轧机辊缝控制系统建模及轧制数据分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高精度轧制是现代轧制技术的一个重要发展方向,高精度轧制技术对冷轧机液压AGC系统的控制精度提出了更高的要求,建立冷轧机液压AGC系统进行的控制系统模型,并对模型的仿真结果进行精度校验具有现实意义。由于仿真技术现在已经成为系统分析、研究、设计必不可少的手段,通过模型仿真可以降低系统的研制成本,尤其是对于不能直接进行试验的系统,系统模型仿真更加凸显出重要性。此外,对于所建立模型的检验也是十分重要的,模型的精确度如何直接关系到模型仿真结果的可信度。
     本文根据某厂实际生产中的1700mm冷连轧机第一机架实际生产情况,研究分析了相关资料,建立了连轧机组的第一机架控制系统仿真模型,并对仿真结果进行了相应的研究和分析对比。主要内容如下:
     1)按照实际所采用的监控AGC、前馈AGC和秒流量AGC三种控制策略作为基本控制框架建立的液压AGC辊缝控制的模型主体构架。这三种辊缝控制策略所计算得出的辊缝补偿量相加后输入到液压APC控制系统子模型中,通过位置自动控制来实现消除出口板厚偏差。考虑到现实轧制工况中存在的各种滞后、死区、限幅等环节进行了相应的设置,以便精确地模现实轧制过程,建立了AGC控制系统模型的总体控制流程框架。
     2)针对冷连轧AGC系统存在时间滞后的特点,提出了Smith预测控制算法。该算法用Smith预估器来克服滞后的影响,利用激光测速仪间接测量AGC系统的滞后时间以修正Smith预估器的时滞部分模型。在完成了整个AGC模型系统的建立后,对Smith预估器的控制效果进行了讨论。
     3)根据具体的液压APC系统,考虑了伺服阀负载流量的非线性和不对称性的基础上建立了三通阀控制不对称缸系统的动力学方程,同时引入负载流量补偿环节进行补偿;按照轧机各部分的弹性变形和轧机负载的质量分布体系,建立了轧机负载系统的模型,同时考虑到冷轧带钢在冷轧时的塑性变形的复杂性,特别引入了轧制力模型,建立了较为全面的液压APC系统的系统子模型。在系统模型仿真部分重点讨论了轧制力和出口板厚这两种输出与实际测量值的对比,通过对比轧制力和板厚时域波形仿真结果和实际测量结果的时域波形,同时计算并对比两种波形其各自的统计特性,得到所建系统模型输出信号的时域波形和统计特性的精确度评价。
     4)通过对信号的频谱和功率谱分析,可以很快分辨出信号的各个频率成分,本文从频域分析的角度进一步将仿真信号和实测信号进行了研究和对比。
     5)由于实际工况中需要对大量的非平稳随机信号进行处理,这时需要通过时频分析手段对其进行处理。对于非平稳信号的分析方法分为两类:一类为核函数分解,这类分析方法也称为线性时频描述,如短时傅里叶变换和小波分析等;另一类为能量分布,也称时频能量密度,如Winger-Ville分布、Cohen类等。本文从以下方面就相关的信号进行了分析研究:
     (a)短时傅立叶变换可以实现一定程度上的时频分析,通过选择合适的窗函数再对信号进行分段的频谱计算就可以得到某一时间区段内频谱随时间的变化情况。小波分析具有可变的时间和频率分辨率,这些性质在理论或应用中都非常重要,作为一种应用十分广泛的信号分析手段可以很好的满足相应的分析需求。本文利用短时傅立叶变换和小波变换各自的优点,分别从时频表述和突变信号的角度给出了模型仿真精度评价。
     (b)时频能量密度对信号能量的描述是通过时间和频率两个变量来表示,和短时傅里叶变换相比时频能量密度函数具有更好的时频分辨率,同时具有更多的时频分析特性,如真边性、有限支撑性、平稳不变性等,是非常有用的非平稳信号分析工具。本文通过对比实测和仿真信号的平滑Winger-Ville分布,从能量分布的角度给出了模型仿真精度的评价。
High precision rolling is one of the most important modern rolling technologies which put forward higher requirements to the hydraulic AGC (Auto-Gauge Control) system. System modeling and evaluating simulation results is important and meaningful, and simulation technology has now become an indispensable tool that applied widely in analysis, research and design. Simulation can also make it possible to reduce the cost, especially for the system that can not conduct test directly; hence the importance of simulation is emphasized with these advantages. Furthermore, model testing is equally important because the accuracy of the simulate result cast direct influence to the credibility of the model.
