用户名: 密码: 验证码:
渤黄东海潮波同化数值模拟和潮能耗散的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潮汐的研究具有重要的学科意义、经济和社会效益。卫星测高技术的出现对潮汐信息的获取产生了革命性的影响。TOPEX/POSEIDON的发射极大地促进了大洋潮汐模型研究的进展,但大洋模型在浅海区域精度比较差。潮汐是高度计资料海面变化中最大的成份,占总变化80%以上,伴随着卫星高度计资料在海洋研究中的广泛应用,发展基于卫星高度计资料的高精度浅海潮汐模型成为进一步利用高度计资料研究其它物理海洋问题的基础。层结海洋中,外界提供给混合所需要的能量的多少(混合的强弱)是控制海洋环流强弱的关键因素,风和潮汐又是驱动海洋内部混合的主要机械能来源,潮能耗散是整个大洋中能量平衡的重要组成部分。
     本文利用正交响应法和沿轨调和分析从渤黄东海的TOPEX/POSEIDON卫星高度计资料中提取了主要分潮。结果显示:高度计资料可以较好的反映潮波在黄海和东海的分布特征,特别是在东海开阔区域可以比较准确的反映潮波传播规律。
     湍封闭的三维全流动力模式POM可以较理想地模拟渤黄东海的潮波。通过与167个测站的4个主要分潮平均绝对偏差的比较,模拟结果与实测资料符合很好。利用基于最优插值法的混合法将交叉点的调和常数同化到动力模式中,同化后S_2分潮的迟角精度改进最大,可以改进45%,结果显示高度计资料的分析结果对模式结果的精度影响很大。为了克服交叉点上全日分潮精度较低的局限,文中主要将半日分潮同化进模式中,而全日分潮只在部分交叉点上进行了同化,同时同化了沿岸16个验潮站的调和常数,同化高度计资料和沿岸资料后,M_2、S_2、K_1、O_1四个主要分潮的结果精度分别提高36%、48%、20%、12%。
     本文利用同化结果对渤黄东海的潮能耗散进行了研究。M_2分潮潮能耗散在东海、黄海和渤海的潮能分别为44.282GW、59.828GW和3.076GW,从太平洋进入渤黄东海的潮能有36.1%耗散在东海,48.8%耗散在黄海,只有2.5
    
    %耗散在渤海内,有12.6%的能量进入台湾海峡。S,分潮潮能耗散在东海、
    黄海和渤海的潮能分别为4.782GW、12.48GW和0.630GW,分别占从太平洋传
    入总量的22.9%、59.8%和3.0%,大约有1 3.6%的S,分潮潮能进入台湾海
    峡。全日分潮的潮能绝大部分耗散在东海里面,K:分潮有7.433GW耗散在东
    海里,占从太平洋传入总能量的73%,而0.分潮耗散在东海里的潮能有
    5.433GW,同样占从太平洋传入能量的73%。
     4个主要分潮从太平洋进入渤黄东海的潮能共有140.901Gw,其中BB以底
    边界层)耗散115.178Gw,占进入能量的82%,有18%的能量耗散在海洋
    内部。而风提供给环流能量最大在1月份约为SGW左右,最小的在7月份
    为O.07GW。可以认为在渤黄东海中潮能所起的混合作用在夏季要远远的超
    过风所起的作用,而在冬季最保守也与风具有相同的量级。
Tidal study is very important for science, commerce and society for thousands of years. Satellite altimetry has had a major impact on our knowledge of tides by providing a new method of the sea surface height measurement. Following the launch of TOPEX/POSEIDON in 1992, there has been considerable improvement in the accuracy of the global tidal models. However, the application of global tidal model to the study of shallow sea tides is much worse in the accuracy. Tidal signal in TOPEX/POSEIDON altimetric data is the largest contributor to sea surface height variability and accounts for more than 80% of the signal variance. So it is urgent to develop tide model in the shallow area wi th high accuracy.
    Orthogonalized convolution method and the harmonic analysis along satellite orbit are used to withdraw tidal wave from TOPEX/POSEIDON satellite altimeter data in the Bohai Sea, Yellow Sea and East China Sea. The results show that the altimetric data can give a good distribution of tides in the Yellow Sea and the East China Sea, especially in the deep region of the East China Sea.
