用户名: 密码: 验证码:
碳基及锡基锂离子电池负极材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究以常见的生物质材料──玉米秸秆、稻秆、松针和松子壳为原材料,经过简单的碳化和活化处理制备出一系列具有不同比表面积的多孔碳材料。研究结果表明生物质原料的结构、活化方式、活化剂的质量、活化温度和活化时间等因素都对多孔碳材料的比表面积有着重要的影响。实验结果表明具有高比表面积的多孔碳材料可以作为锂离子电池负极材料、气体(H_2、CH_4和CO_2)储藏材料和催化剂载体材料,并且表现出良好的性能。
     本论文还研究了利用水热合成方法合成出的具有核壳结构SnO_2微球的结构和性质。结果表明通过调节HCl和H_2SO_4的用量来调节体系的pH值可以控制所得SnO_2产品的结构,如外壳的数目和厚度、固体核的有无和尺寸以及纳米结构的尺寸等。所得的SnO_2微球可以用作锂离子电池的负极材料,并且具有很高的储锂容量。研究结果还表明SnO_2微球各种结构变化对其电化学性能有很大的影响。
Lithium-ion batteries with superior energy density have attracted considerable attention due to their successful applications in portable electronic devices such as cell phones, digital cameras, laptops, and potential applications in hybrid electric vehicles. Today, graphite is the most commonly used anode material. However, the theoretical capacity of graphite (372 mA h/g) is not high enough to meet the demands for batteries. Increasing efforts have been diverted to the exploration of new anode materials. In our experiment, the biomass resources have been used as the raw materials to produce porous carbons through simple carbonization and activation. The obtained porous carbons can be used as the matreials in electrode fabrication, catalysis and gas storage. In addition, SnO_2 core-shell nanostructures have been prepared by a simple template-assisted hydrothermal method and applied lithium battery anode materials.
     Microporous carbons with a high surface area have been prepared from cornstalks via simple carbonization and activation. The pore size of the microporous carbons remains in the range of 1-2 nm, whereas the BET surface area depending on the concentration of the activation agent (KOH). Our results show that the microporous carbon is able to adsorb considerable amounts of H_2, CO_2 and CH_4.
     Porous carbon materials with a high surface area and a hierarchical porous network have been prepared from rice straws. Our results show that the macroporous channels derived from the raw rice straws and micropores generated during the carbonization and activation processes provide the pathways for easy accessibility of electrolyte and fast transportation of lithium ions and electrons. The porous carbon materials give a particularly large reversible capacity at high charge/discharge rates.
     A series of porous carbons have been derived from cornstalks, rice straws, pine needles and pinecone hulls. Our results show that the biomass texture and the activation manner determine the surface areas of the porous carbons. High surface area porous carbons can be obtained from the biomass materials with a loose texture whereas the porous carbon derived from a raw material with a compact texture has a much smaller surface area. The amount of activation agent, the activation temperature and the activation time also affect the surface area of the porous carbons to a considerable extent. We investigate the properties of porous carbon derived from pine needle used as the anode materials of lithium-ion battery. In addition, the obtained porous carbons can be used as catalyst supports in cinanamaldehyde hydrogenation, the cycling performances of the high-surface-area carbon materials being distinctly superior to that of the commercial activated carbon.
     SnO_2 core-shell nanostructures have been prepared by a simple template-assisted hydrothermal method. Our SnO_2 nanostructures give a particularly large reversible capacity and cycled well as anode materials for lithium ion batteries. The texture obviously affect the electrochemical performance of SnO_2 nanostructures.
引文
[1]吴宇平,戴晓兵,马军旗,等.锂离子电池——应用与实践[M].北京:化学工业出版社,2004.
    [2] Manthiram A, Kim J. Low temperature synthesis of insertion oxides for lithium batteries [J]. Chemistry of Materials, 1998, 10: 2895-2909.
    [3] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries [J]. Angewandte Chemie International Edition, 2008, 47:2930-2946.
    [4] Bruce P G. Energy storage beyond the horizon: Rechargeable lithium batteries [J]. Solid State Ionics, 2008,179: 752–760.
    [5]吴宇平,万春荣,姜长印,等.锂离子二次电池[M].北京:北京工业出版社,2002.
    [6] Peled E. The electrochemical behavior of Alkali and Alkaline earth metals in nonqueous battery systerm-the solid electrolyte interphase model [J]. Journal of The Electrochemical Society, 1979, 126: 2047-2051.
    [7] Yazami R, Reynier Y F. Mechanism of self-discharge in graphite–lithium anode [J]. Electrochimica Acta, 2002, 47: 1217–1223.
    [8] Noel M, Suryanarayanan V. Role of carbon host lattices in Li-ion intercalation/de-intercalation processes [J]. Journal of Power Sources, 2002, 111: 193–209.
    [9] Fujimoto H, Mabuchi A, Tokumitsu K, et al. Irreversible capacity of lithium secondary battery using meso-carbon micro beads as anode material [J]. Journal of Power Sources, 1995, 54: 440-443.
    [10] Chen J M, Yao C Y, Cheng C H, et al. Cokes as negative electrodes in secondary batteries [J]. Journal of Power Sources, 1995, 54: 494-495.
    [11] Ohsaki T, Kanda M, Aoki Y, et al. High-capacity lithium-ion cells using graphitized mesophase-pitch-based carbon fiber anodes [J]. Journal of Power Sources, 1997, 68: 102-105.
    [12] Sekai K, Azuma H, Omaru A, et al. Lithium-ion rechargeable cells with LiCoO2 and carbon electrodes [J]. Journal of Power Sources, 1993, 43: 241-244.
    [13] Kawasaki S, Iwai Y, Hirose M. Electrochemical lithium ion storage properties of single-walled carbon nanotubes containing organic molecules [J]. Carbon,2009, 47: 1081-1086.
    [14] He B L, Dong B, Wang W, et al. Performance of polyaniline/multi-walled carbon nanotubes composites as cathode for rechargeable lithium batteries [J]. Materials Chemistry and Physics, 2009, 114: 371-375.