     This article was accomplished based on the research of real product situation of 1700mm strip rolling mill and analysis of corresponding references, a system control model was established accordingly and the results of simulation were analyzed from different perspectives, the main contents are as follows:
     1) According to the actual control strategies employed in the rolling product, Monitor AGC, Feed Forward AGC and Mass Flow AGC control blocks were created and the main framework of control system model was established. Roll gap compensation was calculated by these control strategies, so APC system can functioned to reduce the thickness deviation. Lag, dead zone and limiting were added in the control model to make it more accurate.
     2) Smith predictive control algorithm was applied to reduce the negative influence created by the lag of the system. Time-delay estimate Smith model was corrected by using laser speedometer to measure the lag time indirectly. Control effect of the predictor was discussed after the AGC model was completed.
     3) According to the concrete hydraulic APC (Auto-Position Control) system, taking the nonlinearity and asymmetry of servo-valve load flow into account, the model of asymmetry cylinder controlled by the three-way servo-valve was establishes. At the same time the load volume of flow compensated loop was added which functioned as compensation in the situation. Taking the elasticity deformations of various parts and the mass distribution system of rolling mill loading situation into account, dynamic system of rolling mill was built. Complexity of plastic deformation for the cold rolling steel strip was considered and the rolling force model has been induced. Based on the mentioned sub models, the thesis presents the mathematical model of hydraulic APC system, which is comparatively complete and accords with the physical device system. The accuracy of simulation results were analyzed by comparing the time domain waveform and the statistical characteristics, and then the evaluation in this aspect for the accuracy of model was obtained.
     4) Various frequency components of the signal can be identified based on the signal frequency and power spectrum analysis. The simulation signal and the measured signals were studied and compared from the angle of frequency domain analysis.
     5) Because large amounts of non-stationary random signal were generated during rolling, time-frequency technology was applied to analyses these signals. Non-stationary signal analysis methods are divided into two types:one is kernel function decomposition, such as Short-time Fourier Transform and Wavelet Transform; the other is energy distribution, such as Winger-Ville distribution and Cohen class. The corresponding research are as bellows:
     (a) Short-time Fourier transform can achieve a certain degree of time-frequency analysis, spectrum within a certain time period can be obtained by calculating spectrums of segmented signal if appropriate window function were selected. Wavelet analysis has variable time and frequency resolution which was very important both in research and application. By using the advantages of Short-time Fourier Transform and Wavelet Transform, accuracy of model was given.
     (b) Time-frequency energy density of the signal energy is described by time and frequency and time-frequency resolution is better than Short-time Fourier Transform. Mean while, the time-frequency energy density analysis has more features, such as the true marginal, limited supportive, stable invariance, so it's an efficient non-stationary signal analysis tools. Accuracy of model was given after comparing the measured signal and simulation signal smooth Winger-Ville distribution.
引文
[1]黄庆学,申光宪,梁爱生,陈占福.轧机轴承与轧辊寿命研究及应用.北京:冶金工业出版社,2003
    [2]任和生.现代控制理论及其应用.北京:电子工业出版社.1992
    [3]王积伟.现代控制理论与工程.北京:高等教育出版社.2003
    [4]吴忠强.现代控制理论.北京:中国标准出版社.2002
    [5]潘慧勤.轧钢车间机械设备.北京:冶金工业出版社,2006
    [6]张威,王旭,葛琳琳,张卓.一种强噪声背景下的微弱信号检测的新方法[J]计量学报:2007,28(1):70-73
    [7]铁鸣五机架四辊冷连轧机建模与仿真的研究[D],东北大学.2001.03
    [8]潘学军,张承进,柴天佑.冷连轧过程线性化动态模型的研究.[J]系统仿真学报,10(6):35-39
    [9]王业科.可逆式冷轧机AGC系统[J],钢铁技术2000(5):32-36
    [10]D. Hanselman, B. Littlefield.精通MATLAB6.5.张航,黄攀译.北京:清华大学出版社,2002
    [11]张旭东.离散随机信号处理.北京:清华大学出版社.2005
    [12]胡学友.盲信号分离技术及其应用研究[D],合肥:合肥工业大学2003
    [13]熊光楞.控制系统仿真与模型处理.北京:科学出版社.1993
    [14]Jin Xiaohong, Huai Meng. The variable hydraulic stiffness compensation in the electro-hydraulic position control system for a four-high strip mill [C] Proceedings of the 5th International Symposium on Fluid Power Transmission and Control (ISFP,2007). Beijing:International Academic Publishers Ltd,2007:5322533.