    The three-dimensional ocean mode, POM, which contains an imbedded second moment turbulence closure sub-model could simulate well the tides in the study region. The result agrees well with observations by comparing the simulated result with the 167 tidal gauge data. The assimilation scheme uses a blending approach based on optimal linear
    
    
    interpolation. The improvement is 45% for the phase-lag of S2 after assimilating the altimetric data of the crossover points, while the correction for the diurnal constituents is not so good as for semidiurnal constituents. The diurnal constituents at some of the crossover points and all of the semi-diurnal constituents at all of the crossover points as well as 16 tidal gauge data are assimilated in the ocean model, this is because the assimilation of the diurnal constituents at some crossover points make the result worse. The improvement is 36% for M2, 54% for S2, 42% for K,, 30% for 01 compared with the results of dynamic model without assimilation.
    In the stratified ocean, mixing controls the intensity of the ocean current. The winds and tides are the possible main source of mechanical energy to drive the interior mixing. The tidal energy budget is investigated in this paper based on the result of the numerical model. The energy dissipations of M2 in the East China Sea, Yellow Sea and Bohai Sea are respectively 44.282GW, 59. 828GW and 3. 076GW. Among the tidal energy entering the study region from the Pacific ocean , 36. 1% dissipates in the East China Sea, 48. 8% in the Yellow Sea, 2. 5% in the Bohai Sea and 12.6% in the Taiwan Strait. The energy dissipation of S2 in the East China Sea, Yellow Sea and Bohai Sea are respectively 4. 782GW, 12. 48GW and 0. 630GW, accounting for 22.9%, 59.8% and 3.0 % respectively, about 13.6% of S2 energy enters Taiwan Strait. Most of tidal energy of diurnal tidal constituent dissipates in the East China Sea, and there is 7. 433GW of K, in the East China Sea, accounting for 73% of the total energy from the Pacific. There is 5. 433GW of 0, in the East China Sea, also accounting for 73% of the total energy from the Pacific.
    For the four major constituents, there is 140. 901GW tidal energy
    
    flux into the East China Sea from the Paci fie Ocean. The BBL di ssipat ion accounts for 115.178GW, which is about 82% of the total dissipation. Ahout 18% of the tidal energy dissipates in the interior. The wind energy entering the sea circulation is about 5GW in winter, and 0. 07GW in the summer. So the tidal energy dominates the mixing in summer in the study region, and it also at least as important as the wind stress in the winter.
引文
[1] 陈宗镛.潮汐学.北京:科学出版社,1980:63-90
    [2] 陈宗镛.长方形浅水海湾的一种潮波模式.海洋与湖沼,1965,7(2):85-93
    [3] 陈宗镛.潮汐分析和推算的一种模型。海洋与湖沼,1979,10(3)230-237
    [4] 丁文兰.东海潮汐和潮流特征的研究.海洋科学集刊,第21集,北京:科学出版社,1984:135-148
    [5] 丁文兰,渤海和黄海潮汐潮流分布的基本特征,海洋科学集刊,第25集,北京:科学出版社,1985,27~40
    [6] 丁文兰.南海潮汐和潮流的分布特征.海洋与湖沼,1986,17(6):468-480
    [7] 董晓军,马继瑞,黄珹.利用TOPEX/POSEIDON 卫星高度计资料提取黄海,东海潮汐信息的研究.海洋与湖沼,2002,33(4):386-392.
    [8] 窦振兴,罗远诠,黄克辛,张存智,李龙章,蔡广兴,宁怀东.渤海潮流及潮余流的数值计算.海洋学报,1981,3(3):335-369
    [9] 窦振兴,杨连武,J.Ozer.渤海三维潮流数值模拟.海洋学报,1993,15(5):1-15
    [10] 方国洪,王仁树.海湾的潮汐与潮流.海洋与湖沼,1966,8(1):60-77
    [11] 方国洪.潮汐分析和预报的准调和分潮方法,Ⅰ.准调和分潮.海洋科学集刊,1974,9:1-15
    [12] 方国洪.潮汐分析和预报的准调和分潮方法,Ⅱ.短期观测的分析.海洋科学集刊,1976,11:33-56
    [13] 方国洪.黄海潮能的耗散.海洋与湖沼,1979,10(3):200-213
    [14] 方国洪.潮汐分析和预报的准调和分潮方法,Ⅲ.潮汐和潮流分析的一个实际计算过程.海洋科学集刊,1981,18:19-39
    [15] 方国洪.潮流垂直结构的基本特征——理论和观测的比较.海洋科学,1984,第三期:1-11
    [16] 方国洪.潮波方程的有限差分——最小二乘法及其对模拟黄海M_2潮的应用.中国科学B,1985a,4:356-364
    [17] 方国洪,杨景飞。渤海潮运动的一个二维数值模型.海洋与湖沼,1985b,vol.16,no.5:337-346
    [18] 方国洪.黄海东部M2潮流的数值计算及其与观测结果的比较.第一届潮汐与海平面学术讨论会论文集.Proceedings of the first symposium on ocean tides and sea level,1986a:45-55
    [19] 方国洪.关于中国近海潮汐潮流分布的若干有待进一步研究的问题.第一届潮汐与海平面学术讨论会论文集,国家海洋局海洋科技情报研究所出版,1986b.
