用户名: 密码: 验证码:
海冰动力学数值模拟及波浪与海冰相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在研究海冰与全球气候系统的相互作用以及解决在极区和亚极区自然资源开发中所面临的海冰问题时,海冰数值模拟的时效性和精确性一直是人们关注的重点和研究的关键内容。本论文着重于海冰动力学数值模拟中的计算方法以及波浪与海冰相互作用两方面的研究。
     针对渤海以及极区冰缘区内海冰在风、浪、流等作用下表现出来明显的区域性和间断性的动力特征,本文发展了一个混合朗格朗日-欧拉方法以更有效准确地模拟海冰的动力过程。利用该方法对规则区域内的海冰堆积过程和涡旋风场作用下海冰的演化过程进行模拟,结果表明该方法可有效准确地模拟海冰的动力特性;采用该方法对渤海海冰动力学进行72小时数值模拟,计算结果与卫星观测数据和现场定点观测数据相吻合。
     在当前所有的数值模式中均忽略了波浪的影响,或将波浪的影响隐含地包括到其他参数的参数化过程中。然而,在更精细的中小尺度海冰数值模式中,波浪对海冰的动力和热力过程的影响必须加以进一步评估,这就需要对冰区内的波浪特征进行准确地确定。为了研究不同冰类型冰区对波浪传播特征的影响,本文对波浪在冰区内传播的弥散关系进行了系统的研究。本文首先描述了在HSVA进行的波浪在屑冰-莲叶冰混合冰区传播的实验室实验,并将实验结果与粘性模型对比,结果表明:粘性模型并不足以描述波浪在不同类型冰区内的传播特征。然后,根据冰缘区的形态特征,提出并发展了波浪在冰区内传播的粘弹模型,该粘弹模型不仅可以描述波浪在各种冰类型冰区内的传播特征,还统一了人们之前提出的各种数学模型,为该方面的研究提供了系统的理论框架。由于波浪从开阔水传入粘弹冰区后有可能产生数个不同的主导波模式,本文利用本征函数展开-匹配法对粘弹模型的反射和透射系数进行了求解,得到了不同波模式的波幅,并讨论了不同参数条件下的表观波特征。之后,本文结合波浪在冰区内传播的实验室实验,应用粘弹模型反推了实验所测冰盖的粘度和弹性模量,并探讨了利用实验室实验验证粘弹模型的注意事项。
     为了评估波浪对海冰生长速率的影响,本文利用两次冷室内冰与波浪相互作用的实验结果,计算了海冰-大气间的热传导率,实验结果表明:波浪作用下的海冰生长速率是无波作用下海冰生长速率的二倍,不同的波浪特征对海冰生长速率的影响不同。
Better forcasting sea ice conditions is the most concern for studying the interactions between sea ice and globle climate system, and for solving the sea ice problems encountered in offshore applications such as navigation and expoitation of natural sources. This thesis focuses on the numerical method for sea ice dynamics and wave-ice interactions.
     In the Bohai Sea or the marginal ice zone, various dynamical characteristics such as breakup, rafting and ridging are ofter observed. In this thesis, a hybrid Lagrangian-Eulerian (HLE) method is developed to simulate the sea ice dynamics accurately and efficiently. With the HLE model, the ice ridging process in a rectangular basin and the sea ice dynamical process in a vortex wind field are simulated. The simulated results show that the HLE model can simulate the sea ice dynamics accurately and efficiently. The HLE model is also applied to model the sea ice dynamics in the Bohai Sea. The simulated ice thickness, ice concentration and ice velocity match the saterllite images and the field observed data well.
     Wave-ice interactions, which have been ignored or crudely parameterized in all present sea ice models, need to be included into the sea ice model to further improve the accuracy of the sea ice modeling. Wave characteristics play a key role in sea ice dynamical and thermodynamical processes. To investigate the ice effect on wave propagation, the dispersion relation for waves propagating into different types of ice cover is studied systematically. A laboratory experiment was carried out to study the wave propagating through ice covers consisting of a grease and pancake ice mixture. The comparision between experimental results and the two-layer viscous model shows that modeling the tested ice layer as a viscous fluid is not sufficient to describe the observed dispersion relation and amplitude attenuation. Based on the ice morphology in marginal ice zone, a visco-elastic model is proposed to describe the propagation of gravity waves into various types of ice cover. The visco-elastic model bridges the gap among the existing models and provides a unified tool for wave-ice modelers to parameterize the Polar Regions populated with various types of ice cover. The dispersion relation, however, contains several propagating wave modes. The eigenfunction expansion-matching method is used to solve the transimision coefficients of each wave mode. Apparent wave number and attenuation rate are calculated for different conditions. The visco-elastic model is applied to the laboratory experiment to inversely determine the viscosity and elasticity of the tested ice covers. The further validation process using the laboratory experiment is discussed. To estimate the wave enhanced ice production rate, the ice production rates under wave condtions are calculated from two experiments conducted in HSVA. The results show that the total ice production is enhanced under wave conditions, and the ice production rates under wave conditions could be twice as large as the calm water one.
