用户名: 密码: 验证码:
基于声学方法的中国近海沉积物和悬浮颗粒物动力过程观测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过海床基观测平台和水体剖面观测系统在我国近海胶州湾外、黄海冷水团、桑沟湾及长江口外低氧区的成功应用,获取了具有高时空分辨率的温盐、流速、声学回声强度和悬浮物粒径的水体剖面或近底层时间序列,在利用声学反演模型估测悬浮颗粒物浓度和计算湍流混合动力参数的基础上,综合利用了统计分析、波谱分析、小波分析等数理方法,从“宏观”和“微观”两个切入点分析了海底沉积物或水体悬浮物在不同水动力条件下、不同湍流混合背景下的再悬浮和沉降等关键动力过程,估测了悬浮颗粒物的垂向湍扩散通量和沉降通量,并对湍流和近底沉积物的相互作用做了较为深入的研究。
     从“宏观”角度上来看:在潮占优的近岸浅海,由潮流的底摩擦效应产生的潮致湍切应力不仅是沉积物再悬浮的主要机制,也是颗粒物垂向湍扩散的主要动力。此外,在胶州湾口的观测发现“假潮”对沉积物的再悬浮也起着重要作用。首次提出了“分粒级”体积浓度Rouse剖面拟合和Stokes沉降律相结合的方法判别不同粒级悬浮颗粒物的性质(如有效密度和特征沉速)及其来源,被证明简单而有效。在长江口外低氧区,利用脉冲相关声学多普勒流速仪(PC-ADCP)对底上0.8 m之内的潮流边界层之内的流速、雷诺应力、湍流生成与耗散、悬浮沉积物浓度精细结构进行了观测(垂向分辨率0.02 m),发现不同潮流系统相互作用产生的流速突变会导致高雷诺应力和显著的沉积物再悬浮事件,提出利用近底流速的水平加速度用来解释沉积物的再悬浮事件。观测发现较强潮流会冲刷底地形,使海底粗糙度减小,进而使得海底拖曳系数减小,潮流由于“感受”到海底摩擦减小而使得垂向流速剪切及相应的雷诺应力减小。
     浪致底切应力虽然是一个有力的沉积物“搅拌机”,但由于它近似做往复运动且周期很短,却不是悬浮颗粒物垂向和水平输运的有效手段。对于同等量值的潮流和波浪轨道速度,前者可以卷挟沉积物使之大量悬浮,而后者或许不能使沉积物起动。在桑沟湾的观测中,浪致切应力控制着“底绒毛层”中沉积物的再悬浮,但由于潮流很弱,无法形成稳定的潮流边界层,涌浪导致的底绒毛层再悬浮只局限于近底层,绝大部分沉积物迅速的沉降到海底。由于浪致再悬浮导致的沉积物浓度时空变化剧烈,且达不到定常状态,潮流边界层内普遍使用的颗粒物沉降-湍扩散平衡在波浪占优的边界层内不一定适用。
     从“微观”机制上来看,真正导致沉积颗粒物剥蚀、起动和再悬浮的动力是近底湍流相干结构的间歇性猝发。沉积颗粒在瞬时湍涡运动的撞击、扰动及挟带下翻滚、跳跃乃至悬浮的累积效应构成了一个沉积物再悬浮的宏观画面。受壁湍流拟序运动间歇性猝发的控制,沉积物再悬浮也是以间歇性的猝发为特征的,猝发生成的大尺度含能湍涡携带相似尺度沉积物云状聚团(Sediment clouds)进入水体是充分发展的潮流边界层内沉积物再悬浮的微观表现形式在波浪边界层内,由于波浪为高频的、强有力的运动,它们可以直接与海床作用卷挟沉积物。利用桑沟湾的近底连续观测数据,统计了一个涌浪周期内不同波动相位导致的湍动能生成和相应的沉积物浓度响应,利用统计结果构建了波浪导致的沉积物再悬浮的最可能的微观机制。
     不同季节、不同混合状况水体中悬浮颗粒物的垂向分布和扩散的景象是完全不同的。在胶州湾,观测期间稳定风强迫的机械搅拌、表层海水热量损失造成的垂向强迫对流以及潮流底摩擦效应,造成跨越整个水柱的湍流混合。沉积物一旦再悬浮,马上扩散到整个水柱中去,沉积颗粒垂向输运到海表层的时间不到15分钟。在强层结水体中,湍流混合更易受到浮力抑制,悬浮颗粒物垂向湍扩散的速度要远远小于前者,仅约为3 m/hr。在黄海冷水团的观测中还发现即便非常微弱的密度梯度对水体湍动能和相应的颗粒物垂向湍扩散的抑制作用也是显著的。在高密度筏式养殖海区桑沟湾,受养殖设施及养殖生物的阻碍,潮流、波浪轨道速度以及水体湍动能被强烈抑制,再悬浮沉积物进入水体后受到的湍致升力不足而迅速沉降。
     近底湍流和沉积物相互作用会显著改变边界层内湍流混合强度和颗粒物的絮凝特征。发现沉积物能显著改变水体密度形成近底层结,进而抑制湍流发展。水团微团湍动能在垂向输运沉积物的过程中转化为重力位能,大量消耗衰减。再悬浮的沉积物因湍致升力不足以克服自身重力而迅速沉降。桑沟湾的观测中发现由于近底层结效应,底摩擦速度、水体湍动能及湍动能耗散率ε不同程度的减小。以生物沉降为主的底沉积物,尽管粒径较大但结构松散易碎,涌浪导致的波浪边界层由于厚度很薄,流速剪切强,造成湍切应力很强,使得这些松散的绒毛层颗粒再悬浮后马上被湍涡“微剪切”搅碎,使得粒径大幅减小。
     如何准确的估计沉降速度对提高悬浮颗粒物输运数值模式的精度非常重要。本文介绍了四种测量或计算悬浮颗粒物沉降速度的方法,在胶州湾的观测中做了综合应用,并分别讨论了它们的优势和不足。
     利用海床基ADCP回声强度的剖面观测,结合LISST-100悬浮颗粒物粒径剖面观测,在黄海中部冷水团捕捉到一次小型浮游动物垂向迁移过程,并对控制其迁移的因素和浮游动物的垂向游泳速度进行了初步探讨和估计。光强和食物丰度是影响浮游动物垂向迁移的最重要因素,而强湍流剪切或者稳定跃层阻隔不能决定它们是否进行垂向迁移。由于跃层内部浮游植物消耗殆尽,夜晚浮游动物主动迁移到跃层上沿的高流速剪切区进行摄食活动。小型浮游动物上升时运动速度大约为0.8– 1.0 mm/s,而下降时速度达到1.5– 1.8 mm/s。因为上升时浮游动物必须克服自身重力和强大的温跃层结,速度要比下降时慢很多。
A better understanding of sediment dynamics in coastal waters has particular significance on ecological studies, coastal engineering, harbor and fishery management, especially in Chinese coastal seas which are well known for their high turbidity. Successful modeling of sediment transport patterns heavily depends on some critical parameters describing sediment resuspension and settling processes, such as critical bottom stress and settling velocity. However, the complex and highly variable marine environment makes the quantification of these parameters a formidable problem. A combination of novel devices and methods for in-situ monitoring and quantifying sediment resuspension and settling processes is imperative in Chinese seas.