    
    
    [20] 方国洪,郑文振,陈宗镛等.潮汐和潮流的分析和预报.北京:海洋出版社,1986c:474
    [21] 冯士榨,李凤岐,李少菁。海洋科学导论。北京:高等教育出版社,1999,503
    [22] 韩桂军,何柏荣,马继瑞,刘克修等.利用伴随法优化非线性潮汐模型的开边界条件Ⅰ.伴随方程的建立及“孪生”数值实验.海洋学报,2000,22(6):27-33
    [23] 韩桂军,方国洪,马继瑞,刘克修等.利用伴随法优化非线性潮汐模型的开边界条件Ⅱ.黄海、东海潮汐资料的同化试验.海洋学报,2001,23(2):25-31
    [24] 胡敦欣,吕良洪,熊庆成,等。关于浙江沿岸上升流的研究。科学通报,1980,3:131-133
    [25] 黄大吉,陈宗镛,苏纪兰.三维陆架海模式在渤海中的应用Ⅰ.潮流、风生环流及其相互作用.海洋学报,1996,第18卷,第5期:1-13
    [26] 黄瑞新.论大洋环流的能量平衡.大气科学,1998,22(4):562-574.
    [27] 黄祖珂,俞光耀,罗义勇,娄安刚,杜勇.东海沿岸潮致上升流的数值模拟.青岛海洋大学学报,1996,26(4):405-412
    [28] 黄祖珂,陈宗镛.潮汐响应分析.山东海洋学院学报,1983,13(2):13-19
    黄祖珂.潮汐响应分析的非线性效应及太阳辐射潮.山东海洋学院学报,1984,14(2):7-12
    [29] 李立,吴日升,李燕初等,TOPEX/POSEIDONG高度计浅海潮汐混淆的初步分析.海洋学报,1999,21(3):8-14
    [30] 李立,吴日升,郭小纲,南海的季节环流——TOPEX/POSEIDON卫星测高应用研究,海洋学报,2000,22(6),13-26
    [31] 李培良,左军成,李磊等,南海南海TOPEX/POSEIDON高度计资料的正交响应法潮汐分析.海洋与湖沼,2002,33(3):287-295
    [32] 林珲,闾国年,宋志尧。东中国海潮波系统与海岸演变模拟研究。北京:科学出版社,2000,1-266
    [33] 刘爱菊,尹逊福,卢銘,1983.黄海潮汐特征Ⅰ.黄渤海海洋.1(2):1-7
    [34] 刘克修,马继瑞,韩桂军,引入差比关系分析西北太平洋TOPEX/POSEIDON卫星高度计测高数据,海洋学报.2002,24:41-10
    [35] 吕咸青,方国洪.渤海开边界潮汐的伴随法反演.海洋与湖沼,2002a,33(2):113-120
    [36] 吕咸青,方国洪.渤海M_2分潮的伴随模式数值实验.海洋学报,2002b,24(1):17-24
    [37] 潘玉球,徐端蓉,许建平。浙江沿岸上升流区的锋面结构、变化及其原因。海洋学报,1991,13(3):305-314
    [38] 山广林,刘赞沛,王钟桾,徐洪达.渤海潮混合数值模拟Ⅰ.渤海主要半日分潮
    
    的数值模拟.海洋与湖沼,1983,14(5):419-431
    [39] 沈育疆等.南海潮汐数值计算.海洋湖沼通报,1985,(1):1-11
    [40] 沈育疆,叶安乐.东中国海三维半日潮流的数值计算.海洋湖沼通报,1985,(1):1-11
    [41] 沈育疆.东中国海潮汐数值模拟.山东海洋学院学报,1980,第10卷,第3期:26-35
    [42] 孙英兰,陈时俊,赵可胜.沿岸海域二维斜压场的数值模拟Ⅰ:变化潮流数值计算,青岛海洋大学学报.1990,20(3):11-24
    [43] 孙文心,陈宗镛,冯士榨.一种三维空间非线性潮波的数值模拟(Ⅰ).山东海洋学院学报,1981,11(1):23-31
    [44] 万振文,乔方利,袁业立.渤、黄、东海三维潮波运动数值模拟.海洋与湖沼,1998,第29卷第6期:611-616
    [45] 王东晓,施平,杨昆等.南海TOPEX海面高度计资料的混合同化实验.海洋与湖沼.2001,32(1):101-108
    [46] 王凯,方国洪,冯士筰.渤海、黄海、东海M2潮汐潮流的三维数值模拟.海洋学报,1999,第21卷第4期:1-13
    [47] 王钟桾,刘赞沛,山广林,徐洪达,雷光耀.渤海潮混合数值模拟,Ⅱ.渤海主要半日分潮数值模拟中有关问题的处理.海洋与湖沼,1984,vol.15,No.1:58-66
    [48] 吴自库,田纪伟,吕咸青,南海潮汐的伴随同化数值模拟.2003,海洋与湖沼,34(1):101-108
    [49] 许厚泽.中国大陆的海潮负荷订正.中国科学(B).1988,9:984-994
    [50] 徐世浙.地球物理中的有限单元法.北京:科学出版社,1994:1-308
    [51] 叶安乐.潮流椭圆长短轴方向随深度变化的特征.海洋湖沼通报,1984,1(2):1-6
    [52] 叶安乐,陈宗镛,丁宜法.台湾海峡及其附近海域半日潮波的数值研究.海洋与湖沼.16(6):439-449
    [53] 叶安乐,梅丽明.渤黄东海潮波数值模拟.海洋与湖沼,1995,第26卷,第1期:63-69
    [54] 丁克俊,张发高.渤海潮波运动的三维数值计算.海洋与湖沼.1987,18(3):227-236
    [55] 俞慕耕.南海潮汐特征的初步探讨.海洋学报,1984,6(3):293-300