引文
[1]包澄澜.海洋灾害及预报[M].北京:海洋出版社,1991.
    [2]刘钦政.用于气候研究的海冰模式[D].青岛:中国海洋大学,1998.
    [3]赵其庚.海洋环流及海气耦合系统的数值模拟[M].北京:气象出版社,1999.
    [4]季顺迎.渤海海冰数值模拟及其工程应用[D].大连:大连理工大学,2001.
    [5]杨国金.海冰工程学[M].北京:石油工业出版社,2000.
    [6]Maykut G A. Energy exchange over young sea ice in the Central Arctic [J]. Journal of Geophysical Research,1978,83(C7):3646-3658.
    [7]唐述林,秦大河,任贾文等.极地海冰的研究及其在气候变化中的作用[J].冰川冻土,2006,28(1):91-100.
    [8]卢鹏.基于图像分析的海冰几何参数和拖曳系数参数化研究[D].大连:大连理工大学,2007.
    [9]王刚.中小尺度海冰动力学的粘弹-塑性本构模型及SPH数值模拟[D].大连:大连理工大学,2006.
    [10]Wadhams P. Ice in the ocean [M]. Gordon and Breach Science publishers,2000.
    [11]Massom R A, Eichen H, Haas C, et al. Snow on Antarctic sea ice [J]. Reviews of Geophysics,2001, 39(3):413-445.
    [12]Comiso, J C, Parkinson R, Gersten R, et al. Accelerated decline in the Arctic sea ice cover [J]. Geophysical Research Letters,2007,35, L01703, doi:10.1029/2007GL031972.
    [13]Stroeve J, Serreze M, Drobot S, et al. Arctic Sea Ice Extent Plummets in 2007 [J]. EOS, Transactions, 2008,89(2), doi:10.1029/2008EO020001.
    [14]Maslanik J A, Fowler C, Stroeve J, et al. A younger, thinner Arctic ice cover:Increased potential for rapid, extensive sea-ice loss [J]. Geophysical Research Letters,2007,34, L24501, doi: 10.1029/2007GL032043.
    [15]Nghiem S V, Rigor I G, Perovich D K, et al. Rapid reduction of Arctic perennial sea ice [J]. Geophysical Research Letters,2007,34, L19504, doi:10.1029/2007GL031138.
    [16]Jonathan T O, Bette L O, Gifford H M, et al. Paleoclimatic evidence for future ice sheet instability and rapid sea-level rise [J]. Science,2006,311(5768):1747-1750.
    [17]Stirling I, Parkinson C L. Possible effects of climate warming on selected populations of polar bears [J]. Arctic,2006,59(3):261-275.
    [18]屈衍.基于现场实验的海洋结构随机冰荷载分析[D].大连:大连理工大学,2006.
    [19]杨国金.中国近海工程环境参数区划[J].海洋预报,1998,15(3):132-139.
    [20]段梦兰,方华灿等.渤海老二号平台被冰推倒的调查结论[J].石油矿场机械,1994,23(3):1-4.
    [21]杨国金.渤海抗冰结构设计中的若干问题[J].中国海上油气(工程),1994,6(3):5-10.
    [22]岳前进,毕祥军,季顺迎等.JZ20-2平台冰激振动测量与分析、海冰监测与预报[R].大连理工大学,2000.
    [23]岳前进,李辉辉,于学兵.渤海石油平台的冰振及对作业人员的影响[J].中国海洋平台,2005,20(3):35-39.
    [24]李桐魁.海冰管理方法在辽东湾冬季生产中的应用[J].中国海上油气(工程),1989,1(3):39-45.
    [25]李桐魁.辽东湾油气田海冰管理方法探讨[J].中国海上油气(工程),1991,3(4):36-42.
    [26]李桐魁.渤海油田海冰管理系统的应用[J].中国海上油气(工程),1996,8(4):36-45.
    [27]李桐魁.对渤海油气田危险冰情的监测与预警研究[J].海洋预报,1998,15(3):104-109.
    [28]郭智昌,赵进平.北极海冰数值模拟研究述评[J].海洋与湖沼,1998,29(2):219-228.
    [29]季顺迎,岳前进.海冰动力学中本构模型研究的若干进展[J].力学进展,2005,35(2):235-248.
    [30]Hibler W D. Differential Sea Ice Drift Ⅱ:Comparison of mesoscale strain measurements to linear drift theory predictions [J]. Journal of Glaciology,1974,13:457-471.
