Liquid Crystals,2005,32:1031-1044.
    [35]Bobrovsky A Y, Boiko N I, Shibaev V P. Dual photochromism of copolymers containing two different types of photoisomerizable side groups[J]. Journal of Photochemistry and Photobiology A:Chemistry,2001,138:261-267
    [36]Witte P V D, Galan J C, Lub J. Modification of the pitch of chiral nematic liquid crystals by means of photoisomerization of chiral dopants[J]. Liquid Crystals,1998, 24:819-827
    [37]Bobrovsky A, Shibaev V. Photo-optical behaviour of a Functional chiral nematic copolymer and mixtures containing non-chiral photoactive azobenzene groups [J]. Liquid Crystals,2003,30:671-680
    [38]Shibaev V P, Bobrovsky A Y, Boiko Y I. New types of multifunctional liquid crystalline photochromic copolymers for optical data recording and storage[J]. Macromol.Symp.2001,174:319-332
    [39]Yang P C, Wu M Z, Liu J H. Synthesis and characterization of liquid crystalline copolymers with dual photochromic pendant groups[J]. Polymer,2008,49:2845-2856
    [40]李维提,郭强.液晶显示应用技术[M].北京:电子工业出版社,2000.17
    [41]王良御,廖松生.液晶化学[M].北京:科学出版社,1988.4-5
    [42]汪朝阳.液晶材料[J].化工纵横,2002,11:25-27
    [43]吴大诚,谢新光,徐建军.高分子液晶[M].成都:四川教育出版社,1988.9
    [44]李梅,路庆华,王宗光,液晶光取向技术[J],高分子通报,2000, (4):20-26。
    [45]Rajesha K., Rama M.K., Jaina S.C., Samantab S.B., Narliker A.V., Morphological investigation of polyvinyl-4-methoxy cinnamate photopolymer thin and ultrathin films under linear photopolymerization[J]. Thin Solid Films,1998, (325): 51-253.
    [46]Yiliang Wu, Akihiko Kanazawa, Takeshi Shiono, Tomiki Ikeda, Qijin Zhang, Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain.4. Dynamic study of the alignment process[J]. Polymer,1999, (40): 4787-4793.
    [47]闫石,梁兆颜,黄锡珉,液晶分子的光控取向[J].液晶与显示,1998,13(2):141-147
    [48]刘杰,李增昌,张其锦,侧链型偶氮聚合物液晶在不同波长激发条件下的光致取向[J].高分子学报,2002,(1):33-37
    [49]Yanlei Yu, Makoto Nakano, Tomiki Ikeda, Directed.bending of a polymer film by light[J]. Nature,2003,425(11):145
    [50]赵义平,陈莉,王作嘉,张玉欣,光响应共聚高分子的合成及性能研究[C].2005年全国高分子论文学术报告会
    [51]Nobuhiro Kawatsuki, Haruhiko Fukumoto, Osamu Takeuchi, Nobuyoshi Furuso, Tohei Yamamoto, Influence of substituents on the reorientational behavior in photocrosslinkable polymer liquid crystal films with p-substituted cinnamoyloxybiphenyl side groups by irradiating with linearly polarized ultraviolet light and annealing[J]. Polymer,2004, (45):2615-2621
    [52]于涛,彭增辉,阮圣平,宣丽,单体光交联制备液晶垂直取向膜[J].物理学报,2004,53(1):317-319
    [53]Jia Liu,Xiao Liang, Hong Tang, Shouyi Xu, Hongjin Gao, Allyl p-fluor cinnamate grafted polysiloxane photoalignment films polymerized under linear polarized UV light[J], Thin Solid Films,2001, (384):212-214
    [54]梁兆颜,闫石,宣丽,马凯,黄锡珉,聚甲基丙烯酸肉桂酰氧基乙酯的光化学反
    应在液晶分子排列取向中的作用[J],物理学报,2000,49(6):1114-1119
    [55]于海峰,白鹤,连彦青,王晓工,刘德山,新型环氧树脂基液晶光定向层材料的
    合成与性能研究[J],高等化学学报,2003, (24):165-168
    [56]张春华,杨正华,丁孟贤,聚酰亚胺光控取向膜的研究现状[J],高分子通报,2005,(6): 15-23
    [57]Kenji Sakamoto, Kiyoaki Usamib, Toru Sasakia, Takashi Kanayama, Sukekatsu Ushioda, Optical alignment control of polyimide molecules containing azobenzene in the backbone structure[J], Thin Solid Films,2004, (464-465):
    416-419
    [58]于涛,彭增辉,乌日娜,阮圣平,张力,宣丽,光敏聚酰亚胺(BTDA-TMMDA)的光控取向研究[J],液晶与显示,2003,18(2):93-96