     The objective of this paper is to report several pilot and comprehensive field campaigns conducted in Chinese coastal seas spanning from Western Yellow Sea to Yangtze Estuary. The observational scheme includes bottom-mounted quardropods and shipboard profiling measurements. The quardropods are equipped with Acoustic Doppler Current Profiler (ADCP), Acoustic Doppler Velocimeter (ADV), Optical Backscatter Sensor (OBS), and CTD, while shipboard instrumentation includes Laser In-Situ Scattering & Transmissometer (LISST-100) and multiple-parameters CTD profiler fitted with OBS. The combinations of instrumentations yield the temporal and spatial distributions of tidal currents, turbulent kinetic energy (TKE), suspended sediment concentration (SSC) and particle size distributions with fine resolutions.
     High-frequency current velocities measured by ADCP and ADV are carefully processed to give the mean tidal currents and turbulence quantities in the water column and close to the seabed. Optical and acoustic techniques, as well as bottle samples, are combined to determine the SSC distributions. Different methods or tools are utilized to clarify the mechanisms underlying the sediment resuspension and settling processes in different hydrodynamical settings (tides and waves) and turbulent mixing levels (i.e., well-mixed, strongly stratified water columns, or mechanically dissipated water by raft-culture) from a‘macroscale’or‘microscale’perspective.
     In the tidal boundary layer, tidally-induced bottom shear stress is the main mechanism that acted upon the seabed to stir up the sediments. Besides, observations in Jiaozhou Bay also found that the sediment could be aroused by high-frequency current oscillations (Seiche). During the ebb tide, the amplitude of seiche-induced oscillations and ebb tidal flows were of similar magnitude, the interaction between them led to multiple flow reversals and enhanced turbulence mixing in the water column, which subsequently aroused the benthic fluffs. A new method based on the Rouse profile fitted by LISST-100 volume concentration and Stokes settling law is first proposed are found to be effective to distinguish different types of suspended sediment.
     In East Yangtze Estuary, a pulse-coherent ADCP with a binsize of 0.02 m was first deployed at 0.8 mab to measure near-bed profiles of current velocities and suspended sediment concentration. Two novel approaches for estimating profiles of Reynolds stress and the rate of turbulent kinetic energy dissipation were verified. It is found that the sudden shifts of tidal current magnitudes could induce high-Reynolds-stress and high-SSC events, thus the acceleration of tidal currents was used to explain sediment resuspension. When tidal current reached the strongest value during the measurement, it is unexpected that the bottom stress and SSC was relatively low. Strong tidal currents resulted in more effective erosion and a reduction in bed roughness and drag coefficient at sediment-water interface and hence smaller bottom stress and sediment resuspension. Comparson reveals that in the well-mixed tidal BBL, the shear production of turbulent kinetic energy is locally in equilibrium with TKE dissipation.
     Waves are a powerful mechanism to stir up sediments. The boundary shear stress associated with the wave motion may be an order of magnitude larger than the shear stress associated with a current of comparable magnitude. Thus waves are capable of entraining significant amounts of sediment from the seabed when a current of comparable magnitude may be too weak even to initiate sediment motion. On the other hand, waves are an inefficient transporting mechanism, and to the first order, no net transport is associated with the wave motion over a wave period. Waves acting as a stirring mechanism making sediment available for transport by a weak current are a convenient conceptualization of combined waves and currents. In Sungou Bay, wave-induced bottom stress solely controlled the sediment entrainment, however, negligible vertical transfer of sediment is observed since tidal currents were extremely weak and no stable tidal BBL was formed.
     Actually, bottom shear velocity is an‘artificial’velocity parameter, it is defined to describe in a time-averaged manner the cumulative effect of momentum tranfer in the BBL through the ejection/sweep etc. From a microscale perspective, the real mechanism that controls sediment resuspension process is the intermittent bursting of coherent structures near the seabed. Several methods are used to verify this theory, and a possible suspension mechanism is proposed. In the wave-dominated environment, the powerful wave motions act upon the seabed directly to entrain sediment. Within a wave period, the water motion were divided into four phases (wave crest, wave trough, up-crossing and down-crossing), and the TKE production and SSC in each phase were statistically obtained. Based on the statistical results, the most possible mechanism that accounts for sediment resuspension in wave boundary layer is proposed.