    [31]Hibler W D. A viscous sea ice law as a stochastic average of plasticity [J]. Journal of Geophysical Research,1977,82:3932-3938.
    [32]Hibler W D, Tucker W B. Some results from a linear viscous model of the Arctic ice cover [J]. Journal of Glaciology,1979,22 (87):293-304.
    [33]Coon M D, Maykut S A, Pritchard R S et al. Modeling the pack ice as an elastic plastic material [J]. AIDJEX Bulletin,1974,24:1-105.
    [34]Pritchard R S. An elastic-plastic constitutive law for sea ice [J]. Journal of Applied Mechanics,1975, 42:379-384.
    [35]Lepparanta M. An ice drift model for the Baltic Sea [J]. Tellus,1981,33:583-596.
    [36]Hibler, W D. A dynamic and thermodynamic sea ice model [J]. Journal of Physical Oceanography, 1979,9:815-846.
    [37]Lepparanta M, Hibler W D. Mesoscale sea ice deformation in marginal ice zone dynamics [J]. Journal of Geophysical Research,1987,92(C7):7060-7070.
    [38]张占海,吴辉碇.渤海海冰漂移数值研究[J].海洋预报,1994,11(3):1-7.
    [39]张占海,白珊,吴辉碇等.渤海海冰业务数值预报系统[J].海洋预报,1994,11(2):11-18.
    [40]Overland J E, Walter B A, Curtin T B et al. Hierarchy and sea ice mechanics:a case study from the Beaufort Sea [J]. Journal of Geophysical Research,1995,100(C3):4559-4571.
    [41]吴辉碇,白珊,张占海.海冰动力学过程的数值模拟[J].海洋学报,1998,20(2):1-13.
    [42]吴辉碇,李海,白珊等.海冰模式和数值预报[J].海洋预报,1999,16(3):85-96.
    [43]李海,白珊,张占海等.渤海潮汐对冰作用的数值模拟[J].海洋预报,1999,16(3):39-47.
    [44]苏洁,吴辉碇,刘钦政等.渤海冰-海洋耦合模式Ⅰ.模式和参数研究[J].海洋学报(中文版)2005,27(1):19-26.
    [45]苏洁,吴辉碇,白珊等.渤海冰-海洋耦合模式Ⅱ.个例试验[J].海洋学报(中文版),2005,27(2):18-28.
    [46]Wang K, Lepparanta M, Tarmo K. A study of sea ice dynamic events in a small bay [J]. Cold regions Science and Technology,2006,45(2):83-94.
    [47]Hibler W D, Schulson E M. On modeling sea-ice fracture and flow in numerical investigations of climate [J]. Annals of Glaciology,1997,25:26-32.
    [48]Ip C F, Hibler W D, Flato G M. On the effect of the rheology on seasonal sea ice simulations [J]. Annals of Glaciology,1991,15:17-25.
    [49]Hibler W D, Schulson E M. On modeling the anisotropic failure and flow of flawed sea ice [J]. Journal of Geophysical Research,2000,105(C7):17105-17120.
    [50]Shen H T, Shen H H, Tsai S M. Dynamic transport of river ice [J]. Journal of Hydraulic Research, 1990,28(6):659-671.
    [51]Shen H H, Hibler W D, Lepparanta M. On applying granular flow theory to a deforming broken ice field [J]. Acta Mechanics,1986,63:143-160.
    [52]Shen H H, Hibler W D, Lepparanta M. The role of floe collisions in sea ice rheology [J]. Journal of Geophysical Research,1987,92(C10):7085-7096.
    [53]Lu Q M, Larsen J, Tryde P. On the role of ice interaction due to floe collisions in marginal ice zone dynamics [J]. Journal of Geophysical Research,1989,94(C10):14525-14537.
    [54]Lepparanta M, Lensu M, Lu Q M. Shear flow of sea ice in the Marginal Ice Zone with collision rheology [J]. Geophysica,1990,25(1-2):57-74
    [55]Loset S. Discrete element modeling of a broken ice field-Part I:model development [J]. Cold Regions Science and Technology,1994,22:339-347.
    [56]Hibler W D, Schulson E M. On modeling the anisotropic failure and flow of flawed sea ice [J]. Journal of Geophysical Research,2000,105(C7):17105-17120.
    [57]Hibler W D. Sea ice fracturing on the large scale [J]. Engineering Fracture Mechanics,2001,68: 2013-2043.
    [58]Coon M D, Knoke G S, Echert D C et al. The architecture of an anisotropic elastic-plastic sea ice mechanics constitutive law [J]. Journal of Geophysical Research,1998,103(C10):21915-21925
    [59]Lepparanta M, Hibler W D. The role of plastic ice interaction in marginal ice zone dynamics [J]. Journal of Geophysical Research,1985,90(C6):11899-11909.