    [15] Gitzendanner R L, Russell P G, Marsh C, et al. Design and development of A 20 Ah Li-ion prismatic cell [J]. Journal of Power Sources, 1999, 81-82: 847-852.
    [16] Mabuchi A, Tokumitsu K, Fujimoto H, et al. Charge-discharge characteristics of the mesocarbon miocrobeads heat-treated at different temperatures [J]. Journal of The Electrochemical Society. 1995, 142: 1041-1046.
    [17] Tatsumi K, Akai T, Imamura T, et al. 7Li-nuclear magnetic resonance observation of lithium insertion into mesocarbon microbeads [J]. Journal of The Electrochemical Society. 1996, 143: 1923-1930.
    [18] Inaba M, Yoshida H, Ogumi Z. In situ Raman study of electrochemical lithium insertion into mesocarbon microbeads heat-treated at various temperatures [J]. Journal of The Electrochemical Society. 1996, 143: 2572-2578.
    [19] Yao J, Wang G X, Ahn J, et al. Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells [J]. Journal of Power sources, 2003, 14: 292-297.
    [20] Zhang S S, Xu K, Jow T R. Low temperature performance of graphite electrode in Li-ion cells [J]. Electrochimica Acta, 2002, 48: 241-246.
    [21] Park Y S, Lee S M. Effects of particle size on the thermal stability of lithiated graphite anode [J]. Electrochimica Acta, 2009, 54: 3339-3343.
    [22] Komaba S, Ozeki T, Okushi K. Functional interface of polymer modified graphite anode [J]. Journal of Power Sources, 2009 189: 197-203.
    [23] Besenhard J O, Winter M, Yang j. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes [J]. Journal of Power Sources, 1995, 54: 228-231.
    [24] Fukuda K, Kikuya K, lsono K, et al. Foliated natural graphite as the anode material for rechargeable lithium-ion cells [J]. Journal of Power Sources, 1997, 69: 165-168.
    [25] Abe H, Murai T, Zaghib K. Vapor-grown carbon fiber anode for cylindrical lithium ion rechargeable batteries [J]. Journal of Power Sources, 1999, 77: 110-115.
    [26] Lee J K, An K W, Ju J B, et al. Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries [J]. Carbon, 2001, 39: 1299-1305.
    [27] Sato Y, Kikuchi Y, Nakano T, et al. Characteristics of coke carbon modified with mesophase-pitch as a negative electrode for lithium ion batteries [J]. Journal of Power Sources, 1999, 181-182: 182-186.
    [28] Hara M, Satoh A, Takami N, et al. Structural and electrochemical properties of lithiated polymerized aromatics. anodes for lithium-ion cells [J]. The Journal of Physical Chemistry, 1995, 99: 16338-16343.
    [29] Tatsumi K, Zaghib K, Abe H, et al. A modification in the preparation process of a carbon whisker for the anode performance of lithium rechargeable batteries [J]. Journal of Power Sources, 1995, 54: 425-427.
    [30] Zaghib K, Tatsumi K, Abe H, et al. Electrochemical behavior of an advanced graphite whisker anodic electrode for lithium-ion rechargeable batteries [J]. Journal of Power Sources, 1995, 54: 435-439.
    [31] Doi T, Zhao L W, Okada S, et al. Thermal stability of the interface between discharged non-graphitizable carbon and electrolyte for lithium-ion batteries [J]. Carbon, 2009, 47: 894-900.
    [32] Yamada H, Watanabe Y, Moriguchi I, et al. Rate capability of lithium intercalation into nano-porous graphitized carbons [J]. Solid State Ionics, 2008, 179: 1706-1709.
    [33] Guo H J, Li X H, Zhang X M, et al. Diffusion coefficient of lithium in artificial graphite, mesocarbon microbeads, and disordered carbon [J]. New Carbon Materials, 2007, 22: 7-11.
    [34] Song Y Z, Zhai G T, Song J R, et al. Seal and wear properties of graphite from MCMBs/pitch-based carbon/phenolic-based carbon composites [J]. Carbon, 2006, 44: 2793-2796.
    [35] Lu W M, Chung D D L. Effect of the pitch-based carbon anode on the capacity loss of lithium-ion secondary battery [J]. Carbon, 2003, 41: 945-950.
    [36] Fey G T K., Lee D C, Lin Y Y. High-capacity carbons prepared from acrylonitrile-butadiene-styrene terpolymer for use as an anode material in lithium-ion batteries [J]. Journal of Power Sources, 2003, 119–121: 39-44.
    [37] Yamaki J, Takatsuji H, Kawamura T, et al. Thermal stability of graphite anode with electrolyte in lithium-ion cells [J]. Solid State Ionics, 2002, 148: 241-245.
    [38] Andersson A M, Henningson A, Siegbahn H, et al. Electrochemically lithiated graphite characterised by photoelectron spectroscopy [J]. Journal of Power Sources, 2003, 119–121: 522-527.
    [39] Kohs W, Santner H J, Hofer F, et al. A study on electrolyte interactions with graphite anodes exhibiting structures with various amounts of rhombohedral phase [J]. Journal of Power Sources, 2003, 119–121: 528-537.
    [40] Ota H, Akai T, Namita H, et al. XAFS and TOF–SIMS analysis of SEI layers on electrodes [J]. Journal of Power Sources, 2003, 119–121: 567-571.
    [41] Kostecki R, McLarnon F. Microprobe study of the effect of Li intercalation on the structure of graphite [J]. Journal of Power Sources, 2003, 119-121: 550-554.
    [42] Soon-Ki Jeong, Minoru Inaba, Yasutoshi Iriyama, et al. AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries [J]. Journal of Power Sources, 2003, 119-121: 555-560.
    [43] Spahr M E, Wilhelm H, Palladino T, et al. The role of graphite surface group chemistry on graphite exfoliation during electrochemical lithium insertion [J]. Journal of Power Sources, 2003, 119-121: 543-549.
    [44] Kumara M, Kichambare P D, Sharon M, et al. Study of camphor-pyrolysed carbon electrode in a lithium rechargeable cell [J]. Materials Chemistry and Physics, 2000, 66: 83-89.
    [45] Tua J P, Zhu L P, Hou K, et al. Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide [J]. Carbon, 2003, 41: 1257-1263.