     The vertical diffusion of suspended sediment in the water column is strongly affected by mixing and stratification. In well-mixed boundary layer like Jiaozhou Bay in winter, the continuous input of wind energy, the forced convection induced by heat loss, and strong tidal mixing led to the rapid upward diffusion of suspended sediment by energetic turbulent eddies with a speed of 60 m/hr approximately. While in highly-stratified Yellow Sea Cold water region, turbulent mixing was strongly suppressed by buoyancy dissipaton. The speed of vertical transfer of sediment is about 3 m/hr, far less than that in well-mixed water. Observations showed that even an extremely weak stratification (N ~ 10-4– 2.5×10-4 s-1) could induce the suppression of sediment diffusion. In Sungou bay with high-density raft-mariculture, the drags caused by the existence of floats and rafts results in the considerable reduction in tidal current, wave orbital velocity, and strong dissipation of turbulent kinetic energy. The suspended sediment advected from Yellow Sea quickly settled down and acts as a material supply mechanism in Sungou Bay.
     The presence of a concentration gradient of suspended sediment in a flow provides stable stratification. It acts as a sink for TKE, which results in a diminished eddy viscosity and sediment diffusivity compared with an unstratified flow of the same mean velocity. In Sungou bay, because of the suppression of turbulence by near-bed stratification, the bottom shear velocity deceased 40% and the turbulent dissipation rate deceased 4 times. In bays with obvious biological deposition, a benthic fluff layer with loosely aggregated and fragile flocs is formed. When hydrodynamics is strong, these flocs are disturbed and torn by energetic turbulent eddies.
     Settling velocity of suspended sediment is also influenced by many factors, among which sediment properties (e.g., grain size, density, composition, cohesiveness, etc.) and ambient turbulence are most important. Several methods to estimate settling velocity based on the up-to-date devices (LISST-100, ADV, ADCP) have been reported to be successfully applied to Jiaozhou Bay with moderate sediment concentration. However, due to the limitations of each method and different principles behind them, careful inter-comparisons are indispensable to yield more reliable estimates.
     Based on the ADCP echo intensity and LISST-100 particle size spectra, the diel vertical migration of micro-zooplankton was captured in Yellow Sea Cold Wate region. The possible factors that affected the migration are preliminarily discussed. The vertical swimming speed of zooplankton is carefully estimated.
引文
[1]. Agrawal, Y.C. and Pottsmith, H.C.. Instruments for particle size and settling velocity observations in sediment transport. Marine Geology, 2000, 168: 89-114.
    [2]. Agrawal, Y.C. and Pottsmith, H.C.. Laser diffraction particle sizing in STRESS. Continental Shelf Research, 1994, 14 (10-11): 1101-1121.
    [3]. Andersen, T.J., Fredsoe, J., Pejrup, M.. In situ estimation of erosion and deposition thresholds by Acoustic Doppler Velocimeter (ADV). Estuarine Coastal and Shelf Science, 2007, 75: 327-336.
    [4]. Baker, E.T. and Lavell, J.W.. The effect of particle size on the light attenuation coefficient of natural suspensions. Journal of Geophysical Research, 1984, 89: 8197–8203.
    [5]. Battisto, G.M.. Field measurement of mixed grain size suspension in the near-shore under waves. Virginia, USA: The College of William and Mary, 2000: 1-10.
    [6]. Bernard, P.S. and Handler, R.A.. Reynolds stress and the physics of turbulent momentum transport. Journal of Fluid Mechanics, 1990, 220: 99-124.
    [7]. Blake, A.C., Kineke, G..C., Milligan, T.G., et al.. Sediment trapping and transport in the ACE Basin, South Carolina. Estuaries, 2001, 24(5): 721-733.
    [8]. Byun, D.S. and Wang, X.H.. The effect of sediment stratification on tidal dynamics and sediment transport patterns. Journal of Geophysical Research, 2005, 110, C03011, doi:10.1029/2004JC002459.
    [9]. Cellino, M. and Lemmin, U.. Influence of coherent flow structures on the dynamics of suspended sediment transport in open-channel flow. Journal of Hydraulic Engineering , 2004, 130 (11): 1077-1088.
    [10]. Cheng, R.T., Ling, C.H., Gartner, J.W.. Estimates of bottom roughness length and bottom shear stress in South San Francisco Bay, California. Jounal Geophysical Research, 1999, 104(C4): 7715-7728.
    [11]. Deines, K.L.. Backscatter Estimation Using Broadband Acoustic Doppler Current Profilers. IEEE,1999.
    [12]. Denman, K.L. and Gargett, A.E.. Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnology and Oceanography, 1983,28(5):801-815.
    [13]. Farge, M.. Wavelet transform and their applications to turbulence. Annu. Rev. Fluid Mech, 1992, 24: 395-457.
    [14]. Flagg, C.N. and Smith, S.L.. On the use of the acoustic Doppler current profiler to measure zooplankton abundance. Deep-Sea Research, 1988,36(3): 455-474.
    [15]. Francois, R.E. and Garrison, G.R.. Sound absorption based on ocean measurements: Part1. Pure water and magnesium sulfate contributions. Journal of Acoustic Society America, 1982, 72: 896-907.
    [16]. Friedrichs, C.T. and Wright, L.D.. Resonant internal waves and their role in transport and accumulation of fine sediment in Eckernf?rde Bay, Baltic Sea. Continental Shelf Research, 1995, 15 (13): 1697-1721.
    [17]. Fugate, D.C. and Friedrichs, C.T.. Controls on suspended aggregate size in partially mixed estuaries. Estuarine Coastal and Shelf Science, 2003,58: 389-404.