    [60]Flato G M. A Particle-in-cell Sea-ice Model [J]. Atmosphere and Oceanography.1993,31(3): 339-358.
    [61]Shen H T, Chen Y C, Wake A et al. Lagrangian discrete parcel simulation of river ice dynamics [J]. International Journal of Offshore and Polar Engineering,1993,3(4):328-332.
    [62]Pritchard R, Mueller A, Hanzlick D et al. Forecasting Bering Sea ice edge behavior [J]. Journal of Geophysical Research,1990,95:775-788.
    [63]Huang Z J, Savage S B. Particle-in-cell and finite difference approaches for the study of marginal ice zone problems [J]. Cold Regions Science and Technology,1998,28:1-28.
    [64]沈洪道.冰动力学的拉格朗日离散元模式[J].海洋预报,1999,16(3):71-84.
    [65]Shen H T, Su Junshan, Liu Lianwu. SPH simulation of river ice dynamics [J]. Journal of Computational Physics,2000,165:752-770.
    [66]Wang L R, Ikeda M. A Lagrangian description of sea ice dynamics using the finite element method [J]. Ocean Modelling,2004,7:21-38.
    [67]Hutchings J K, Jasak H, Laxon S W. A strength implicit correction scheme for the viscous-plastic sea ice model [J]. Ocean Modelling,2004,7:111-133.
    [68]Peterson K, Sulsky D, Schreyer H. Numerical MPM solution of sea ice dynamics with an elastic-decohesive constitutive model [C]. Proc. of the Sixteenth IOPE Conference, CA:San Francisco,2006:569-576.
    [69]Schreyer H L, Sulsky D L, Munday L B. Discrete constitutive equations for the formation, Freezing and closing of leads in Arctic Ice [C]. Proceedings of the 5th International Conference on Computation of Shell and Spatial Structures, Austria:Salzburg,2005:1-4.
    [70]Guest P S, Davidson K L. The Aerodynamic Roughness of Different Types of Sea Ice [J]. Journal of Geophysical Research,1991,96(C3):4709-4721.
    [71]Andreas E L, Lange M A, Ackley S F et al. Roughness of Weddell Sea Ice and Estimates of the Air-Ice Drag Coefficient [J]. Journal of Geophysical Research,1993,98(C7):12,439-12,452.
    [72]Pease C H, Salo S A, Overland J E. Drag measurements for first year sea ice over a shallow sea [J]. Journal of Geophysical Research,1983,88(C5):2853-2862.
    [73]Wamser C, Martinson D G. Drag Coefficients for Winter Antarctic Pack Ice [J]. Journal of Geophysical Research,1993,98(C7):12431-12437.
    [74]Madsen O S, Bruno M S. A Methodology for the Determination of Drag Coefficients for Ice Floes [J]. Journal of Offshore Mechanics and Arctic Engineering.1987,109:381-387.
    [75]Martinson D G, Wamser C. Ice drift and momentum exchange in the winter Antarctic pack ice [J]. Journal of Geophysical Research,1990,95(C2):1741-1755.
    [76]Squire V A, Dugan J P, Wadhams P, et al. Of ocean waves and sea ice [J]. Annual Review of Fluid Mechanics,1995,27:115-168.
    [77]Squire V A. Of ocean waves and sea-ice revisited [J]. Cold Regions Science and Technology,2007, 49(2):110-133.
    [78]沈海莉.海冰与波浪的相互作用[J].海洋预报,1999,16(3):28-38.
    [79]Doble M J. Simulating pancake and frazil ice growth in the Weddell Sea:A process model from freezing to consolidation [J]. Journal of Geophysical Research,2009,114, C09003, doi: 10.1029/2008JC004935.
    [80]Shen H H, Ackely S F. A laboratory produced pancake ice cover in a two-dimensional wave field [J]. Antarctic Journal,1995,30:106-107.
    [81]Squire V A, Moore S C. Direct measurement of the attenuation of ocean waves by pack ice [J]. Nature,283:365-368.
    [82]Shen H H, Ackley S F, Hopkins M A. A conceptual model for pancake-ice formation in a wave field [J]. Annals of Glaciology,2001,33:361-367.
    [83]Lu P, Li Z J, Zhang Z H, et al. Aerial observations of floe size distribution in the marginal ice zone of summer Prydz Bay [J]. Journal of Geophysical Research,2008,113, C02011, doi:10.1029 /2006JC003965.
    [84]Wilkinson J P, de Carolis G, Ehlert I, et al. Ice tank experiments highlight changes in sea ice types [J]. EOS, Transactions, AGU,2009,90(10):81-82.