    [46] Rodriguez N M, Kim M S, Fortin F, et al. Carbon deposition on iron-nickel alloy particles [J]. Applied Catalysis A: General, 1997, 148: 265-282.
    [47] Eroglu S, Gallois B M. Chemical vapour deposition of pyrolytic carbon from impinging jets [J]. Ceramics International, 1996, 22: 483-487.
    [48] Sato K, Noguchi M, Demachi A, et al. A mechanism of lithium storage in disordered carbons [J]. Science, 1994, 264: 556-558.
    [49] Kim J S. Charge/discharge characteristics of the coal-tar pitch carbon as negative electrode in Li-ion batteries [J]. Journal of Power Sources, 2001, 97-98: 70-72.
    [50] Fey G T K, Chen C L. High-capacity carbons for lithium-ion batteries prepared form rice husk [J]. Journal of Power Sources, 2001, 97-98: 47-51.
    [51] Jisha M R, Hwang Y J, Shin J S, et al. Electrochemical characterization of supercapacitors based on carbons derived from coffee shells [J]. Materials Chemistry and Physics, 2009, 115: 33-39.
    [52] SandíG, Khalili N R, Lu W Q, et al. Electrochemical performance of carbon materials derived from paper mill sludge [J]. Journal of Power Sources, 2003, 119-121: 34-38.
    [53] Wang Q, Li H, Chen L Q, et al. Novel spherical microporous carbon as anode material for Li-ion batteries [J]. Solid State Ionics, 2002, 152-153: 43-50.
    [54] Naono H, Hakuman M, Shinoda M, et al. Separation of water and ethanol by the adsorption technique: selective desorption of water from micropores of active carbon [J]. Journal of Colloid and Interface Science, 1996, 182: 230-238.
    [55] Nakamura M, Nakanishi M, Yamamoto K. Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors [J]. Journal of Power Sources, 1996, 60: 225-231.
    [56] Cao D P, Wu J Z. Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide [J]. Carbon, 2005, 43: 1364-1370.
    [57] Ariyadejwanich P, Tanthapanichakoon W, Nakagawa K, et al. Preparation and characterization of mesoporous activated carbon from waste tires [J]. Carbon, 2003, 41: 157-164.
    [58] Lua A C, Guo J. Preparation and characterization of activated carbons from oil-palm stones for gas-phase adsorption [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 179: 151-162.
    [59] Dubey K V, Juwarkar A A, Singh S K. Adsorption-desorption process using wood-based activated carbon for recovery of biosurfactant from fermented distillery wastewater [J]. Biotechnology Progress, 2005, 21: 860-867.
    [60] Oda Y, Fukuyama K, Nishikawa K, et al. Mesocellular foam carbons: aggregates of hollow carbon spheres with open and closed wall structures [J]. Chemistry of Materials, 2004, 16: 3860-3866.
    [61] Sakintuna B, Yürüm Y. Templated porous carbons: a review article [J]. Industrial & Engineering Chemistry Research, 2005, 44: 2893-2902.
    [62] Reid C R, Thomas K M. Adsorption kinetics and size exclusion properties of probe molecules for the selective porosity in a carbon molecular sieve used for air separation [J]. The Journal of Physical Chemistry B, 2001, 105:10619-10629.
    [63] Mohanty K, Jha M, Meikap B C. Preparation and characterization of activated carbons from terminalia arjuna nut with zinc chloride activation for the removal of phenol from wastewater [J]. Industrial & Engineering Chemistry Research, 2005, 44: 4128-4138.
    [64] Xiang H Q, Fang S B, Jiang Y Y. Mechanism of lithium insertion in carbons pyrolyzed at low temperature [J]. Chinese Science Bulletin, 1999, 44: 385-390.
    [65] Chang Y C, Jong J H, Fey G T K. Kinetic Characterization of the electrochemical intercalation of lithium ions into graphite electrodes [J]. Journal of The Electrochemical Society, 2000, 147: 2033-2038.
    [66] Holzwarth N A W, Louie S G, Rabii S. Lithium-intercalated graphite: Self-consistent electronic structure for stages one, two and three [J]. Physical Review B, 1983, 28: 1013-1025.
    [67] Xue J S, Dahn J R. Dramatic effect of oxidation on lithium insertion in carbons made from epoxy resins [J]. Journal of The Electrochemical Society, 1995, 142: 3668-3677.
    [68]郭炳焜,徐徽,王先有,等.锂离子电池[M].长沙:中南大学出版社,2002.
    [69] Liu Y H, Xue J S, Zheng T, et al. Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resions [J]. Carbon, 1996, 34 193-200.
    [70] Yazami R, Deschamps M. High reversible capacity carbon-lithium negative electrode in polymer electrolyte [J]. Journal of Power Sources, 1995, 54: 411-415.
    [71] Wang S, Matsumura Y, Maeda T. A model of the interactions between disordered carbon and lithium [J]. Synthetic Metals, 1995, 71: 1759-1760.
    [72] Matsumura Y, Wang S, Shinohara K, et al. A new carbon electrode material for lithium ion rechargeable batteries [J]. Synthetic Metals, 1995, 71: 1757-1758.
    [73] Matsumura Y, Wang S, Shinohara K, et al. The dependence of reversible capacity of lithium ion rechargeable batteries on the crystal structure of carbon electrodes [J]. Synthetic Metals, 1995, 71: 1755-1756.
    [74] Wang S, Kakumoto T, Matsui H, et al. Mechanism of lithium insertion into disordered carbon [J]. Synthetic Metals, 1999, 103: 2523-2524.
    [75] Huang B Y, Huang Y Z, Wang Z X, et al. Characteristics of pyrolyzed phenol-formaldehyde resin as an anode for lithium-ion batteries [J]. Journal of Power Sources, 1996, 58: 231-234.
    [76] Dahn J R, Zheng T, Liu Y H, et al. Mechanisms for lithium insertion in carbonaceous materials [J]. Science, 1995, 270: 590-593.
    [77] Wu Y P, Wan C R, Jiang C Y, et al. Mechanism of lithium storage in low temperature carbon [J]. Carbon, 1999, 37: 1901-1908.