    [59]于海峰,张民锡,连彦青,王晓工,刘德山,聚酰亚胺类液晶光定向层材料的研究[J],高分子学报,2004,(1):22-27
    [60]张民锡,于海峰,和亚宁,连彦青,王晓工,新型可溶性偶氮聚酰亚胺及其作为液晶光定向层应用的初步研究[J],高分子学报,2004(3):321-326
    [61]李文清,徐成书,吴思聪,用可光聚合和可溶的聚酰亚胺薄膜作液晶取向层[J],现代显示,2000,(2):41-46
    [62]方鲲,许家瑞一,麦堪成,王晓,芳香族共聚酯液晶的椭圆偏振光谱与光学性质的研究[J],光谱学与光谱分析,1998, (18):399-403
    [63]Whitehead K.S., Grell M., Bradley D.D. C., Inbasekaran M., Woo E.P. Polarized emission from liquid crystal polymers[J], Synthetic Metals, (111-112):181-185
    [64]Hirosato Monobe, Kenji Kiyohara, Naohiro Terasawa, Manabu Heya, Kunio Awazub, Yo Shimizua, Infrared photoinduced alignment change for triphenylene-based columnar liquid crystals by using free electron laser[J], Thin Solid Films,2003, (438-439):418-422
    [65]刘习奎,江明,光响应性的聚合物自组装体系研究[C],2005年全国高分子学术论文报告会
    [66]彭增辉,乌日娜,宣丽,基于光敏自组装多层膜的液晶光控取向膜[J],液晶与显示,2004,19(5):334-337
    [67]颜飞彪,潘雪丰,陶卫东,白贵儒,手性E型胆甾相液晶薄膜的制备与偏振特性研究[J],光学仪器,2005,27(3):75-77
    [68]刘嘉等,梁晓,唐洪,徐寿颐,高鸿锦,新型介晶光致液晶取向剂的合成与性质[J],清华大学学报(自然科学版),2001,41(12):19-21
    [69]李昌立,孙晶,蔡红星,翁占坤,高俊杰,胆甾相液晶的光学特性[J],液晶与显示,2002,17(3):193-198
    [70]Chen S. H., Katsis D., Schmid A. W., Mastrangelo J. C., Tsutsuik T. Blanton T. N., Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal[J], Nature,1999,397 (11) 506-508
    [71]Soo Choi Kyung, Wuk Kim Hyun, Yool Kim Jin, Min Kim Tae, Bae Kim Yong, Duk Kim Jong, Electro-optical response of ferroelectric liquid crystal cells with photo-dimerization alignment layer[J], Optical Materials,2002, (21):651-56
    [72]龙槐生,张仲先,淡恒英.光的偏振及其应用[M].北京:机械工业出版社,1989.2-8
    [73]范少卿.物理光学[M].北京:北京工业学院,1984.178-184
    [74]龚建勋,刘正义,邱万奇.偏振片研究进展[J].液晶与显示,2004,19(4):259-265
    [75]王召兵,李国华,宋连科,等.获得偏振光的方法[J].光学技术,2002,28(5):478-480
    [76]Broer D J, Lub J, Mol G N. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient [J]. Nature,1995,378(30):467-469
    [77]Dirx Y, Jagt H. Scattering birefringence polarizers based on oriented blends of poly(ethylene tereohthalate) and core-shell panrticles[J]. Journal of Applied Physics,1998,83(6):2927-2933
    [78]Amimori Ichiro, Priezjev Nikolai V, Pelcovits Robert A, et al. Optomechanical properties of stretched polymer dispersed liquid crystal films for scattering polarizer applications [J]. Journal of Applied Physics,2003,93(6):3248-3252
    [79]任洪文,宣丽,闷石,等.光散射液晶偏振片电光特性的研究[J].液晶与显示,2000,15(3):178-184
    [80]Hokanen M, Kettunen V, Kuittinen M, et al. Inverse metal-stripe polarizers[J]. Applied Physics B:Lasers and Optics,1999,68:81-85
    [81]Yu Zhaoning, Deshpande Paru, Wu Wei, et al. Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography[J]. Appl. Phys. Lett.,2000, 77(7):927-929
    [82]Ichimura K, Momose M, Kudo K, et al. Surface-assisted formation of anisotropic dye molecular films[J]. Thin Solid Films,1996,284-285: 557-560
    [83]尹玉英,刘春蕴.螺旋结构导致旋光性[J].石油化工高等学校校报,1998,11(1):6-10
    [84]尹玉英,刘春蕴.旋光理论对无光学活性分子的剖析[J].中国科学院研究生院学报,1996,13(1):21-28
    [85]刘榴娣,常本康,党长民.显示技术[M].北京:北京理工大学出版社,1993.127-132
    [86]Urata K, Takaishi N. Cholesterol as synthetic building blocks for artificial lipids with characteristic physical, chemical and biological properties[J]. European Journal of Liquid Science and Technology,2001, 103:29-39.