    [85]Steele M. Sea ice melting and floe geometry in a simple Ice-Ocean model [J]. Journal of Geophysical Research,1992,97(C11):17729-17738.
    [86]Dai M, Shen H H, Hopkins M A, et al. Wave rafting and the equilibrium pancake ice cover thickness [J]. Journal of Geophysical Research,2004,109, C07023, doi:10.1029/2003JC002192.
    [87]Doble M J, Coon M D, Wadhams P. Pancake ice formation in the Weddell Sea [J]. Journal of Geophysical Research,2003,108(C7):3209, doi:10.1029/2002JC001373.
    [88]Doble M J. Growth and motion at the Weddell sea ice edge [D]. University of Southampton, UK, 2007.
    [89]李志军,张涛.渤海平整冰厚度的分区统计[J].中国海上油气(工程),1996,8(1):43-46.
    [90]王仁树.渤海海冰的数值试验[J].海洋学报,1984,6(4):572-580.
    [91]吴辉碇.海冰的动力-热力过程的数学处理[J].海洋与湖沼,1991,22(4):321-328.
    [92]王志联,吴辉碇.海冰的热力过程及其与动力过程的耦合模拟[J].海洋与湖沼,1994,25(4)408-415.
    [93]白珊,吴辉碇.渤海的海冰数值预报[J].气象学报,1998,56(2):139-153.
    [94]Wu H, Bai S, Li H, et al. Modeling and forecasting of Bohai sea ice [J]. Journal of Cold Region Engineering,2000,14(2):68-80.
    [95]王可光,白珊.一种海冰热力过程参数化方案[J].海洋预报,1999,16(3):104-113.
    [96]王可光,王彩欣.渤海海冰热力过程处理[J].海洋通报,2000,19(5):1-11.
    [97]季顺迎,岳前进.辽东湾冰期海洋热通量的确定与分析[J].海洋通报,2000,19(2):8-14.
    [98]季顺迎,岳前进.辽东湾海冰生消的热力要素分析[J].海洋环境科学,2000,19(3):35-39.
    [99]季顺迎,岳前进,毕祥军.渤海冰水间的热传递系数[J].海洋通报,2002,21(1):9-15.
    [100]季顺迎,王瑞学,毕祥军等.海冰拖曳系数的确定方法研究[J].冰川冻土,2003,25(z2):299-303.
    [101]张占海,程斌,吴辉碇等.海冰热力模式的辐射参数化方案在渤海和波罗的海应用的比较[J].海洋学报,2006,28(4):17-25.
    [102]黄润恒,王强.渤海海冰卫星遥感监测业务系统[J].海洋预报,1991,8(3):57-63.
    [103]苏洁,费立淑.海冰卫星遥感资料的分析与应用技术研究[J].海洋通报,1997,16(1):56-66.
    [104]金亚秋,黄润恒.雷达卫星SAR与防卫气象卫星SSM/I对渤海海冰的观测研究[J].地球物理学报,2001,44(2):163-170.
    [105]罗亚威,张蕴斐,孙从容等.”海洋1号”卫星在海冰监测和预报中的应用[J].海洋学报,2005,27(1):7-18.
    [106]吴龙涛,吴辉碇,孙兰涛等.MODIS渤海海冰遥感资料反演[J].中国海洋大学学报(自然科学版),2006,36(2):173-179.
    [107]季顺迎,岳前进.辽东湾区域性漂移海冰的SPH数值模拟[J].水利水运工程学报,2001,4:8-15.
    [108]季顺迎,岳前进,赵凯.渤海海冰动力学的质点网格法数值模拟[J].水动力学研究与进展,2003,18(6):748-760.
    [109]刘煜,白珊,刘钦政,吴辉碇.质点-网格海冰模式在渤海的数值预报试验[J].海洋预报,2005,22(Z1):35-43.
    [110]刘煜,吴辉碇,张占海等.基于质点-网格模式的海冰厚度变化过程数值模拟[J].海洋学报,2006,28(2):14-21.
    [111]王刚,岳前进,李海等.基于SPH方法的渤海海冰动力学数值模拟[J].大连理工大学学报,2007,47(3):322-328.
    [112]王刚,李海,季顺迎等.基于光滑质点流体动力学的海冰热力-动力数值模式[J].水科学进展,2007,18(4):523-530.
    [113]Ji S, Wang A, Li H, et al. Mechanical and numerical models for sea ice dynamics on small-meso scale [J]. Chinese Journal of Polar Science,2008,19(2):237-248.
    [114]Zhang Z H, Lepparanta M. Modeling the influence of ice on sea level variations in the Baltic Sea [J]. Geophysica,1995,31(2):31-45.