    [78] Shirasaki T, Derre A, Guerin K, et al. Chemical and electrochemical intercalation of lithium into boronated carbons [J]. Carbon, 1999, 37: 1961-1964.
    [79] Hamada T, Suzuki K, Kohno T, et al. Coke powder heat-treated with boron oxide using an Acheson furnace for lithium battery anodes [J]. Carbon, 2000, 40: 2317-2322.
    [80] Richardson T J. Phosphate-stabilized lithium intercalation compounds [J]. Journal of Power Sources, 2003, 119–121: 262-265.
    [81] Ito S, Murata T, Hasegawa M, et al. Study on CxN and CxS with disordered carbon structure as the anode materials for secondary lithium batteries [J]. Journal of Power Sources, 1997, 68: 245-248.
    [82] Wu Y P, Fang S B, Jiang Y Y. Investigation of the effects of V2O5 addition on the electrochemical properties of carbon anodes [J]. Journal of Power Sources, 1998, 75: 167-170.
    [83] Y, Feng Zhang F, Li G D, et al. Carbon anode material formed from template molecules occluded in a magnesium-substituted aluminophosphate [J]. Materials Chemistry and Physics, 2009, 113: 309-313.
    [84] Flandrois S, Simon B. Carbon materials for lithium-ion rechargeable batteries [J]. Carbon, 1999, 37: 165-180.
    [85] Wu Y P, Rahm E, Holze R. Carbon anode materials for lithium ion batteries [J]. Journal of Power Sources, 2003, 114: 228-236.
    [86] Fu L J, Liu H, Li C, et al. Surface modifications of electrode materials for lithium ion batteries [J]. Solid State Sciences, 2006, 8: 113-128.
    [87] Wang C S, Wu G T, Li W Z. Lithium insertion in ball-milled graphite [J]. Journal of Power Sources, 1998, 76: 1-10.
    [88] Sharon M, Hsu W K, Kroto h W, et al. Camphor-based carbon nanotubes as an anode in lithium secondary batteries [J]. Journal of Power Sources, 2002, 104:148-153.
    [89] Shin H C, Liu M L, Sadanadan B, et al. Electrochemical insertion of lithium into multi-walled carbon nanotubes prepared by catalytic decomposition [J]. Journal of Power Sources, 2002, 112: 216-221.
    [90] Wang G X, Ahn J H, Yao J, et al. Preparation and characterization of carbon nanotubes for energy storage [J]. Journal of Power Sources, 2003, 119–121: 16-23.
    [91] Winans R E, Carrado K A. Novel forms of carbon as potential anodes for lithium batteries [J]. Journal of Power Sources, 1995, 54: 11-15.
    [92] Kang Y M, Park S C, Kang Y S, et al. The improvement of the cycle life of Li2.6Co0.4N as an anode of Li-ion secondary battery [J]. Solid State Ionics, 2003, 156: 263-273.
    [93] Rowsell J L C, Pralong V, Nazar L F. Layered lithium iron nitride: a promising anode material for Li-ion batteries [J]. Journal of the American Chemical Society, 2001, 123: 8598-8599.
    [94] Stoeva Z, Smith R I, Gregory D H. Stoichiometry and defect structure control in the ternary lithium nitridometalates Li3-x-yNixN [J]. Chemistry of Materials, 2006, 18: 313-320.
    [95] Bach S, Pereira-Ramos J P, Ducros J B, et al. Structural and electrochemical properties of layered lithium nitridocuprates Li3?xCuxN [J]. Solid State Ionics, 2009, 180: 231-235.
    [96] Kim H, Cho J. Superior lithium electroactive mesoporous Si@Carbon core#shell nanowires for lithium battery anode material [J]. Nano Letters, 2008, 8: 3688-3691.
    [97] Lee J K, Kung M C, Trahey L, et al. Nanocomposites derived from phenol-functionalized Si nanoparticles for high performance lithium ion battery anodes [J]. Chemistry of Materials, 2009, 21: 6-8.
    [98] Key B, Bhattacharyya R, Morcrette M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries [J]. Journal of the American Chemical Society, 2009, DOI: 10.1021/ja8086278.
    [99] Ohara S, Suzuki J, Sekine K, et al. Li insertion/extraction reaction at a Si film evaporated on a Ni foil [J]. Journal of Power Sources, 2003, 119–121: 591-596.
    [100] Limthongkul P, Jang Y, Dudney N J, et al. Electrochemically-driven solid-state amorphization in lithium–metal anodes [J]. Journal of Power Sources, 2003 119–121: 604-609.
    [101] Demir-Cakan R, Hu Y S, Antonietti M, et al. Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties [J]. Chemistry of Materials, 2008, 20: 1227-1229.
    [102] Chang C C, Liu S J, Wu J J, et al. Nano-tin oxide/tin particles on a graphite surface as an anode material for lithium-ion batteries [J]. The Journal of Physical Chemistry C, 2007, 111: 16423-16427.
    [103] Edfouf Z, Aragon M J, Leon B, et al. Tin phosphate electrode materials prepared by the hydrolysis of tin halides for application in lithium ion battery [J]. The Journal of Physical Chemistry C, 2009, 113: 5316-5323.
    [104] Li Y, Tu J P, Huang X H, et al. Net-like SnS/carbon nanocomposite film anode material for lithium ion batteries [J]. Electrochemistry Communications, 2007, 9: 49-53.
    [105] Zhang W M, Hu J S, Guo Y G, et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries [J]. Advance Materials, 2008, 20: 1160-1165.
    [106] Kim C, Noh M, Choi M, et al. Critical size of a nano SnO2 electrode for Li-secondary battery [J]. Chemistry of Materials, 2005, 17: 3297-3301.
    [107] Park M S, Needham S A, Wang G X, et al. Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries [J]. Chemistry of Materials, 2007, 19:, 2406-2410.
    [108] Kim Y L, Lee H Y, Jang S W, et al. Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries [J]. Solid State Ionics, 2003, 160: 235-240.