    [18]. Fugate, D.C. and Friedrichs, C.T.. Determining concentration and fall velocity of estuarineparticle populations using ADV, OBS and LISST. Continental Shelf Research,2002,22: 1867-1886.
    [19]. Gartner J.W.. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California. Marine Geology, 2004,211: 169-187.
    [20]. Gartner, J.W., Cheng, R.T., Wang, P., et al.. Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations. Marine Geology, 2001, 175: 199-219.
    [21]. Geyer, W. R.. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum. Estuaries, 1993, 16(1): 113-125.
    [22]. Gordon, C.M.. Intermittent momentum transport in a geophysical boundary layer. Nature, 1974, 248: 392-394.
    [23]. Goring, D.G... and Nikora, V.I.. Despiking Acoustic Doppler Velocimeter Data. Journal of Hydraulic Engineering, 2002, 128(1): 117-126.
    [24]. Grant, W.D. and Madsen, O.S.. The continental shelf bottom boundary layer. Annual Review of Fluid Mechanics, 1986, 18: 265-305.
    [25]. Grass, A.J.. Structural features of turbulent flow over smooth and rough boundaries. Journal of Fluid Mechanics, 1971, 50: 233-255.
    [26]. Gross, T.F. and Nowell, A.R.. Spectral scaling in a tidal boundary layer. Journal of Physical Oceanography, 1985, 15: 496-508.
    [27]. Guillén, J., Jiménez, J.A., Palanques, A., et al.. Sediment resuspension across a microtidal, low-energy inner shelf. Continental Shelf Research, 2002, 22: 305-325.
    [28]. Ham, R., Fontijn, H.L., Kranenburg, C., et al.. Turbulent exchange of fine sediments in a tidal channel in the Ems/Dollard estuary. Part I: Turbulence measurement. Continental Shelf Research, 2001, 21: 1605-1628.
    [29]. Hay, A.E. and Sheng, J.. Vertical profiles of suspended sand concentration and size from multifrequency ascousitc backscatter. Journal of Geophysical Research, 1992, 97(C10):156761-15677.
    [30]. Heathershaw, A.D. and Thorne, P.D.. Sea-bed noises reveal role of turbulent bursting phenomenon in sediment transport by tidal currents. Nature, 1985, 316: 339-342.
    [31]. Heathershaw, A.D..“Bursting”phenomena in the sea. Nature, 1974, 248: 394-395.
    [32]. Heathershaw, A.D.. The turbulent structure of the bottom boundary layer in a tidal current. Geophysical Journal International, 1979, 58 (2): 395-430.
    [33]. Heywood, K.J., Scrope-Howe, S., Barton, E.D.. Estimation of zooplankton abundance from shipborne ADCP backscatter. Deep-Sea Research,1991, 38(6): 677-691.
    [34]. Heywood, K.J.. Diel vertical migration of zooplankton in the Northeast Atlantic. Journal of Plankton Research, 1996, 18(2): 163-184.
    [35]. Hoitink, A.J.F. and Hoekstra, P.. Observation of suspended sediment from ADCP and OBS measurements in a mud-dominated environment. Coastal Engineering, 2005, 52: 103-118.
    [36]. Hurther, D., Michallet, H., Gondran, X.. Turbulent measurements in the surf zone suspension. Journal of Coastal Research, 2007, 50(SI): 297-301.
    [37]. Jackson, R.G.. Sedimentological and fluid dynamics implications of the turbulent bursting phenomenon in geophysical flows. Journal of Fluid Mechanics,1976, 77: 531-560.
    [38]. Jago, C.F. and Jones, S.E.. Observation and modeling of the dynamics of benthic fluff resuspended from a sandy bed in the southern North Sea. Continental Shelf Research, 1998,18: 1255-1282.
    [39]. Jago, C.F., Jones, S.E., Latter, R.J., et al.. Resuspension of benthic fluff by tidal currents in deep stratified waters, northern North Sea. Journal of Sea Research, 2002, 48: 259-269.
    [40]. Jevrejeva, S., Moore, J.C., Grinsted, A.. Influence of the Arctic Oscillation and EI Ni?o-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach. Journal of Geophysical Research, 2003, 108 (D21): 4677-4689.
    [41]. Johnson, D.R., Weidemann, A., Pegau, S.. Internal tidal bores and bottom nepheloid layers. Continental Shelf Research, 2001, 21: 1473-1484.
    [42]. Jones, S.E., Jago, C.F., Bale, A.J.. Aggregation and resuspension of suspended particulate matter at seasonally stratified site in the southern North Sea: physical and biological controls. Continental Shelf Research, 1998, 18: 1283-1309.
    [43]. Jonsson, I.G.. Wave boundary layers and friction factors. Proceedings of the 10th International Conference on Coastal Engineering, 1966: 127–148.
    [44]. Kaftori, D., Hetsroni, G., Banerjee, S.. Particle behavior in the turbulent boundary layer. Part I: Motion, deposition, and entrainment. Physical Fluids, 1995, 7: 1095-1106.
    [45]. Kaneda, A., Takeoka, H. and Koizumi, Y.. Periodic occurrence of diurnal signal of ADCP backscatters strength in Uchiumi Bay, Japan. Estuarine, Coastal and Shelf Science, 2002, 55: 323-330.
    [46]. Keylock, C.J.. The visualization of turbulence data using a wavelet-based method. Earth Surface Processes and Landforms, 2007, 32: 637-647.
    [47]. Kim, S.-C., Friedrichs, C.T., Maa, J.P.-Y., et al.. Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data. Journal of Hydraulic Engineering, 2000, 126(6): 399-406.
    [48]. Klein H.. Investigating sediment re-mobilisation due to wave action by means of ADCP echo intensity data: Field data from the Tromper Wiek, western Baltic Sea. Estuarine Coastal and Shelf Science, 2003, 58: 467-474.