    [115]王仁树,刘钦政,陈伟斌等.渤海海冰漂移过程的数值模拟和试验[J].海洋与湖沼,1994,25(3):408-415.
    [116]Zhang J, Hibler W D. On an efficient numerical method for modeling sea ice dynamics [J]. Journal of Geophysical Research,1997,102(C4):8691-8702.
    [117]Zhang J, Rothrock D. Modeling Arctic sea ice with an efficient plastic solution [J]. Journal of Geophysical Research,2000,105(C2):3325-3338.
    [118]Hunke E C, Dukowicz J K. An Elastic-Viscous-Plastic Model for Sea Ice Dynamics [J]. Journal of Physical Oceanography,1997,27:1849-1867.
    [119]Schulson E M. Compressive shear faults within arctic sea ice:Fracture on scales large and small [J]. Journal of Geophysical Research,2004,109(C07016):1-23.
    [120]Richter-Menge J A, McNutt S L, Overland J E et al. Relating arctic pack ice stress and deformation under winter conditions [J]. Journal of Geophysical Research,2002,107(C1015):1-13.
    [121]Gingold R A, Monaghan J J. Smoothed particle hydrodynamics:theory and application to non-spherical stars [J]. MNRAS.1977, (181):375-378.
    [122]Monaghan J J, Gingold R A. Particle method for hydrodynamics [J]. Journal of Computational Physics.1997,134:203-215.
    [123]顾元通,丁桦.无网格法及其最新进展[J].力学进展,2005,35(3):323-337.
    [124]Gutfraind R, Savage S B. Marginal ice zone rheology:Comparison of results from continuum-plastic models and discrete-particle simulations [J]. Journal of Geophysical Research,1997,102(C6): 12647-12661.
    [125]Gutfraind R, Savage S B. Smoothed Particle Hydrodynamics for the simulation of broken-ice fields: Mohr-Coulomb-Type rheology and frictional boundary conditions [J]. Journal of Computational Physics,1997,134:203-215.
    [126]Lindsay R W, Stern H L. A new Lagrangian model of Arctic sea ice [J]. Journal of Physical Oceanography,2004,34:272-283.
    [127]Shen H H, Ackley S F. A one-dimensional model for wave-induced ice-floe collisions [J]. Annals of Glaciology,1991,15:87-95.
    [128]Shen H H, Ackley, Yuan Y. Limiting diameter of pancake ice [J]. Journal of Geophysical Research, 2004,109, C12035,doi:10.1029/2003JC002123.
    [129]Greenhill A G. Wave motion in hydrodynamics [J]. American Journal of Mathematics,1887,9: 62-112.
    [130]Liu A K, Mollo-Christensen E. Wave propagation in a solid ice pack [J]. Journal of Physical Oceanography,1988,18:1702-1712.
    [131]Newyear K, Martin S. A comparison of theory and laboratory measurements of wave propagation and attenuation in grease ice [J]. Journal of Geophysical Research,1997,102(C11):25,091-25,099.
    [132]Wadhams P, Parmiggiani F, De Carolis G. The use of SAR to measure ocean wave dispersion in frazil-pancake ice fields [J]. Journal of Physical Oceanography,2002,32:1721-1746.
    [133]Peters A S. The effect of a floating mat on water waves [J]. Communication on Pure and Applied Mathematics,1950,3:319-354.
    [134]Weitz M, Keller J B. Reflection of water waves from floating ice in water of finite depth [J]. Communication on Pure and Applied Mathematics,1950,3:305-318.
    [135]Keller J B. Gravity waves on ice-covered water [J]. Journal of Geophysical Research,1998,103(C4): 7663-7669.
    [136]Greenhill A G. Skating on thin ice [J]. Philosophical Magazine,1916,31:1-22.
    [137]Wadhams P, Holt B. Waves in frazil and pancake ice and their detection in seasat synthetic aperture radar imagery [J]. Journal of Geophysical Research,1991,96(C5):8835-8852.
    [138]Wadhams P, Parmiggiani F F, De Carolis G et al. SAR imaging of wave dispersion in Antarctic pancake ice and its use in measuring ice thickness [J]. Geophysical Research Letters,2004,31, L1 5305, doi:10.1029/2004GL020340.
    [139]Wadhams P, Doble M J. Sea ice thickness measurement using episodic infragravity waves from distant storms [J]. Cold Regions Science and Technology,2009,56(2-3):98-101.
    [140]Ewing M, Crary A P, Thorne A M. Propagation of elastic waves in ice I [J]. Physics,1934,5: 165-168.
    [141]Ewing M, Crary A P. Propagation of elastic waves in ice Ⅱ [J]. Physics,1934,5:181-184.