    [109] Hassoun J, Panero S, Scrosati B. Electrodeposited Ni–Sn intermetallic electrodes for advanced lithium ion batteries [J]. Journal of Power Sources, 2006, 160: 1336-1341.
    [110] Mukaibo H, Momma T, Osaka T. Changes of electro-deposited Sn–Ni alloy thin film for lithium ion battery anodes during charge discharge cycling [J]. Journal of Power Sources, 2005, 146: 457-463.
    [111] Hassoun J, Panero S, Mulas G, et al. An electrochemical investigation of a Sn–Co–C ternary alloy as a negative electrode in Li-ion batteries [J]. Journalof Power Sources, 2007, 171: 928-931.
    [112] Kim H, Cho J. Template synthesis of hollow Sb nanoparticles as a high-performance lithium battery anode material [J]. Chemistry of Materials, 2008, 20: 1679-1681.
    [113] Fransson L M L, Vaughey J T, Benedek R, et al. Phase transitions in lithiated Cu2Sb anodes for lithium batteries: an in situ X-ray diffraction study [J]. Electrochemistry Communications, 2001, 3: 317-323.
    [114] Lou X W, Archer L A. A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles [J]. Advance Materials, 2008, 20: 1853-1858.
    [115] Wang D H, Choi D W, Yang Z G, et al. Synthesis and Li-ion insertion properties of highly crystalline mesoporous rutile TiO2 [J]. Chemistry of Materials, 2008, 20: 3435-3442.
    [116] Kitaura H, Hayashi A, Tadanaga K, et al. High-rate performance of all-solid-state lithium secondary batteries using Li4Ti5O12 electrode [J]. Journal of Power Sources, 2009, 189: 145-148.
    [117] Mancini M, Kubiak P, Geserick J, et al. Mesoporous anatase TiO2 composite electrodes: Electrochemical characterization and high rate performances [J]. Journal of Power Sources, 2009, 189: 585-589.
    [118] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature, 2000, 407: 496-499.
    [119] Nuli Y N, Zhao S L, Qin Q Z. Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries [J]. Journal of Power Sources, 2003, 114: 113-120.
    [120] Liu Z L, Lee J Y. Electrochemical performance of Pb3(PO4)2 anodes in rechargeable lithium batteries [J]. Journal of Power Sources, 2001, 97-98: 247-250.
    [121] Wei M D, Wei K M, IchiharM, et al. Nb2O5 nanobelts: A lithium intercalation host with large capacity and high rate capability [J]. Electrochemistry Communications, 2008, 10: 980-983.
    [122] Liu H, Wang G X, Wang J Z, et al. Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries [J]. Electrochemistry Communications, 2008, 10: 1879-1882.
    [123] Duan H N, Gnanaraj J, Chen X P, et al. Fabrication and characterization ofFe3O4-based Cu nanostructured electrode for Li-ion battery [J]. Journal of Power Sources, 2008, 185: 512-518.
    [124] Lee S H, Kim Y H, Deshpande R, et al. Reversible lithium-ion insertion in molybdenum oxide nanoparticles [J]. Advance Materials, 2008, 20: 3627-3632.
    [125] Feng C Q, Huang L F, Guo Z P, et al. Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application [J]. Electrochemistry Communications, 2007, 9: 119-122.
    [1] Naono H, Hakuman M, Shinoda M, et al. Separation of water and ethanol by the adsorption technique: selective desorption of water from micropores of active carbon [J]. Journal of Colloid and Interface Science, 1996, 182: 230-238.
    [2] Cao D P, Wu J Z. Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide [J]. Carbon, 2005, 43: 1364-1370.
    [3] Lua A C, Guo J. Preparation and characterization of activated carbons from oil-palm stones for gas-phase adsorption [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 179: 151-162.
    [4] Sakintuna B, Yürüm Y. Templated porous carbons: a review article [J]. Industrial & Engineering Chemistry Research, 2005, 44: 2893-2902.
    [5] Mohanty K, Jha M, Meikap B C. Preparation and characterization of activated carbons from terminalia arjuna nut with zinc chloride activation for the removal of phenol from wastewater [J]. Industrial & Engineering Chemistry Research, 2005, 44: 4128-4138.
    [6] Meyers C J, Shah S D, Patel S C, et al. Templated synthesis of carbon materials from zeolites (Y, Beta, and ZSM-5) and a montmorillonite clay (K10): physical and electrochemical characterization [J]. The Journal of Physical Chemistry B, 2001, 105: 2143-2152.
    [7] Matsuoka K, Yamagishi Y, Yamazaki T, et al. Extremely high microporosity and sharp pore size distribution of a large surface area carbon prepared in the nanochannels of zeolite Y [J]. Carbon, 2005, 43: 876-879.
    [8] Ma Z X, Kyotani T, Tomita A. Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite [J]. Chemical Communications, 2000, 2365-2366.
    [9] Ma Z X, Kyotani T, Liu Z, et al. Very high surface area microporous carbon with a three-dimensional nano-array structure: synthesis and its molecular structure [J]. Chemistry of Materials, 2001, 13: 4413-4415.
    [10] Kaneda M, Tsubakiyama T, Carlsson A, et al. Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography [J]. The Journal of Physical Chemistry B, 2002, 106: 1256-1266.
    [11] Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. Journal of the American Chemical Society, 2000, 122: 10712-10713.
    [12] Zhang F Q, Meng Y, Gu D, et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure [J]. Journal of the American Chemical Society, 2005, 127: 13508-13509.
    [13] Tuinstra F, Koenig J L. Raman spectrum of graphite [J]. Journal of Chemical Physics, 1970, 53: 1126-1130.
    [14] Singh C, Quested T, Boothroyd C B, et al. Synthesis and characterization of carbon nanofibers produced by the floating catalyst method [J]. The Journal of Physical Chemistry B, 2002, 106: 10915-10922.
    [15] Polarz S, Smarsly B, Schattka J H. Hierachical porous carbon structures from cellulose acetate fibers. Chemistry of Materials, 2002, 14: 2940-2945.
    [16] Kayiran S B, Lamari F D, Levesque D. Adsorption properties and structural characterization of activated carbons and nanocarbons [J]. The Journal of Physical Chemistry B, 2004, 108: 15211-15215.