    [49]. Kularatne, S. and Pattiaratchi, C.. Turbulent kinetic energy and sediment resuspension due to wave groups. Continental Shelf Research, 2008, 28: 726-736.
    [50]. Lacy, J.R. and Sherwood, C.R.. Accuracy of a pulse-coherent acoustic Doppler profiler in a wave-dominated flow. Journal of Atmospheric and oceanic technology, 2004, 21: 1448-1461.
    [51]. Lee, G.-H., Friedrichs, C.T., Vincent, C.E.. Spectral estimates of bed shear stress using suspended sediment concentrations in a wave-current boundary layer. Journal of Geophysical Research, 2003, 108 (C7): 3208-3223.
    [52]. Li, M.Z. and Amos, C.L.. Predicting ripple geometry and bed roughness under combined waves and currents in a continental shelf environment. Continental Shelf Research, 1998, 18: 941-970.
    [53]. Li, M.Z. and Amos, C.L.. SEDTRANS96: the upgraded and better calibrated sediment-transport model for continental shelves. Computers & Geosciences, 2001, 27:619-645.
    [54]. Lohrmann, A.. Monitoring sediment concentration with acoustic backscattering instruments. Nortek Technical Note, 2001, NO.: 003, Nortek AS: 1-5.
    [55]. Lorke, A. and Wüest, A.. Application of coherent ADCP for turbulence measurements in the bottom boundary layer. Journal of Atmospheric and oceanic technology, 2005, 22: 1821-1828.
    [56]. Lorke, A., et al.. Acoustic observations of zooplankton in lakes using a Doppler currentprofiler. Freshwater Biology, 2004, doi:10.1111/j.1365-2427.2004.01267.x.
    [57]. Lozovatsky, I.D., Liu, Z.Y., Wei, H., et al.. Tides and mixing in the northwestern East China Sea. Part I: Rotating and reversing tidal flows. Continental Shelf Research, 2008a, 28: 318-337.
    [58]. Lozovatsky, I.D., Liu, Z.Y., Wei, H., et al.. Tides and mixing in the northwestern East China Sea. Part I: Near-bottom turbulence. Continental Shelf Research, 2008b, 28: 338-350.
    [59]. Lu, Y., and Lueck, R.G.. Using a broadband ADCP in a tidal channel. Part 1: Mean flow and shear. J. Atmos. Oceanic Technol., 1999a, 16: 1556-1567.
    [60]. Lu, Y., and Lueck, R.G.. Using a broadband ADCP in a tidal channel. Part II: Turbulence. Journal of Atmospheric and Oceanic Technology, 1999b, 16: 1568-1579.
    [61]. Maa J.P.-Y. and Kwon, J.-I.. Using ADV for cohesive sediment settling velocity measurements. Estuarine Coastal and Shelf Science, 2007, 73: 351-354.
    [62]. Mantovanelli, A. and Ridd, P.V.. Devices to measure settling velocities of cohesive sediment aggregates: A review of the in situ technology. Journal of Sea Research, 2006, 56 (3): 199-226.
    [63]. Medwin, H. and Clay, C.S.. Fundamentals of Acoustical Oceanography. San Diego, USA: Academic Press, 1998.
    [64]. Mikkelsen O. A. and Pejrup, M. In situ particle size spectra and density of particle aggregates in a dredging plume. Marine Geology, 2000, 170: 443~459.
    [65]. Mikkelsen O. A. and Pejrup, M. The use of a LISST-100 laser particle sizer for in-situ estimates of floc size, density and settling velocity. Geo-Marine Letters, 2001, 20: 187~195.
    [66]. Nelson, J.M., Shreve, R.L., McLean, S.R., et al.. Role of near-bed turbulence structure in bed load transport and bed from mechanism. Water Resource Research, 1995, 31: 2071-2086.
    [67]. Nielsen, P.. Some basic concepts of wave sediment transport. Institute for Hydrodynamics and Hydraulic Engineering, Technical University of Denmark, 1979, Serial Paper 20: 160-161.
    [68]. Nikora, V.I. and Goring, D.G.. Fluctuations of suspended sediment concentration and turbulent sediment fluxes in an open-channel flow. Journal of Hydraulic Engineering, 2002, 128 (2): 214-224.
    [69]. Nino, Y. and Garcia, M.H.. Experiments on particle-turbulence interactions in the near-wall region of an open channel flow: Implications for sediment transport. Journal of Fluid Mechanics, 1996, 326: 285-319.
    [70]. Paphitis, D. and Collins, M.B.. Sediment resuspension events within the (microtidal) coastal waters of Thermaikos Gulf, northern Greece. Continental Shelf Research, 2005, 25: 2350-2365.
    [71]. Paphitis, D., Collins, M.B., Nash, L.A., et al.. Settling velocities and entrainment thresholds of biogenic sands (shell fragments) under unidirectional flow. Sedimentology, 2002, 49: 211-225.
    [72]. Perlin, A., Moum, J.N., Klymak, J.M., et al. A modified law-of-the-wall applied to oceanic bottom boundary layers. Journal of Geophysical Research, 2005, 110, C10S10, doi: 10.1029/2004JC002310.
    [73]. Quaresma, L.S., Vitorino, J., Oliveira, A., et al.. Evidence of sediment resuspension by nonlinear internal waves on the western Portuguese mid-shelf. Marine Geology, 2007, 246: 123-143.
    [74]. RD Instruments. Acoustic Doppler Current Profiler: Principles of Operation. 2nd ed. San Diego, USA: RD Instruments, 1996.
    [75]. RD Instruments. WorkHorse Commands and Output Data Format. San Diego, USA: RD Instruments, 2002. 116-150.
    [76]. Richards, D.. The effect of temperature, pressure, and salinity on sound attenuation in turbid seawater. Journal of the Acoustical Society of American, 1998, 103 (1): 205-211.