    [15]Wang Yiqun, Zhang Wei, Gao Yingjie. Research on Digital Simulation of Virtual Rolling Mills for Continuous Cold Strip Rolling Process. Proceedings of The Fourth International Symposium on Fluid Power Transmission and Control,2003,1:1-8
    [16]Siegfried Helduser, Hui Li. Optimization of Hydraulic Control Systems in Presses Based on Simulation. Proceedings of The Fourth International Symposium on Fluid Power Transmission and Control,2003,2:146-150
    [17]Kong Xiangdong, Gao Yingjie, Shan Dongsheng. Study on Parameterized Simulation of Hydraulic AGC in Rolling Mills. Proceedings of The Fourth International Symposium on Fluid Power Transmission and Control,2003,2:171-174
    [18]Jin Xiaohong, Rong Zhijun. Research on the adaptive model for electro-hydraulic position servo system with the external disturbances. Proceedings of the Fourth International Symposium on Fluid Power Transmission Symposium on Fluid Power Transmission and Control (ISFP'2003), International Academic Publisher World Publishing Corporation, Beijing,2003.3,198-201.
    [19]Bose N. K. Super-resolution with second generation wavelets. Signal Process Image Communication,2004,19:367
    [20]刘贤荣,徐海.新型液压自动厚度控制(HAGC)油缸[J],江苏冶金2004,32(1)45-46
    [21]雷琴.冷连轧机辊缝控制的液压变刚度问题[D],武汉:武汉科技大学,2006.
    [22]陈亚琛.冷轧机液压AGC系统的控制模型与仿真研究[D].武汉:武汉科技大学,2004.
    [23]赵丽娟,徐涛,刘杰.基于ADAMS/Vibration的轧机垂直振动模型的研究[J],系统仿真学报,2006,18(6):1566-1569.
    [25]杨国安,钟秉林,黄仁贾,民平,许云飞.机械故障信号小波包分解的时域特征提取方法研究[J].振动与冲击:2001,20(1):25-28,31
    [26]张伟,王益群,高英杰.板带轧机液压压下系统的建模与仿真[J].液压与气动,2004(1):21-24.
    [27]伶俐,郭建英,蒋凤林.小波分析与Hilbert分析在滚动轴承故障诊断中的应用[J],哈尔滨理工大学学报.2008,13(2):82-89
    [28]娄云,闫君杰.柴油机气缸盖振动信号特征提取方法的研究[J],内燃机车,2006(8):22-24
    [29]郑申白,初元璋.现代轧制参数检测技术[M],北京:中国计量出版社2005
    [30]PEARLMUTI'ER B. PARRAL C. A Context-Sensitive Generalization of ICA[C], Proc of ICONIP, Hong Kong, ICONIP,1996:151-157.
    [31]Amari S,Douglas S C,Cichocki A,Yang H H.Novel on-line adaptive learning algorithms for blind deconvolution using natural gradient approach[A].Proc 11th IFAC Symp.System Identification[C].Japan:IFAC Symp,1997.1007-1012.
    [32]CICHOCKI A., AMARI S, CAO J. Neural Network Models for Blind Separation of Time Delayed and Convolved Signals[C].Japanese IEICE Transaction on Fundamentals,1997, E-82-A(9):1057-1062
    [33]HYVARINEN A., KARHUNEN J, OJA E. Independent Component Analysis [M], New York:John Wiley Sons Inc.2001
    [34]HYVARINEN A, OJAE. Independent component analysis:Algorithms and applications [J]. Neural Networks,2000.13:411-430
    [35]AMARI S, TPCHEN, CICHOCKI A. Stability analysis of adaptive blind source separation [J].Neural Network.10 (8):1345-1351.