    [56] 张古海,吴辉碇。渤海潮汐和潮流数值计算。海洋预报,1994,vol.11,No.1:48-54
    [57] 赵保仁,方国洪,曹德明.渤、黄、东海潮汐潮流的数值模拟.海洋学报,1994,16(5):1-10
    
    
    [58] 周朦,主国洪,/U/U的Fourier展开和渤海海底拖曳系数Cp,海洋与湖沼, 1987, 18 (1) : 1-11
    [59] 夏综万,王钟(木君),黄海M2分潮的数值模拟,黄渤海海洋,1984, 2 (1) : 10-18
    [60] Alan M. Davies and Simon C. M. Kwong. Tidal energy fluxes and dissipation on the European continental shelf, Journal of Geophysical Research, , 2000, 105, C9:21969-21989
    [61] Alock G A, Cartwright D E,. Some experiments with orthtides. Gephys J R Astron Soc , 1978, 54:681-696
    [62] Airy, G. B. Tides and waves. Encyclo. Metrop., 1845, Vol. 5. London
    [63] An, H. S. A numerical experiment of the M2 tide in the yellow sea. Journal of the Oceabographhical Society of Japan, 1977, 33(2) :103-110
    [64] Andersen, 0. , P. Woodworth, and R. Flather, Intercomparison of recent ocean tide models, J. Gophys. Res. 1995, 100: 25,261-25,282
    [65] Andersen, 0. , Global ocean tides from ERS-1 and TOPEX/POSEIDON altimetry, J. Gophys. Res., 1995, 100,25,249-25,259.
    [66] Bao Xianwen, Guoping Gao, Three dimensional simulation of tide and tidal current characteristics in the East China Sea. Oceanologica acta, 2001, vol. 24, No. 2: 1-15
    [67] Bendat J S, Piersol A G. Random Data: Analysis and Measurement Procedures. Wiley-interscience, 1971, New. York., 407
    [68] Blumberg, A. F. and G. L. Mellor. Acoastal ocean numerical model, in Mathematical Modeling of Estuarine Physics, Proc. Int. Symp., Hamburg, Aug, 1978. edited by J. Sunderman and K.-P. Holtz,pp. 203-214, Spinger-Verlag, Berlin, 1980
    [69] Blumberg, A. F. and G. L. Mellor. A description of a three-dimentional coastal ocean circulation model, in Three-Dimentional Coastal Ocean Models, Vol.4, edited by N. Heaps, pp. 208, American Geophysical Union, Washington, D. C., 1987.
    [70] Bretherton, F.P., Davis, R. E. and Fandry, C. B. A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep sea Research, 1976, 23:559-582
    [71] Cartwright, D. and G. Alcock, Altimeter measurements of ocean
    
    topography, ing Satellie Microwave Remote Sensing, edited by T. Allan 309-319, 1983, Ellis Horwood, Chichester, England
    [72] Cartwright, D. E. Detection of tides from artificial satell ites, in Tidal Hydrodynamics, 1991, edited by Park, John Wilez and Sons.