    [77]. Rippeth, T.P., Williams, E., Simpson, J.H.. Reynolds stress and turbulent energy production in a tidal channel. Journal of Physical Oceanography, 2002, 32: 1242-1251.
    [78]. Salmond, J.A.. Wavelet analysis of intermittent turbulence in a very stable nocturnal boundary layer: Implications for the vertical mixing of ozone. Boundary-Layer Meteorology, 2005, 114 (3): 463-488.
    [79]. Schwartz, M.L.. Encyclopedia of coastal science. Springer, 2005: 1052-1053.
    [80]. Scully M.E. and Friedrichs, C.T.. The influence of asymmetries in overlying stratification on near-bed turbulence and sediment suspension in a partially mixed estuary. Ocean Dynamics, 2003, 53: 208-219.
    [81]. Scully, M.E. and Friedrichs, C.T.. Sediment pumping by tidal asymmetry in a partially mixed estuary. Journal of Geophysical Research, 2007, 112, C07028, doi:10.1029/2006JC003784.
    [82]. Sherwood, C.R., Lacy, J.R., Voulgaris, G.. Shear velocity estimates on the inner shelf off Grays Harbor, Washington, USA. Continental Shelf Research, 2006, 26 (17-18): 1995-2018.
    [83]. Shi, Z., Ren, L.F., Hamilton, L.J.. Acoustic profiling of fine suspension concentration in the Changjiang Estuary. Estuaries, 1999, 22: 648-656.
    [84]. Shi, Z., Ren, L.F., Lin, H.L.. Vertical suspension profile in the Changjiang Estuary. Marine Geology, 1996, 130: 29-37.
    [85]. Shi, Z., Ren, L.F., Zhang, S., et al.. Acoustic imaging of cohesive sediment resuspension and re-entrainment in the Changjiang Estuary, East China Sea. Geo-Marine Letters, 1997, 17: 162-168.
    [86]. Shi, Z., Zhang, S., Hamilton, L.J.. Bottom fine sediment boundary layer and transport processes at the mouth of the Changjiang Estuary, China. Journal of Hydrology, 2006, 327, 276-288.
    [87]. Shin, S. and Cox, D.. Laboratory observations of inner surf and swash-zone hydrodynamics on a steep slope. Continental Shelf Research, 2006, 26:561-573.
    [88]. Simpson J.H.. Physical processes in the ROFI regime. Journal of Marine System, 1997, 12: 3-15.
    [89]. Simpson, J.H, et al.. Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries, 1990, 13(2): 125-132.
    [90]. Simpson, J.H., Fisher, N.R., Wiles, P.. Reynolds stress and TKE production in an estuary with a tidal bore. Estuarine, Coastal and Shelf Science, 2004, 60: 619-627.
    [91]. Simpson, J.H., Williams, E., Brasseur, L.H., et al.. The impact of tidal straining on the cycle of turbulence in a partially stratified estuary. Continental Shelf Research, 2005, 25: 51-64.
    [92]. Smith, P.E., Ohman, M.D., Eber, L.E.. Analysis of the patterns of distribution of zooplankton aggregations from and acoustic Doppler current profiler. CalCOFI Rep., 1989, 20:88-103.
    [93]. Smyth C. and Hay, A.E.. Near-bed turbulence and bottom friction during SandyDuck97, Journal of G.eophysical Research, 2003, 108(C6), doi: 10.1029/2001JC000952.
    [94]. Smyth, C., Zedel., L., Hay., A.E.. Coherent Doppler Profiler measurements of near-bed suspended sediment fluxes and the influence of bedforms. Journal of Geophysical Research, 2002, 107(12): 3490-3498.
    [95]. Soulsby R.L.. Dynamics of marine sands. London: Thomas Telford Publications, 1997. 1-246.
    [96]. Soulsby, R.L., Salkield, A.P., Le Good, G.P.. Measurements of the turbulence characteristics of sand suspended by a tidal current. Continental Shelf Research, 1984, 3 (4): 439-454.
    [97]. Soulsby, R.L.. Similarity scaling of turbulence spectra in marine and atmospheric boundary layers. Journal of Physical Oceanography, 1977, 7: 934-937.
    [98]. Souza A.J., Alvarez, L.G., Dickey, T.D.. Tidally induced turbulence and suspended sediment. Geo. Res. Letters, 2004, 31: L20309, doi: 10.1029/2004GL021186.
    [99]. Stacey, M.T., Monismith, S.T., Burau, J.R.. Measurements of Reynolds stress in unstratified tidal flow. Journal of Geophysical Research, 1999, 104: 10933-10949.
    [100]. Styles, R. and Glenn, S.M.. Modelling stratified wave and current bottom boundary layers on the continental shelf. Journal of Geophysical Research, 2000, 105 (C10): 24119-24139.
    [101]. Sumer, B.M. and Deigaard, R.. Particle motions near the bottom in turbulent flow in an open-channel. Part II. Journal of Fluid Mechanics, 1981, 109: 311-337.
    [102]. Sumer, B.M. and Oguz. Particle motions near the bottom in turbulent flow in an open-channel. Part I. Journal of Fluid Mechanics, 1978, 86: 109-127.
    [103]. Tennekes, H. and Lumley, J.L.. A first course in turbulence. MIT press, Cambridge, Mass, 1972.
    [104]. Thorne, P.D. and Campbell, S.C.. Backscattering by a suspension of spheres. J Acoust Soc Am, 1992, 92(2): 978-986.
    [105]. Thorne, P.D., Jardcastle, P.J., Soulsby, R.L.. Analysis of acoustic measurements of suspended sediments. Journal Geophysical Res, 1993, 98(C1): 899-910.