    [36]BASSEVILLE. M., Distance measures for signal processing and pattern recognition [J]. Signal Processing, December 1989,18(4):349-369
    [37]傅周东.液压系统泄漏故障诊断技术研究.[D],浙江大学1996:1-44
    [38]方志宏.基于神经网络的液压系统故障诊断技术的研究,[浙江大学工学博士论文], 1997:36-88
    [39]黄志坚.珠钢轧机液压在线监测系统,南方钢铁,2000,(2):13-17
    [40]Ying jie Gao, Xiang dong., Kong, Qin Zhang.Fault Diagnosis for HAGC Systems Based on Fuzzy Expert System and Neural Networks. IC-AI-2001, Las Vegas (USA),2001: 389-39452
    [41]陈章位,褚天华.液压控制系统故障诊断的研究.液压气动与密封,1999,(1):13-16
    [42]熊良才等.基于Intranet的设备远程诊断系统实现技术研究,冶金设备,2000,(1):30-35
    [43]王益群,孔祥东.控制工程基础.北京:机械工业出版社,2000:40-55
    [44]孙一康.带钢冷连轧计算机控制.北京:冶金工业出版社,2002:216-218
    [45]张伟,王益群.冷连轧机动态过程特性的建模与仿真,工程设计学报,2002,(5):271-274
    [46]张伟,王益群,高英杰.板带轧机液压压下系统的建模与仿真,液压与气动,2004,(1):45-49
    [47]黄柯隶.系统仿真技术,北京:国防科技大学出版社,1998:11-14
    [48]王子才.关于仿真理论的探讨,系统仿真学报,2000,(11):605-608
    [49]刘玠,杨卫东,刘文仲热轧生产自动化技术,北京:冶金工业出版社2006:115-116
    [50]乔志花.可逆冷连轧监控AGC算法的研究[J],冶金设备2006,(21):32-35
    [51]张进之.压力AGC分类及控制效果分析[J].钢铁研究总院学报.1988(6):87-94.
    [52]J.Hua, Z.Wang, Completely Continuous Cold Rolling Process Con-trol, Metallurgy Industry Press, Beijing,2000(inChinese)
    [53]V. B. Ginzburg., Steel-Rolling Technology; Theory and Prac-tice, Metallurgy Industry Press, Beijing,1998, pp.191-231 (in Chinese).
    [54]Dengyue Sun, Xun Chen, Fenshan Du, Guangming Zhu, JianggangZhou. Dynamic t hickness simulation of five-stand continuous cold rolling[J], Materials Processing Technology,167(2005)218-223
    [55]Fan J, Tieu A K, Yuen D. Strip thickness control of mill using self-tuning PID neuron controller[J], ISIJ international,1999,39(1):39-46
    [56]Yoshikazu M, Toshio I. Modernization of gauge control system at Sumitomo Wakayama 5 stand cold mill [J], Iron and Steel engineer.1999,8:46-50.
    [57]Yao-Yiaolan, Zhang-Disheng. Adaptive modification of the rolling force prediction[J]. Journal of Beijing Institute of Technology,2002,11(1):33-36.
    [58]Satoru Hayashi, Emeritus. Nonlinear phenomenon in hydraulic system[J]. Journal of Fluid control.1998,18(4):48-52.
    [59]R.Hu, Thepotential application of the virtual technolog yatmetal-lurgical industry, Iron and steel annual institute ememoirs of China, Beijing,1999:52-58
    [60]H. E. Merritt. Hydraulic control systems[J]. John Wiley & Sons, c1967.
    [61]Kwok H. K., Jones, D. L. Improved Instantaneous Frequency Estimation Using an Adaptive Short-time Fourier Transform 2000 (10)
    [62]Mallat S., Zhang Z. Matching Pursuits with Time-frequency. Diction-Aries.1993 (12) 2009 (3):45-47.
    [63]Peter W. Tse, Y. H. Peng. Wavelet Analysis and Envelope Detection for Rolling Element Bearing Fault Diagnosis. Their Effectiveness and Flexibilities,2001
    [64]Mallat.S.G, Zhang Z.F, Matching pursuits with time-frequency dictionaries 1993(12)
    [65]Cohen.L, Time-frequency distributions-a review 1989(77)
    [66]胡昌华,李国华,刘涛等.基于MATLAB 6.x的系统分析与设计—小波分析[M].西安电子科技大学出版社,2004.
    [67]Alleyne D.Cawley P A two-dimensional Fourier transform method for the measurement of propagating multimode signals 1991(3)
    [68]Auger.F., Flandrin.F., Improving the readability of time-frequency and time-scale representations by the reassignment method 1995(5)
    [69]Mackel. J. Maintenance and Quality related Condition Monitoring in Rolling Mills. AISE Annual Convention,11.-13.09.2000, Chicago, USA.
    [70]JEAN-FRANCOIS, CARDOSO. Informax and maximum likelihood for blind source separation [J], IEEE Signal Processing Letters,1997,4(4):112114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700