    [17] Pol V G, Motiei M, Gedanken A, et al. Carbon spherules: synthesis, properties and mechanistic elucidation [J]. Carbon, 2004, 42: 111-116.
    [18] Su F B, Zhao X S, Wang Y, et al. Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications [J]. The Journal of Physical Chemistry B, 2005, 109: 20200-20206.
    [19] Yang QH, Xu WH, Tomita A, Kyotani T. Double coaxial structure and dual physicochemical properties of carbon nanotubes composed of stacked nitrogen-doped and undoped multiwalls [J]. Chemistry of Materials, 2005, 17: 2940-2945.
    [20] Bacsa R, laurent C, Morishima R, Suzuki H, Lay ML. Hydrogen storage in high surface area carbon nanotubes produced by catalytic chemical vapor deposition [J]. The Journal of Physical Chemistry B, 2004, 108: 12718-12723.
    [21] Zhecheva E, Stoyanova R, Jiménez-Mateos J M, et al. EPR study on petroleum cokes annealed at different temperatures and used in lithium and sodium batteries [J]. Carbon, 2002, 40: 2301-2306.
    [22] Alcántara R, Madrigal F J F, Lavela P, et al. 13C, 1H, 6Li magic-angle spinning nuclear magnetic resonance, electron paramagnetic resonance, and Fourier transform Infrared study of intercalation electrodes based in ultrasoft carbons obtained below 3100 K [J]. Chemistry of Materials, 1999, 11: 52-60.
    [23] Kawamura K. Electron spin resonance behavior of pitch-based carbons in the heat treatment temperature range of 1100–2000°C [J]. Carbon, 1998, 36: 1227-1230.
    [24] Liu Y H, Xue X J, Zheng T, et al. Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins [J]. Carbon, 1996, 34: 193-200.
    [25] Dhan J R, Xing W, Gao Y. The“falling cards model”for the structure of microporous carbons [J]. Carbon, 1997, 35: 825-830.
    [26] Townsend S J, Lenosky T J, Muller D A, et al. Negatively curved graphitic sheet model of amorphous carbon [J]. Physical Review Letters, 1992, 69: 921-924.
    [27] Harris P J F, Burian A, Duber S. High-resolution electron microscopy of a microporous carbon [J]. Philosophical Magazine Letters, 2000, 80: 381-386.
    [28] Zecchina A, Bordiga S, Vitillo J G, et al. Liquid hydrogen in protonic chabazite [J]. Journal of the American Chemical Society, 2005, 127: 6361-6366.
    [29] Zhao X B, Xiao B, Fletcher A J, et al. Hydrogen adsorption on functionalized nanoporous activated carbons [J]. The Journal of Physical Chemistry B, 2005, 109: 8880-8888.
    [30] Sozzani P, Bracco S, Comotti A, et al. Methane and carbon dioxide storage in a porous van der Waals Crystal [J]. Angewandte Chemie International Edition, 2005, 44: 1816-1820.
    [31] Seki K. Design of an adsorbent with an ideal pore structure for methane adsorption using metal complexes [J]. Chemical Communications, 2001, 1496-1497.
    [1] Wu Y P, Rahm E, Holze R. Carbon anode materials for lithium batteries [J]. Journal of Power Sources, 2003, 114: 228-236.
    [2] Subramanian V, Zhu H, Wei B. High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers [J]. The Journal of Physical Chemistry B, 2006, 110: 7178-7183.
    [3] Cheng F, Tao Z, Liang J, et al. Template-directed materials for rechargeable lithium-ion batteries [J]. Chemistry of Materials, 2008, 20: 667-681.
    [4] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. The Journal of Physical Chemistry B, 1999, 103: 7743-7746.
    [5] Meyers C J, Shah S D, Patel S C, et al. Templated synthesis of carbon materials from zeolites (Y, Beta, and ZSM-5) and a montmorillonite clay (K10): physical and electrochemical characterization [J]. The Journal of Physical Chemistry B, 2001, 105: 2143-2152.
    [6] Lee K T, Lytle J C, Ergang N S, et al. Synthesis and rate performance of monolithic macroporous carbon electrode for litnium-ion secondary batteries [J]. Advanced Functional Materials, 2005, 15: 547-556.
    [7] Zhang F Q, Meng Y, Gu D, et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure [J]. Journal of the American Chemical Society, 2005, 127: 13508-13509.
    [8] Karagoz S, Tay T, Ucar S, et al. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption [J]. Bioresource Technology, 2008, 99: 6214-6222.
    [9] Liu Y H, Xue X J, Zheng T, et al. Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins [J]. Carbon, 1996, 34: 193-200.
    [10] Dhan J R, Xing W, Gao Y. The“falling cards model”for the structure of microporous carbons [J]. Carbon, 1997, 35: 825-830.
    [11] Tuinstra F, Koenig J L. Raman spectrum of graphite [J]. Journal of Chemical Physics, 1970, 53: 1126-1130.
    [12] Singh C, Quested T, Boothroyd C B, et al. Synthesis and characterization of carbon nanofibers produced by the floating catalyst method [J]. The Journal ofPhysical Chemistry B, 2002, 106: 10915-10922.
    [13] Polarz S, Smarsly B, Schattka J H. Hierachical porous carbon structures from cellulose acetate fibers. Chemistry of Materials, 2002, 14: 2940-2945.
    [14] Kayiran S B, Lamari F D, Levesque D. Adsorption properties and structural characterization of activated carbons and nanocarbons [J]. The Journal of Physical Chemistry B, 2004, 108: 15211-15215.
    [15] Pol V G, Motiei M, Gedanken A, et al. Carbon spherules: synthesis, properties and mechanistic elucidation [J]. Carbon, 2004, 42: 111-116.
    [16] Su F B, Zhao X S, Wang Y, et al. Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications [J]. The Journal of Physical Chemistry B, 2005, 109: 20200-20206.
    [17] Yang QH, Xu WH, Tomita A, Kyotani T. Double coaxial structure and dual physicochemical properties of carbon nanotubes composed of stacked nitrogen-doped and undoped multiwalls [J]. Chemistry of Materials, 2005, 17: 2940-2945.