    [73] Cartwright, D. E. , and R. D. Ray, Oceanic tides from Geosat Al timetry, J. Gcophys. Res. 1990, 95: 3069-3090,
    [74] Cartwright, D. E., and R. D. Ray, Energetics of global ocean tides from Geosat altimetry, J. Geophys. Res. ,1991, 96: 16,897-16,912
    [75] Choi B H. A tidal model of the Yellow Sea and the East China Sea. Korea Ocean Research and Development Institute Report 80-02, 1980, pp73
    [76] Chen Zongyong etal, A j,v model for the analysis and prediction of tides, Acta Oceanologica Sinica, 1990, 9(4) :175-186.
    [77] Choi B H. A three-dimensional model of the East China Sea. In: Ocean Hydrodynamics of the Japan and East China Sea. ed. T. Ichiye, Elsevier, 1984, 209-224.
    [78] Choi B H. A fine-grid three-dimensional M2 tide model of the East China Sea. In: Modeling Marine Systems, ed. By A. M. Davies, 1990: 167-185.
    [79] Davies, A.M. Kwong,, S. C. M. and Flather, R. A. Formulation of a variable-funcyion three-dimensional model, with applications to the M2 and M1 tide on the North-west European. Continental shelf research, 1997, Vol.17: 165-204
    [80] De Mey P. Data assimilation at oceanic mesoscale: A review. J Meteorol Soc Japan,1997 75(1B):415-427
    [81] Desai, S. , and J. Wahr, Empirical ocean tide models estimated from TOPEX/POSEIDON altimetry, J. Geophys. Res., 1995, 100: 25,205-25,228
    [82] Doodson, A. T. The harmonic development oftide-generating potential. Proc. Roy. Soc. London. 1921, A100:305-309
    [83] Doodson, A. T. The analysis of tidal observations. Phil. Trans. Roy. Soc. London. 1928,A227:223-279
    [84] Eanes. R., and S. Bettadpur, The CSR3. 0 global ocean: Diumal and semi-diumal ocean tides from TOPEX/POSEIDON altimetry, CSR. TM-96-05, Univ. of Tex. Cent. For Space Res. 1996, Austin, Texas
    [85] Egbert, G. , A. Bennett, and M. Foreman, TOPEX/POSEIDON tides estimated using a global inverse model, J. Geophys. Res., 1994, 99: 24,821-24,852
    
    
    [86] Egbert, G. D., 1997. Tidal data inversion: interpolation and inference. Progress in Oceanography, 1997, (40) :53-80
    [87] Faller, A. J. Sources of energy for the ocean circulation and a theory of the mixed layer. Proceedings of the 5th U.S. Congress of Applied Mechanics. American Society of Mechanical Engineers, held at University of Minnesota, Minneapolis, 14-17 June 1966, pp.651-672
    [88] Fang Guohong. Tide and tidal current charts for the marginal seas adjacent to china. C. J. of Oceanology and Limnology. 1986, Vol. 4, No. 1: 1-16
    [89] Fofonoff, N. P.. The Gulf stream system. In:Warren, B. A., Wunsch, C. (Eds.), Evolution of Physical Oceanography: Scientific Surveys in Honor of enry Stommel. The MIT Press, 1981 Cambridge, MA, pp. 112-139
    [90] Fu L. L ,E. J. Christensen, C. A. Yamarone et al. TOPEX/POSEIDON mission overview. J. Geophys. Res., 1994, 99(cll): 24,369-24,381
    [91] Garrett, C.. Marginal mixing theories, Atmosphere-Ocean, 1991, 29:313-339.
    [92] Garrett, C. and L. St. Laurent, 2002. Aspects of ocean mixing, J. Oceanogr, Soc. Japan, (in press).
    [93] Ghil M. and Malaotte-Rizzoli P. Data assimilation in meteorology and oceanography . Adv Geophys, 1991,33:141-266
    [94] Goldsbrough, G. R. The dynamical thery of the tides in a polar basin. Proc. London Math. Soc., 1913, 14:31-66
    [95] Goldsbrough, G. R. The dynamical thery of the tides in a zonal ocean. Proc. London Math. Soc., 1914, 14:207-229
    [96] Goldsbrough, G. R. The tides in the oceans no a rotating globe. Proc. Roy. Soc. London. 1927, A117:692-718
    [97] Greenberg, D. A. A numerical model investigation of tidal phenomena in the Bay of Fundy and Gulf of Maine. Mar. Geod, 1979,2:161-187
    [98] Greenberg, D.A. Modeling the mean barotropic circulation in the Bay of Fundy and Gulf of Maine. J. Phys. Oceanogr, 1983,13:886-904
    [99] Groves G w .Reynolds R W,. An orthogonalized convolution method of tide prediction, J Geophys Res, 1975, 80:4131-4138
    [100] Guohong Fang Yue-kuen Kejun Yu & Yaohua Zhu. Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Continental Shelf Research, 1999,19:845-869.