    [106]. Thorpe, S.A.. Recent developments in the study of ocean turbulence. Annu. Rev. Earth Planet. Sci., 2004, 32: 91-109.
    [107]. Torrence, C. and Compo, G. P.. A practical guide to wavelet analysis, Bulletin of the American Meteorological Society, 1998, 79: 61-78.
    [108]. Traykovski, P., Latter, R.J., Irish, J.D.. A laboratory evaluation of the laser in situ scattering and transmissometry instrument using natural sediments. Marine Geology, 1999, 159: 355–367.
    [109]. Trevethan, M., Chanson, H., Takeuchi, M.. Continuous high-frequency turbulence and suspended sediment concentration measurements in an upper estuary. Estuarine, Coastal and Shelf Science, 2007, 73 (1-2), 341-350.
    [110]. Voulgaris G. and Meyers, S.T.. Temporal variability of hydrodynamics, sediment concentration and sediment settling velocity in a tidal creek. Continental Shelf Research, 2004, 24: 1659-1683.
    [111]. Voulgaris G. and Trowbridge J.H. Evaluation of the Acoustic Doppler Velocimeter (ADV) for Turbulence Measurements. J. Atmos. Oceanic Technol., 1998, 15(1): 272-289.
    [112]. Wade, I.P. and Heywood, K.J.. Acoustic backscatter observations of zooplankton abundance and behaviour and the influence of oceanic fronts in the northeast Atlantic. Deep-sea Research Part II, 2001, 48: 899-924.
    [113]. Wallace, J.M., Eckelmann, H., Brodkey, R.S.. The wall region in turbulent shear flow. Journal of Fluid Mechanics, 1972, 54 (1): 38-48.
    [114]. Wang, X. H.. Tide-induced sediment resuspension and the bottom boundary layer in an idealized estuary with a muddy bed. Journal of Physical Oceanography, 2002, 32 (11): 3113-3131.
    [115]. Webster, T. and Lemckert, C.. Sediment resuspension within a microtidal estuary/embayment and the implication to channel management. Journal of Coastal Research SI, 2002, 36: 753-759.
    [116]. Welch, P.D.. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms. IEEE Trans. Audio Electroacoustics, 1967, AU-15: 70-73.
    [117]. Whitehouse, R.. Observations of the boundary layer characteristics and the suspension of sand at a tidal site. Continental Shelf Research, 1995, 15(13): 1549-1567.
    [118]. Wiberg, P.L. and Smith, J.D.. A comparison of field data and theoretical models for wave-current interaction at the bed on the continental shelf. Continental Shelf Research, 1983, 2: 147-162.
    [119]. Wiebe, P.H., Copley, N.J., Boyd, S.H.. Coarse-scale horizontal patchiness and vertical migration of zooplankton in Gulf Stream warm-cor ring 82-H. Deep-Sea Research, 1992, 39(Suppl.): S247-S278.
    [120]. Willem, T.B. and Van der Lee. Temporal variation of floc size and settling velocity in Dollard Estuary. Continental Shelf Research, 2000, 20: 1495-1511.
    [121]. Willmarth, W.W. and Lu, S.S.. Structure of the Reynolds stress near the wall. Journal of Fluid Mechanics, 1972, 55 (1): 65-92.
    [122]. Winterwerp, J.C. and Kranenburg, C.. Fine sediment dynamics in the marine environment. Proceedings in Marine Science 5. Elsevier Science B.V., The Netherlands,2002.
    [123]. Wright, L.D., Kim, S.C., Friedrichs, C.T.. Biological mediation of bottom boundary layer processes and sediment suspension in lower Chesapeake Bay. Marine Geology, 1997, 141: 99-115.
    [124]. Wüest, A., Farmer, D.M., 2003. Seiche, in McGraw-Hill Encyclopedia of Science & Technology, 9th edition. WWW page, http://www.eawag.ch/research_e/apec/Scripts/Seiche-612800.pdf.
    [125]. Yuan, Y., Wei, H., Zhao, L., et al.. Observations of sediment resuspension and settling off the mouth of Jiaozhou Bay, Yellow Sea. Continental Shelf Research, 2008, 28(19): 2630-2643.
    [126].陈吉余,陈沈良.河口海岸环境变异和资源可持续利用.海洋地质和第四纪地质, 2002, 22(2): 1-7.
    [127].陈吉余.中国河口海岸研究与实践.北京:高等教育出版社, 2007:.
    [128].程合琴,宋波,薛元忠,等.长江口粗粉砂和极细砂输移特性研究-幕式再悬浮和底形运动.泥沙研究, 2000, 1: 20-27.
    [129].程江,何青,王元叶.利用LISST观测絮凝体粒径、有效密度和沉速的垂线分布.泥沙研究, 2005, 1: 33-39.
    [130].程鹏,高抒. ADCP测量悬沙浓度的可行性分析和现场标定.海洋与湖沼, 2001, 32(2): 168-174.
    [131].樊星,魏皓,原野,等.近岸典型养殖海区的潮流垂直结构特征.中国海洋大学学报, 2009, 39(2): 181-186.
    [132].高建华,汪亚平,潘少明,等.长江口枯水期最大浑浊带形成机制.泥沙研究, 2005(10): 66-73.
    [133].高建华,汪亚平,王爱军,等. ADCP在长江口悬沙输运观测中的应用.地理研究, 2004, 23(4): 455-462.
    [134].韩君,赵亮,魏皓,等.近岸海域浮游植物水华动力机制研究进展和展望.中国海洋大学学报, 2008, 38(4): 527-532.
    [135].江文胜,王厚杰.莱州湾悬浮泥沙分布形态及其与底质分布的关系.海洋与湖沼, 2005, 36(2): 97~103.
    [136].蒋增杰.浅海贝藻养殖水域沉积物再悬浮的发生机制及生态效应: [博士学位论文].青岛:中国科学院海洋研究所, 2006.