    [18] Bacsa R, laurent C, Morishima R, Suzuki H, Lay ML. Hydrogen storage in high surface area carbon nanotubes produced by catalytic chemical vapor deposition [J]. The Journal of Physical Chemistry B, 2004, 108: 12718-12723.
    [19] Zhang F, Ma H, Chen J, et al. Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks [J]. Bioresource Technology, 2008, 99: 4803-4808.
    [20] Markovsky B, Levi M D, Aurbach D. The basic electroanalytical behavior of practical graphite-lithium intercalation electrodes [J]. Electrochimica Acta, 2287, 43: 2287-2304.
    [21] Fey G T K, Chena K L, Chang Y C. Effects of surface modification on the electrochemical performance of pyrolyzed sugar carbons as anode materials for lithium-ion batteries [J]. Materials Chemistry and Physics, 2002, 76: 1–6.
    [22] Peled E, Eshkenazi V, Rosenberg Y. Study of lithium insertion in hard carbon made from cotton wool [J]. Journal of Power Sources, 1998, 76: 153-158.
    [23] Stephan A M, Kumar T P, Ramesh R, et al. Pyrolitic carbon from biomass precursors as anode materials for lithium batteries [J]. Materials Science and Engineering A, 2006, 430: 132-137.
    [24] Wu Y P, Wan C R, Jiang C Y, et al. Mechanism of lithium storage in lowtemperature carbon [J]. Carbon, 1999, 37: 1901-1908.
    [25] Takamura T, Awano H, Ura T, et al. A key technology to improve the cyclic performances of carbonaceous materials for lithium secondary battery anodes [J]. Journal of Power Sources, 1997, 68: 114-119.
    [26] Hu Y S , Adelhelm P, Smarsly B M, et al. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability [J]. Advanced Functional Materials, 2007, 17: 1873-1878.
    [27] Habazaki H, Kiriu M, Konno H. High rate capability of carbon nanofilaments with platelet structure as anode materials for lithium ion batteries [J]. Electrochemistry Communications, 2006, 8: 1275-1279.
    [28] Li N C, Mitchell D T, Lee K P, et al. A nanostructured honeycomb carbon anode [J]. Journal of The Electrochemical Society, 2003, 150: A979-A984.
    [29] Fu L J, Yang L C, Shi Y, et al. Synthesis of carbon coated nanoporous microcomposite and its rate capability for lithium ion battery [J]. Microporous and Mesoporous Materials, 2009, 117: 515-518.
    [1] Nakamura M, Nakanishi M, Yamamoto K. Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors [J]. Journal of Power Sources, 1996, 60: 225-231.
    [2] Ariyadejwanich P, Tanthapanichakoon W, Nakagawa K, et al. Preparation and characterization of mesoporous activated carbon from waste tires [J]. Carbon, 2003, 41: 157-164.
    [3] Dubey K V, Juwarkar A A, Singh S K. Adsorption-desorption process using wood-based activated carbon for recovery of biosurfactant from fermented distillery wastewater [J]. Biotechnology Progress, 2005, 21: 860-867.
    [4] Oda Y, Fukuyama K, Nishikawa K, et al. Mesocellular foam carbons: aggregates of hollow carbon spheres with open and closed wall structures [J]. Chemistry of Materials, 2004, 16: 3860-3866.
    [5] Reid C R, Thomas K M. Adsorption kinetics and size exclusion properties of probe molecules for the selective porosity in a carbon molecular sieve used for air separation [J]. The Journal of Physical Chemistry B, 2001, 105: 10619-10629.
    [6] Kurosakia F, Koyanaka H, Tsujimoto M, et al. Shape-controlled multi-porous carbon with hierarchical micro–meso-macro pores synthesized by flash heating of wood biomass [J]. Carbon, 2008, 46: 850-857.
    [7] Kayiran S B, Lamari F D, Levesque D. Adsorption properties and structural characterization of activated carbons and nanocarbons [J]. The Journal of Physical Chemistry B, 2004, 108: 15211-15215.
    [8] Pol V G, Motiei M, Gedanken A, et al. Carbon spherules: synthesis, properties and mechanistic elucidation [J]. Carbon, 2004, 42: 111-116.
    [9] Su F B, Zhao X S, Wang Y, et al. Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications [J]. The Journal of Physical Chemistry B, 2005, 109: 20200-20206.
    [10] Yang Q H, Xu W H, Tomita A, Kyotani T. Double coaxial structure and dual physicochemical properties of carbon nanotubes composed of stacked nitrogen-doped and undoped multiwalls [J]. Chemistry of Materials, 2005, 17: 2940-2945.
    [11] Bacsa R, laurent C, Morishima R, Suzuki H, Lay ML. Hydrogen storage in high surface area carbon nanotubes produced by catalytic chemical vapor deposition [J]. The Journal of Physical Chemistry B, 2004, 108: 12718-12723.
    [12] Lee K T, Lytle J C, Ergang N S, et al. Synthesis and rate performance of monolithic macroporous carbon electrode for litnium-ion secondary batteries [J]. Advanced Functional Materials, 2005, 15: 547-556.
    [13] Zhecheva E, Stoyanova R, Jiménez-Mateos J M, et al. EPR study on petroleum cokes annealed at different temperatures and used in lithium and sodium batteries [J]. Carbon, 2002, 40: 2301-2306.
    [14] Alcántara R, Madrigal F J F, Lavela P, et al. 13C, 1H, 6Li magic-angle spinning nuclear magnetic resonance, electron paramagnetic resonance, and Fourier transform Infrared study of intercalation electrodes based in ultrasoft carbons obtained below 3100 K [J]. Chemistry of Materials, 1999, 11: 52-60.
    [15] Kawamura K. Electron spin resonance behavior of pitch-based carbons in the heat treatment temperature range of 1100-2000°C [J]. Carbon, 1998, 36: 1227-1230.
    [16] Takamura T, Awano H, Ura T, et al. A key technology to improve the cyclic performances of carbonaceous materials for lithium secondary battery anodes [J]. Journal of Power Sources, 1997, 68: 114-119.