    [101] Guo Xinyu and Tetsuo Yanagi. Three-dimensional structure of Tidal current
    
    in the East China Sea and the Yellow Sea. Journal of Oceanography, 1998, vol. 54: 651-668
    [102] Han, G. , Ikeda M. and Smith, P. C. Annual variation of sea-surface slopes over the Section Shelf and Grand Banks from Geosat altimetry. Atmosphere-Ocean, 1993, 31:591-615
    [103] Han, G.and Ikeda M. Dynamical interpolation of tidal constituents derived from altimeter data. The abstracts of the XXI General Assembly of the International Association for the Physical Sciences of the oceans. 1995,Honolulu, Hawaii.
    [104] Han, G., Ikeda M. and Smith, P. C. Oceanic tides over the Newfoundland and Scotian Shelves from TOPEX/POSEIDON altimetry. Atmosphere-Ocean, 1996, 34:589-604
    [105] Han G. Hendry R. and Ikeda M. Assimilating TOPEX/POSEIDON derived tides in a primitive eqution model over the Newfoundland Shelf. Continental shelf research, 2000, Vol. 20: 83-108
    [106] Hansen, W. Gezeiten und Gezeitenstrome der halbtagien Hauptmondtide M2 in der Nordsee. Dt. Hydrogr. Z., Erg., 1952, 1:1-46
    [107] Hansen, W. Theorie zur Errechnung des Wassertandes und der Stromungen in Randmeeren nebst Anwendungen. Tellus, 1956, 8:287-300
    [108] Harkema, R. and Hsueh, Y. A comparison of moored current data in the Eastern Yellow Sea, January-April 1986. Technical Report CMF-87. 0. 1987, Department of Oceanography, Florida Stte University. Tallahassee.
    [109] Ho Jin Lee, Kyung Tae Jung, Jae Kwi So and Jong Yul Chung. A three-dimensional mixed finite-difference Galerkin function model for the oceanic circulation in the Yellow Sea and the East China Sea in the presence of M2 tide. Continental shelf research, 2002, Vol. 22: 67-91
    [110] Hough, S. S On the application of harmonical analysis to the dynamical theory of the tides. Phil. Trans. Roy. Soc. London. 1897, A189:201-257
    [111] Hough, S.S On the application of harmonical analysis to the dynamical theory of the tides. Phil. Trans. Roy. Soc. London. 1899, A191:139-185
    [112] Huang, R. X., 1998. Mixing and available potential energy in a Boussinesq oncean. J. Phys. Oceanog., 28(4) , 669-678.
    [113] Hu, H. T. et al. A study on the Atlas of marine resources in the adjacent seas to Korea, Yellow Sea. 1985, MOST Report BSPE0055-86-7A:523(in korea).
    
    
    [114] Hwang C. W. and Chen C. Z. Improving the M2m tide model over shallow waters using TOPEX/POSEIDON and ERS-1 altimetry. Marine Geodesy, 1997
    [115] Jacobs, G. A., G. H. Born, M. E. Parke, and P. C. Allen, The global structure of the annual and semiannul sea surface height variability from Geosat altimeter data, J.Geophys. Res., 97, 17813-17828,1992.
    [116] Jong Chan Lee, Kyung Tae Jung. Application of eddy viscosity closure models for the M2 tide and tidal currents in the Yellow Sea and the East China Sea. Continental shelf research, 1999, Vol. 19: 445-475
    [117] Jourdin, F., O. Francis, P. Vincent, and P. Mazzega, Some results of heterogeneous data inversions for oceanic tides, J. Geophys. Res. ,1991, 96, 20,267-20,288
    [118] Kang Sok Kuh, Sang-Ryong Lee and Heung-Jae Lie. Fine grid tidal modeling of the Yellow and East China seas. 1998, Continental shelf research, 1998, Vol. 18: 739-772
    [119] Kantha, L.. Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides, I, Model description and results. J. Geophys. Res., 1995a, 100, 25,283-25,308
    [120] Kantha, L.. Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides, II, Altimetric and geophysical implications. J. Geophys. Res., 1995b, 100 (C12) : 25, 283-25, 308
    [121] Kantha,L.,Tierney, C.. Global baroclinic tides. Progress in Oceanography 1997,40, 163-178.