    [142]Press F, Ewing M. Propagation of elastic waves in a floating ice-sheet [J]. Eos Transactions of the American Geophysical Union,1951,32:673-678.
    [143]Mindlin R D. Influence of rotatory inertia and shear on flexural motion of isotropic elastic plates [J]. Transactions of the American Society of Mechanical Engineering:Journal of Applied Mechanics, 1951,18:31-38.
    [144]Fox C, Squire V A. Coupling between the ocean and an ice shelf [J]. Annals of Glaciology,1991,15: 101-108.
    [145]Squire V A, Allan A J. Propagation of flexural gravity waves in sea ice, sea ice Processes and Models [C]. Proceedings of Arctic Ice Dynamics Joint Experiment, University of Washington Press, Settle,1980,327-338.
    [146]Evans D V, Davies T V. Wave-ice interaction [R]. Stevens Institution of Technology.1968.
    [147]Wadhams P. The effect of a sea ice cover on ocean surface waves [D]. University of Cambridge, UK, 1973.
    [148]Wadhams P. The seasonal ice zone [C]. In Untersteier N, The Geophysics of sea ice, Plenum New York,1986,825-991.
    [149]Fox C, Squire V A. Reflection and transmission characteristics at the edge of shore fast sea ice [J]. Journal of Geophysical Research,1990,95(C7):11629-11639.
    [150]Balmforth N, Craster R. Ocean waves and ice sheet [J]. Journal of Fluid Mechanics,1999,395: 89-124.
    [151]Tkacheva L. Surface wave diffraction on a floating elastic plate [J]. Fluid Dynamics,2001,36(5): 776-789.
    [152]Chung H, Fox C. Calculation of wave-ice interaction using the Wiener-Hopf technique [J]. New Zealand Journal of Mathematics,2002,31:1-8.
    [153]Chuang H, Linton C M. Reflection and transmission of waves across a gap between two semi-infinite elastic plates on water [J]. The Quarterly Journal of Mechanics and Applied Mathematics,2005, 58(1):1-15.
    [154]Meylan M H, Squire V A. The response of ice floes to ocean waves [J]. Journal of Geophysical Research,1994,99(C1):899-900.
    [155]Barrett M, Squire V A. Ice-coupled wave propagation across an abrupt change in ice rigidity, density or thickness [J]. Journal of Geophysical Research,1996,101(C9):20825-20832.
    [156]Kohout A L. Water wave scattering by floating elastic plates with application to sea ice [D]. University of Auckland, New Zealand,2008.
    [157]Meylan M H. Wave response of an ice floe of arbitrary geometry [J]. Journal of Geophysical Research,2002,107(C1),3005. doi:10.1029/2000JC000713.
    [158]Vaughan G L, Squire V A. Scattering of ice coupled waves by a sea ice sheet with random thickness [J]. Waves in Random and Complex Media,2007,17(3):357-380.
    [159]Squire V A, Williams T D. Wave propagation across sea ice thickness changes [J]. Ocean Modelling, 2008,21(1-2):1-11.
    [160]Bennetts L G, Squire V A. Wave scattering by multiple rows of circular ice floes [J]. Journal of Fluid Mechanics,2009, in press.
    [161]Weber J E. Wave drift and wave attenuation in the marginal ice zone [J]. Journal of Physical Oceanography,1987,17,2352-2361.
    [162]De Carolis G, Desiderio D. Dispersion and attenuation of gravity waves in ice:a two-layer viscous fluid model with experimental data validation [J]. Physics Letters A,2002,305:399-412.
    [163]De Carolis G, Olla P, Pignagnoli L. Effective viscosity of grease ice in linearized gravity waves [J]. Journal of Fluid Mechanics,2005,535:369-381.
    [164]Wadhams P, Holt B. Waves in frazil and pancake ice and their detection in seasat synthetic aperture radar imagery [J]. Journal of Geophysical Research,1991,96(C5):8835-8852.
    [165]Martin S, Kauffman P. A field and laboratory study of wave damping by grease ice [J]. Journal of Glaciology,1981,27(96):283-313.
    [166]Newyear K, Martin S. Comparison of laboratory data with a viscous two-layer model of wave propagation in grease ice [J]. Journal of Geophysical Research,1999,104(C4):7837-7840.
    [167]Liu A K, Holt B, Vachon P W. Wave propagation in the marginal ice zone:model predictions and comparisons with buoy and synthetic aperture radar data [J]. Journal of Geophysical Research,1991, 96(C3):4605-4621.
    [168]Wadhams P. Field experiments on wave-ice interaction in the Labrador and East Greenland currents, 1978 [J]. Polar Record,1979,19(121):373-379.