    [87]Shinkai S, Murata K. Cholesterol-based functional tectons as versatile building-blocks for liquid crystals, organic gels and monolayers[J]. Journal of Materials Chemistry,1998,3:485-495.
    [88]Klok H A, Hwang J J, Iyer S N, Stupp S I. Cholesteryl-(L-Lactic Acid)n building blocks for self-assembling biomaterials[J]. Macromolecules, 2002,35,746-759.
    [89]Wan T, Zou T, Cheng S X, et al. Synthesis and characterization of biodegradable cholesteryl end-capped polycarbonates[J]. Biomacromolecules,2005,6:524-529.
    [90]Yu L, Zhang H, Cheng S X, Zhuo R X, Li H. Study on the drug release property of cholesteryl end-functionalized poly(ε-caprolactone) microspheres[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2006,77B:39-46.
    [91]Tamaoki N, Purfenov A V, Masaki A, Matsuda H. Rewritable full color recording on a thin solid film of a cholesteric low molecular weight compound[J]. Advanced Materials,1997,9:1102-1104.
    [92]Tamaoki N, Kruk G, Matsuda H. Optical and thermalproperties of cholesteric solid from dicholesteryl esters of diacetylenedicarboxylic acid[J]. Journal of Materials Chemistry,1999,9:2381-2384.
    [93]Tamaoki N, et al. Photochemical phase transition and molecular realignment of glass-forming liquid crystals containing cholesterol/azobenzene
    dimesogenic compounds[J]. Chemistry of Materials,2003,15:719-726.
    [94]Hu J S, Zhang B Y, et al. Synthesis and phase behavior of chiral side-chain liquid-crystalline polysiloxanes containing two mesogenic groups[J]. Journal of Applied Polymer Science,2002,86:2670-2676.
    [95]Meng F B, Zhang B Y, et al. Liquid-crystalline elastomers produced by chemical crosslinking agents containing sulfonic acid groups[J]. Polymer, 2003,44:3935-3943.
    [96]Zhang B Y, et al. Synthesis and properties of polysiloxane side chain cholesteric elastomers[J]. Liquid crystals,2004,31:387-392.
    [97]Zheng Y Y, Zhang B Y, et al. Synthesis and mesomorphic properties of side-chain cholesteric liquid-crystalline polysiloxanes[J]. Journal of Applied Polymer Science,2005,97:2392-2398.
    [98]Zhang B Y, et al. Synthesis and characterization of side-chain cholesteric liquid crystalline polymers derived from steroid substituents[J]. Journal of Applied Polymer Science,2006,99:2330-2336.
    [99]Kreuzer F H, Andrejewski D, Haas W, et al. Cyclic siloxanes with mesogenic side groups[J]. Molecular Crystals and Liquid Crystals,1999,199: 345-378.
    [100]Tsiourvas D, et al. Liquid Crystals Derived from Cholesterol Functionalized Poly(propylene imine) Dendrimers[J]. Macromolecules, 2002,35:6466-6469.
    [101]Cha S W,et al.Combined type liquid crystalline poly(oxyl,4-phenyleneoxyterephthaloyl)s bearing cholesterol pendants attached through polymethylene spacers[J]. Macromolecules,2001,34: 5342-5348
    [102]Finkelmann H, Ringsdorf H, Sol W, Wendof J. H. Synthesis of cholesteric liquid crystalline polymers[J]. Macromolecular Chemistry,1978,179: 829-832.