    [122] Kantha, L. H. Tides-A modern perspective. Marine Geodesy. 1998, 21:275-297
    [123] Karin E. Gustafesson,. Computations of the energy flux to mixing processes via baroclinic wave drag on barotropic tides. Deep-Sea Research I, 2001, 48, 2283-2295.
    [124] Laplace, P. S. Recherches sur plusieurs du systeme du monde. Memoires de Academic royale des Science, 1775, 88:75-182
    [125] Laplace, P. S. Recherches sur plusieurs du systeme du monde. Memoires de Academie royale des Science, 1776, 89:177-267
    [126] Larsen, L. H., Cannon, G. A. and Choi.B. H. East China Sea tide currents. Continental shelf research, 1985, Vol. 4: 77-103
    [127] Lefevre F., C. Le Provost and F. H. Lyard. How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China
    
    Sea. J. Gophys. Res., 2000, 105, C4, 8707-8725
    [128] Le Provost, C. A. et al. Spectroscopy of the world ocean tides from a finite element hydrodynamic model, J. Gophys. Res., 1994, 99(C12) : 24777-24797
    [129] Le Provost, C., A. Bennett, and D. Cartwright, Ocean tides for and from TOPEX/POSE1DON, Science, 1995, 267,639-642
    [130] Le Provost, Lyard P., Molines J.M. , Genco M. L. and Rabilloud F. A Hydrodynamic ocean tide model impromed by assimilating a satellite altimeter-derived data set. J. Gophys. Res., 1998, 103, C3: 5513-5529
    [131] Li L, J. C. Zuo and P.L Li. Tidal Simulation in the East China Sea with Finite Element Method, 2003(ISOPE-)
    [132] Longuet-Higgins, M.S. The egigenfunctions of Laplace' s tidal equation over a spere. Phil. Trans. Roy. Soc. London. 1968, A262:500-607
    [133] Longuet-Higgins, M.S. and Pond, G. S. The free oscillations of fluid on a hemisphere. Phil. Trans. Roy. Soc. London. 1970, A266: 193-263
    [134] Marshall J. C. The temporal and special characteristics of TOPEX/POSEIDON ratial orbit error. J. Gophys. Res., 1995, 100(012) : 25331-25352.
    [135] Matsumoto, K., M. Ooe, T. Sato, and J. Segawa, Ocean tide mode] obtained from TOPEX/POSEIDON altimetry data, J. Geophys. Res., 1995, 100: 25,319-25,330
    [136] Matsumoto, K. M. , Takanezawa, T. and Ooe, T. Ocean tide models developed by assimilating TOPEX/POSEIDON altimetry data into hydrodynamical model: A global model and a regional model around Japan, Journal of Oceanography, 2000, 56:567-581.
    [137] Mazzega, P. M2 model of the global ocean tide derived from SEASAT altimetry, . Mar. Geod., 1985, 9: 335-363
    [138] Mazzega, P. and M. Berge, Ocean tides in the Asian Semienclosed from TOPEX/POSEIDON, J. Geophys. Res., 1994, 99: 24,867-24,881.
    [139] Mellor, G. L. Analytic prediction of the properties of stratified planetary surface layers. J. Atmos. Sci., 1973,30:1061-1069.
    [140] Mellor, G. L. and T. Yamada. A hierarchy of turbulence close models for planetary boundary layers. J. Atmos. Sci., 1974,31:1791-1860.
    [141] Mellor, G. L. and T. Yamada. Development of a Turbulence Closure Model for geophysical Fluid Problems. Reviews of geophysics and space physics, November 1982, vol. 20, no. 4: 851-875
    
    
    [142] Mellor, G. L, T. Tezer and L. Y. Oey. The pressure gradient conundrum of sigma coordinate ocean models. J. Atmos. Oceanic. Technol., 1994, 11:1126-1134.
    [143] Molines, J., C. Le Provost, F. Lyard, R. Ray, C. Shum, and R. Enes, Tidal corrections in the TOPEX/POSEIDON geophysical data records, J. Geophys. Res., 1994, 99(C12) : 24,749-24,760
    [144] Munk W H , Cartwright D E. Tidal Spectroscopy and prediction, Philos. Trams. R. Soc. London, Ser. A , 1966, 259:533-581
    [145] Munk, W. H., 1997. Once again: once again-tidal fricton. Progress in Oceanography 40,7-35.
    [146] Munk, W., Wunsch, C., 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Research I 45,1977-2010.