    [17] Rodríguez-reinoso F. The role of carbon materials in heterogeneous catalysis [J]. Carbon, 1998, 36: 159-175.
    [18] Fraga M A, Jordāo E, Mendes M J, et al. Properties of carbon-supported platinum catalysts: role of carbon surface sites [J]. Journal of Catalysis, 2002, 209: 355–364.
    [1] Whittingham M S. Lithium batteries and cathode materials [J]. Chemical Reviews, 2004, 104: 4271- 4301.
    [2] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Natrue, 2001, 414: 359-367.
    [3] Kim Y L, Lee H Y, Jang S W, et al. Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries [J]. Solid State Ionics, 2003, 160: 235-240.
    [4] Vayssieres L, Graetzel M. Highly Ordered SnO2 Nanorod arrays from controlled aqueous growth [J]. Angewandte Chemie International Edition, 2004, 43: 3666-3670.
    [5] Li Y, Tu J P, Huang X H, et al. Net-like SnS/carbon nanocomposite film anode material for lithium ion batteries [J]. Electrochemistry Communications, 2007, 9: 49-53.
    [6] Liu Y, Dong J, Liu M L. Well-aligned“nano-box-beams”of SnO2 [J]. Advanced Materials, 2004, 16: 353-356.
    [7] Wang Y L, Jiang X C, Xia Y N. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be ised for gas sensing under ambient conditions [J]. Journal of the American Chemical Society, 2003, 125: 16176-16177.
    [8] Law M, Kind H, Messer B, et al. Photochemical sensing of NO2 with SnO2nanoribbon nanosensors at room temperature [J]. Angewandte Chemie International Edition, 2002, 41: 2405-2408.
    [9] Kim H, Cho J. Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials [J]. Journal of Materials Chemistry, 2008, 18: 771-775.
    [10] Demir-Cakan R, Hu Y S, Antonietti M, et al. Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties [J]. Chemistry of Materials, 2008, 20: 1227-1229.
    [11] Ba J H, Polleux M J, Antonietti P, et al. Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures [J]. Advanced Materials, 2005, 17: 2509-2512.
    [12] Park M S, Kang Y M, Wang G X, et al. The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials [J]. Advanced Functional Materials, 2008, 18: 455-461.
    [13] Yuan L, Guo Z P, Konstantinov K, et al. Nano-structured spherical porous SnO2 anodes for lithium-ion batteries [J]. Journal of Power Sources, 2006, 159: 345-348.
    [14] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J]. Science, 2001, 291: 1947-1949.
    [15] Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material [J]. Science, 1997, 276: 1395-1397.
    [16] Kim C, Noh M, Choi M, et al. Critical size of a nano SnO2 electrode for Li-secondary battery [J]. Chemistry of Materials, 2005, 17: 3297-3301.
    [17] Han S J, Jang B, Kim T, et al. Simple synthesis of hollow tin dioxide mesospheres and their application to lithium-ion batteries [J]. Advanced Functional Materials, 2005, 15: 1845-1850.
    [18] Deng D, Lee J Y. Hollow core–shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage [J]. Chemistry of Materials, 2008, 20: 1841-1846.
    [19] Lou X W, Wang Y, Yuan C, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity [J]. Advanced Materials, 2006, 18: 2325-2329.
    [20] Yang H X, Qian J F, Chen Z X, et al. Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment [J]. The Journal of Physical Chemistry C, 2007, 111: 14067-14071.
    [21] Lou X W, Yuan C, Archer L A, et al. Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: cavity size tuning and functionalization [J]. Small, 2007, 3: 261-265.
    [22] Wang Y, Zeng H C, Lee J Y. Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers [J]. Advanced Materials, 2006, 18: 645-649.
    [23] Yang H G, Zeng H C. Self-construction of hollow SnO2 octahedra based on two-dimensional aggregation of nanocrystallites [J]. Angewandte Chemie International Edition, 2004, 43: 5930-5933.
    [24] Zhong Z Y, Yin Y D, Gates B, et al. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads [J]. Advanced Materials, 2000, 12: 206-209.
    [25] Yin Y D, Rioux R M, Erdonmez C K, et al. Formation of hollow nanocrystals through the nanoscale Kirkendall Effect [J]. Science, 2004, 304: 711-714.
    [26] Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J]. Science, 1998, 282: 1111-1114.
    [27] Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science, 2002, 298: 2176-2179.
    [28] Dinsmore A D, Hsu M F, Nikolaides M G, et al. Colloidosomes: selectively permeable capsules composed of colloidal particles [J]. Science, 2002, 298: 1006-1009.
    [29] Zhang W M, Hu J S, Guo Y G, et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries [J]. Advanced Materials, 2008, 20: 1160-1165.
    [30] Yang M, Ma J, Zhang C L, et al. General synthetic route toward functional hollow spheres with double-shelled structures [J]. Angewandte Chemie International Edition, 2005, 44: 6727-6730.
    [31] Yu J G, Guo H T, Davis S A, et al. Fabrication of hollow inorganic microspheres by chemically induced self-transformation [J]. Advanced Functional Materials, 2006, 16: 2035-2041.
    [32] Cheng B, Russell J M, Shi W S, et al.L. Large-scale, solution-phase growth of single-crystalline SnO2 nanorods [J]. Journal of the American Chemical Society, 2004, 126: 5972-5973.
    [33] Chen D L, Gao L. Facile synthesis of single-crystal tin oxide nanorods with tunable dimensions via hydrothermal process [J]. Chemical Physics Letters, 2004, 398: 201-206.
    [34] Carson C M. Basic stannous sulfate [J]. Journal of the American Chemical Society, 1926, 48: 906-911.
    [35] Davies C G, Donaldson J D. Basic tin(ii) sulphates [J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1967, 1790-1793.
    [36] Edwards R, Gillard R D, Williams P A. The stabilities of secondary tin minerals. Part 2*:The hydrolysis of tin(II) sulphate and the of Sn3O(OH)2SO4 [J]. Mineralogical Magazine, 1996, 60: 427-432.
    [37] Zhang F, Ma H, Chen J, et al. Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks [J]. Bioresource Technology, 2008, 99: 4803-4808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700