    [169]Wadhams P. Airborne laser profiling of swell in an open ice field [J]. Journal of Geophysical Research,1975,80:4520-4528.
    [170]Wadhams P. Wave decay in the marginal ice one measured from submarine [J]. Deep-Sea Research, 1978,25:23-40.
    [171]Wadhams P, Squire V A, Goodman D J, et al. The attenuation rates of ocean waves in the marginal ice zone [J]. Journal of Geophysical Research,1988,93(C6):6799-6818.
    [172]Doble M J, Merver D J L, Meldrum D T, et al. Waves measurements on sea ice:developments in instrumentation [J]. Annals of Glaciology,2006,44:108-112.
    [173]Hayes D R, Jenkins A, McPhail S. Autonomous underwater vehicle measurements of surface wave decay and directional spectra in the Marginal Ice Zone [J]. Journal of Physical Oceanography,2007, 37(1):71-83.
    [174]Frankenstein S. The effects of waves on pancake ice [D]. Clarkson University, Potsdam, NY,1996.
    [175]Frankenstein S, Shen H H. Laboratory observations of ice-floe processes made during long-term drift and collision experiments [J]. Antarctic Journal of the United States,1997,32 (4):237-239.
    [176]Leonard G H, Shen H H, Ackley SF. Initiation and evolution of pancake ice in a wave field [J]. Antarctic Journal of the United States,1997,32 (4):53-55.
    [177]Evers K-U, Shen H H, Dai M, et al. A Twin Pancake Ice Growth Wave Tank Experiment [C]. Proceedings of the 16th IAHR Ice Symposium, Dunedin, New Zealand,2002:150-157.
    [178]Ackley S F, Shen H H, Dai M, et al. Wave-Ice Interaction During Ice Growth:The Formation of Pancake Ice [C]. Proceedings of the 16th IAHR Ice Symposium, Dunedin, New Zealand,2002: 158-164.
    [179]Shen H H, Ackley S F, Yuan Y. Limiting diameter of pancake ice [J]. Journal of Geophysical Research,2004,109, C12035. doi:10.1029/2003JC002123.
    [180]Sakai S, Hanai K. Empirical formula of dispersion relation of waves in sea ice [C]. In:Squire V A and Langhorne P J (Eds), Ice in the Environment:Proceedings of the 16th International Symposium on Ice, vol.2. International Association of Hydraulic Engineering and Research, Dunedin, New Zealand,2002,327-335.
    [181]Wang Z L. A Coastal Sea Ice Model with Discrete Parcel Method [R]. Clarkson University Internal Report,2000.
    [182]Smedsrud L H, Skogseth R. Field measurements of Arctic grease ice properties and processes [J]. Cold Regions Science and Technology,2006,44:171-183.
    [183]Kay S M. A fast and accurate single frequency estimator [J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1989,37(12):1987-1989.
    [184]Quinn B G, Fernandes J M. A fast technique for the estimation of frequency [J]. Biometrika,1991, 78(3):489-497.
    [185]Quinn B G. Estimation of frequency, amplitude and phase from the DFT of a time series [J]. IEEE Trans. Sig. Proc,1997,45(3):814-817.
    [186]Schmidt R O. Multiple Emitter Location and Signal Parameter Estimation [J]. IEEE Trans. Antennas Propagation,1986,34(3):276-280.
    [187]Steele M, Morison J H, Untersteiner N. The partition of air-ice-ocean momentum exchange as a function of ice concentration, froe size, and draft [J]. Journal of Geophysical Research,94(C9): 12,739-12,750.
    [188]MacPherson H. The attenuation of water waves over a non-rigid bed [J]. Journal of Fluid Mechanics, 1980,97:721-742.
    [189]Ng C O, Zhang X. Mass transport in water waves over a thin layer of soft viscoelastic mud [J]. Journal of Fluid Mechanics,2007,573:105-130.
    [190]Lamb S H. Hydrodynamics [M], Dover, New York,1932
    [191]Strathdee J, Robinson W H, Haines E M. Moving loads on ice plates of finite thickness [R]. DSIR Physics and Engineering Laboratory Report,1989.
    [192]Press W H, Flannery B P, Teukolsky S A, et al. Numerical recipes:the art of scientific computing [M]. Cambridge Univ. Press,1992.
    [193]Bauer J, Martin S. A model of grease ice growth in small leads [J]. Journal of Geophysical Research, 1983,88 (C5):2917-2925.
    [194]UNESCO. The practical salinity scale 1978 and the international equation of state of seawater 1980 [S]. Tech. Pap. Mar. Sci.,1981,36:25.
    [195]Shen H H, Yuan Y, Dai M. Data assemblage-pancake ice growth in a twin tank at HSVA, Nov. 21-28,2001 [R]. Clarkson University Internal report,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700