    [147] Oey, L. Y., G. L. Mellor and R. I. Hires. A three-dimensional simulation of the Hudson-Raritan estuary. Part I, Description of the model and model simulations. J. Phys. Oceanogr, 1985a, 15:1676-1792
    [148] Oey, L. Y., G. L. Mellor and R. I. Hires. A three-dimensional simulation of the Hudson-Raritan estuary. Part II: Coparision with observation. J. Phys. Oceanogr, 1985b, 15:1693-1709
    [149] Ogura, S. The tides in the northern part of the Hwang Hai. Jap. J. Astr. Geophys. 1936, 14(1) : 27-55 (或参石海洋与湖沼第1卷第二期管秉贤的译文)
    [150] Oort, A. H., Anderson, L. A., Peixoto, J. P.. Estimates of the energy cycle of the oceans Journal of Geophysical Research, 1994 99: 7665-7688.
    [151] Parke M. E. and M. C. hendershott. M2, S2, K1 models of the global ocean tide on an elastic Earth, Mar. Geod, 1980,3
    [152] Parke M. E., Robert H. Stewart, David, et al. On the choice of orbits for an altimetric satellite to studay ocean circulation and tides. J. Geophys. Res., 1987, 92:24, 799-24, 808
    [153] Phillips,N. A. A coordinate system having some special advantages for numerical forecasting. J. Meteorol, 1957, 14:184-185
    [154] Proudman, J. The tides in the Atlantic Ocean. Mon. Not. Roy. Astron. Soc, 1944, 104:244-256
    [155] Ray. R., B. Sanchez, and D. Cartwright. Some extensions to the response method of tidal analysis applied to TOPEX/POSEIDON altimetry(abstract). EoS Trans. AGU. 75(16) , Spring Meet. Suppl. 1994: 108
    [156] Sanchez, B. V. and Pavlis N. K. Estimation of main tidal constituents from
    
    TOPEX altimetry using Proudman Funcrion expantion. J. Geophys. Res., 1995, 99: 24, 799-24,808
    [157] Schlax, M. G. and D. B. Chelton, Detecting al iased tidal errors in altimeter height measurements, J. Geophys. Res. ,1994, 99,12603-12612,
    [158] Schrama, E. , and R. Ray, A preliminary tidal analysis of TOPEX/POSEIDON altimetry, J. Geophys. Res., 1994,99,24,799-24,808
    [159] Schureman, P. W. Manual of harmonic analysis and prediction of Tides. U. S. Coast and Geodetic Survey, 1941, Wasgingtin D. C
    [160] Schwiderski, E.. On charting global ocean tides. Rev. Geophys., 1980a, 18: 243-268
    [161] Schwiderski, E. W. Ocean tides, 1, Globeln ocean tide equations. Mar. Geod, 1980b,3:161-217
    [162] Schwiderski, E. W. Ocean tides, 2 A hydrodynamical interpolation model. Mar. Geod, 1980c, 3:219-255
    [163] Shum C K, Woodworth P L, Andersen 0 B, et al. . Accuracy assessment of recent ocean tide models. J. Geophys. Res., 1997, 102: 25173-25194
    [164] Smith A. J. E. et al. TOPEX/POSEIDON orbi t error assessment. Journal of Geodsy,1996, 70:546-553
    [165] Tapley, B. D. et al . Precision orbit determination for TOPEX/POSEIDON. J. Geophys. Res., 1994, 99(cl2) :24, 383-24, 404
    [166] Taylor, G. I. . Tidal friction in the Irish Sea. Philosophical Transactions of the Royal Society of London 1919, A230: 1-93.
    [167] Wagner C. A. How well do we known the deep ocean tides? An intercomparison of altimetric, Hydrodynamic, and gage data. Manuscript Geodaetica, 1991,116: 118-140
    [168] White, W. B. , Tai.C. K. , Holland, W. R. Contnuous assimilation of simulated Geosat sea level into and eddy-resolving numerical ocean model, 1, Sea 1 evel differences. Journal of Geophysical Reasearch, 1990,95,3219-3234
    [169] Woodworth, P. L. and Cartwright D. E. Extraction of the M2ocean tide from GEOSAT altimeter data, Geophys. J. R. astro. Soc, 1986,84:227-255
    [170] Woodworth, P. L. and Thomas, J. P. Determination of the major semidiurnal tides of the northwest European continental shelf from Geosat altimetry. J. Geophys. Res., 1990, 95: 3061-3068
    [171] Xie L, W W Hsieh and J. A. Helbig. Atidal model of Bohai. Continental shelf
    
    research. 1990, 10:707(8) -721
    [172] Ye Anle and I S Robinson. Tidal dynamics in the South China Sea. Geophys. J. R. Astr. Soc., 1983, 72, 691-707
    [173]
    [174]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700