    [137].兰志刚,龚德俊,李思忍,等. ADCP对悬浮沉积物浓度的测量及其误差分析研究.海洋科学, 2004, 28(10): 20-23.
    [138].兰志刚,龚德俊,于新生,等.现场粒径分析仪与ADCP同步测量悬浮沉积物浓度的粒径修正方法.海洋与湖沼, 2004, 35(5): 385-392.
    [139].李佳,沈焕庭,谢小平.应用ADP探测长江口区泥沙浓度的实验研究.海洋通报, 2004, 23(6): 71-76.
    [140].李铁刚,等.东、黄海沉积物类型图.中国科学院海洋研究所等单位研制, 2002.
    [141].连祺祥.湍流边界层拟序结构的实验研究.力学进展, 2006, 36(3): 373-388.
    [142].林丽贞,陈纪新,刘媛,等.东、黄海典型海区分粒级浮游植物叶绿素a的周日波动及影响因子.台湾海峡, 2007, 26(3): 342-350.
    [143].刘志宇,魏皓.黄海潮流底边界层内湍动能耗散率与底应力的估计.自然科学进展, 2007, 17(3): 362-369.
    [144].刘志宇.黄海湍流混合研究: [博士学位论文].青岛:中国海洋大学, 2009.
    [145].罗潋葱,张发兵. ADP在太湖沉积物再悬浮分析中的应用.湖泊科学, 2003, 15(4): 331-338.
    [146].潘科,黄凌风,郭丰,等.夏季黄海、东海鞭毛虫的丰度与悬浮颗粒物的关系.海洋学报,2005, 27(6): 107-115.
    [147].时钟,张淑英, Hamilton, L.J..河口近底细颗粒悬沙运动的声散射观测.声学学报, 1998, 23(3): 59-64.
    [148].时钟,朱文蔚,周洪强.长江口北槽口外细颗粒悬沙沉降速度.上海交通大学学报, 2000, 34(1): 18-23.
    [149].时钟.长江口北槽细颗粒悬沙絮凝体的沉降速率的近似估算.海洋通报, 2004, 23(5): 51-58.
    [150].时钟.河口海岸底部边界层和细颗粒泥沙过程.海洋科学, 2000, 24(11): 26-30.
    [151].史洁,魏皓.半封闭高密度筏式养殖海域水动力场的数值模拟.中国海洋大学学报, 2009, in press.
    [152].孙耀.池塘养殖环境中底质-水界面营养盐扩散通量的现场测定.生态学报, 1996, 16(6): 664-666.
    [153].汪亚平,高抒,贾建军.海底边界层水流结构及底移质搬运研究进展.海洋地质和第四纪地质, 2000,20(3): 101-106.
    [154].汪亚平,潘少明,Wang, H.V.,等.长江口水沙入海通量的观测与分析.地理学报, 2006, 61(1): 35-46.
    [155].汪亚平,高建华.河口海岸区悬沙输运量的声学多普勒流速剖面(ADCP)观测技术的初步研究.科学技术与工程, 2003, 3(5): 467-470.
    [156].汪亚平,高抒,李坤业.用ADCP进行走航式悬沙浓度测量的初步研究.海洋与湖沼, 1999, 30(6): 758-763.
    [157].汪亚平.胶州湾及邻近海区沉积动力学: [博士学位论文].青岛:中国科学院海洋研究所,2002.
    [158].王海棠.黄海湍流混合特征研究: [硕士学位论文].青岛:中国海洋大学, 2006.
    [159].王克,王荣,高尚武.东海浮游动物昼夜垂直移动的初步研究.海洋与湖沼, 2001, 32(5): 534-540.
    [160].王真良,刘晓丹.北黄海浮游动物昼夜垂直移动的初步研究.黄渤海海洋, 1989, 7(4): 50-54.
    [161].魏皓,赵亮,刘广山,等.浅海底边界动力过程与物质交换研究.地球科学进展, 2006, 21(11): 1180-1184.
    [162].武晋宣,孙耀,张前前,等.桑沟湾养殖水域沉积物中营养要素(TOC, TN和TP)溶出动力学特性.海洋水产研究, 2005, 26(2): 62-67.
    [163].夏滨,吕瑞华,孙丕喜. 2000年秋季黄、东海典型海区叶绿素a的时空分布及其粒径组成特征.黄渤海海洋, 2001, 19(4): 37-42.
    [164].夏建新,吉祖稳.湍流中泥沙垂线分布的力学解释.水利学报, 2003, (1): 45-50.
    [165].谢华.壁脉动压强与湍流相干结构关联的子波分析: [硕士学位论文].武汉:华中科技大学, 2005.
    [166].薛元忠,何青,王元叶. OBS浊度计测量泥沙浓度的方法与实践研究.泥沙研究,2004, (4): 56-60.
    [167].杨世伦,孟翊,张经,等.胶州湾悬浮体特性及其对水动力和排污的响应.科学通报, 2003,48(23): 2493-2498.
    [168].张芳,孙松,张永山,等.南黄海中华哲水蚤昼夜垂直分布.海洋科学, 2005, 29(9): 9-13.
    [169].张铭汉.胶州湾海水中悬浮体的分布及其季节变化.海洋科学集刊, 2000, 42: 49-54.
    [170].中国海湾志编委会.中国海湾志(第四分册)-山东半岛南部和江苏省海湾.北京:海洋出版社, 1993. 157-258.
    [171].周毅,杨红生,毛玉泽.桑沟湾栉孔扇贝生物沉积的现场测定.动物学杂志, 2003, 38(4): 40-44.
    [172].左涛,王荣,王克,等.夏季南黄海浮游动物的垂直分布与昼夜垂直移动.生态学报, 2004, 24(3): 524-530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700