    [103]Holter D, Frey H, Mulhaupt R, Klee E. Ambient-temperature liquid crystalline bismethacrylates based on cholesterol:cholesteric and smectic thermosets[J]. Advanced Materials,1998,10:864-868.
    [104]Szejtli J. Cyclodextrin, Their Inclusion Complexes, Akademiai Kiado, Budapest[C], Hungary,1982,95-140
    [105]Wenz G,Han B H,Muller A. Cyclodextrin rotaxanes and polyrotaxanes[J]. Chemical Reviews,2006,106:782-817.
    [106]Chen L, Zhu X Y, Yan D Y, Chen Y,Chen Q, Yao Y F.Controlling Polymer architecture through Host-Guest Interactions[J]. Angewandte Chemie International Edition,2006,45:87-90.
    [107]Shin K M,Dong T.He Y, Inoue Y.Effect of β-cyclodextrins on the morphological change of poly(3-hydroxybutyrate) [J]. Macromolecular Chemistry and Physics,2006,207:310-317.
    [108]Shin K M,Dong T,He Y, Inoue Y. Effect of methylated cyclodextrins on the crystallization of poly(3-hydroxybutyrate) [J]. Macromolecular Chemistry and Physics,2006,207:755-762.
    [109]Pang Y J, Ritter H. Novel side-chain polyrotaxane with cyclodextrin: synthesis and study of water-soluble copolymers bearing hydrophobically associative components[J]. Macromolecular Chemistry and Physics,2006, 207:201-208.
    [110]Guo J B, Yang H, et al. Inclusion complexes of cholesteryl-(ε-caprolactone)10 functionalized polymer with γ-cyclodextrin[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2008,60:95-101.
    [111]Guo J B, Yang H, et al.. Supramolecular inclusion complexes of biodegradable cholesteryl-(ε-caprolactone)n functionalized polymer with α-cyclodextrin[J]. Journal of Applied Polymer Science,2007,105(3): 1700-1706.
    [112]Chakrabartk S, Maity A K, Misra T N. Spectroscopic study of solid-state photoreaction in organic crystal:photopolymerization of dimethyl ester of a-dicyano-p-phenylenediacrylic acid and diethyl ester of p-phenylenediacrylic acid[J]. Journal of Polymer Science:Part A:Polymer Chemistry 1992,30:1625-1631
    [113]Perny, S., Le Barny, P., Delaire, J., Buffeteau, T., Sourisseau, C., Dozov, I., Forget, S., Martinot-Lagarde, P[C]. Liquid Crystal 2000,27,329
    [114]Graley M, Reiser A, Roberts A J, et al. Excimer fluorescence as a probe into the solution behavior of a polyester of p-phenylenediacrylic acid[J]. Macromolecules 1981,14:1752-1757
    [115]Ichimura K, Akita Y, Akiyama H, et al. Photoreactivity of polymers with regioisomeric cinnamate side chains and their ability to regulate liquid crystal alignmen[J]. Macromolecules,1997,30:903-911
    [116]Murase S, Kinoshita K, Horie K, et al. Photo-optical control with large refractive index changes by photodimerization of poly(vinyl cinnamate) film[J]. Macromolecules,1997,30:8088-8090
    [117]Vladimir G.Chigirinov, Vladimir M.Kozenkov,Nicolic V. Novoseletsky. PROCESS FOR MAKING VARYING MOLECULAR ORIENTATION USING LING TO ORINT AND POLYMERIZED[P]. USP5,389,698.1995-2-14.
    [118]金养智,魏杰,刁振刚,等.信息记录材料[M].北京:化学工业出版社,2003,268.
    [119]唐世华,曾锡瑞,郑忠. 铜(Ⅱ)/明胶(酶解明胶)络合物的制备及其络合形态的探讨[J]. 感光科学与光化学,1995,17(2):145-149.
    [120]杨金华,刘白玲.聚乙烯醇与Cu2+的配位反应及其对生物降解性影响的研究[J].高分子材料科学与工程,1997,13(5):40-45.
    [121]肖猛,路建美,张正彪.聚乙烯醇-铜(Ⅱ)络合物的催化性能[J].高分子材料科学与工程,2004,20(4):103-106.
    [122]闫秀玲,孙万赋,唐军,等.紫外光辐照聚乙烯醇的1HNMR研究[J].波谱学杂志,2004,21(4):493-498

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700