用户名: 密码: 验证码:
双成像云底高测量的理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云观测是气象日常业务重要内容之一,包括云状、云底高、云量三个要素。其中对云底高的量测一般分为目测和器测两类方法,前者具有因人而异,主观性强、观测较为简单、定性;观测频次少,不能全面、连续反映天气现象情况;后者虽然可以量测云底高,但它们缺乏客观评价的试验条件。因此,根据气象日常云观测业务的需求,本文采用摄影测量技术量测云底高,专门研制出一种基于CCD非量测相机的云底高立体量测仪以及针对该量测仪的特殊标校控制场,同时还针对获得的单站云图像数据,将其拼接为全天空云图,进一步拓展了云底高立体量测仪的应用范围。本文研究内容及创新点如下:
     1)研制了基于CCD非量测相机的地基云底高立体量测仪该量测仪是以两台相距一定距离的“一体化高速智能球型摄像机”为核心,同时还包含置平系统、通讯系统和视频采集卡等附加装置。该量测仪最显著特点是通过步进电机的控制,实现了将“天空控制点”引到地面,降低了成本,为其大规模推广提供了可能。
     2)建立了东、西、南、北和天顶五个方向的检校控制场为了检校云底高立体量测仪转角的系统误差、内方位元素和畸变系数,按照15cm、20cm、40cm间隔在东、西、南、北和天顶五个方向布设了773个标志点。同时为了便于在量测仪检校时,实现标志点的自动提取,设计了标志点的形状、大小和结构。
     3)研究了云底高立体量测仪的快速检校方法为加快云底高立体量测仪检校时标志点的快速提取,研究并实现了标志点的自动提取技术。它采用了Canny算法、八邻域跟踪技术和最小二乘椭圆拟合方法。最终,根据自动提取的标志点点位,采用直接线性变换和单像空间后方交会算法对云底高立体量测仪进行粗检校,根据标志点误差,重新调整其图像坐标,直到图像中每一个标志点的点位误差小于0.2像素。
     4)在自适应分层匹配的基础上,实现了精确的云底高量测在云底高计算过程中,为提高图像匹配的精度,首先详细研究并实现了Retinex算法的云图像增强,提高了图像匹配的效果;然后,根据自适应分层图像匹配算法确定同名点。具体过程是:首先将云图像分为3层金字塔结构;然后在顶层金字塔采用SIFT匹配;二级金字塔采用基于Forstner特征的匹配方法;底层金字塔图像,对所有获得的同名点采用单点最小二乘匹配算法以获得子像素的精度。同时为了保证量测仪运行的稳定性,推导了单独模型相对定向直接解公式。
     5)研究了全天空云图的拼接方法
     针对所获得的全天空36幅云图像,首先研究了将云图像根据其方位角和俯仰角转换到统一的以焦距为半径的球面空间,并推导了从像平面→球面→水平面的正、反公式;其次为减少云图像的重叠,减少运算量,加快图像拼接速度,研究了根据图像的方位角和俯仰角,对云图像的水平投影进行半径方向和切线方向适当裁切;最终对裁切后的云图像,采用加权平滑的方法拼接,获得了全天空云图。
     该论文有图102幅,表25个,参考文献154篇。
Cloud observation is an important content of daily meteorological tasks, mainly including cloud form, cloud base height, and cloudiness. Traditional methods for measuring the CBH come down to two major ones, i.e., visual measurement and instrument aided measurement. However, the former is a simple quantitative method of great subjectivity due to men’s distinct experiences and incapable of roundly and continuously reflecting weather conditions as a result of limited observation frequencies, while the latter lacks experimental conditions for objective evaluations though it is able to measure the CBH. Hence, according to the requirements of daily meteorological observations, this paper adopts the technologies of photogrammetry to measure the CBH,develops a special CBH stereo measuring instrument based on CCD non-metric cameras, and designs a particular control field for the calibration of the measuring instrument. Meanwhile, the images of clouds obtained by each photographing station are mosaiced to form whole sky nephograms. which further enlarges the application ranges of the instrument. The research work and innovative points are as follows.
     1) It develops a stereo measuring instrument of CBH based on non-metric CCD cameras.
     The core of this stereo measuring instrument is two integrated high speed global camera separated by a certain distance. Besides, it includes a leveling system, a communication system, video capture cards and other additional devices. This instrument is characterized by its realization of projecting the sky control points to the ground though the control of stepped motor, which cuts down the cost and helps arrive at a probably large-scale popularization.
     2) It builds a special indoor control field of five directions, i.e., south, west, north, east and zenith, which serves to calibrate the instrument.
     In order to calibrate the inner orientation elements, the systematic error of rotation angles, and the distortion elements pertaining to the instrument, 773 mark points are set up with 15 centimeters apart, 20 centimeters apart or 40 centimeters apart in the five directions. Meanwhile, the shape, size and structure of the mark points are designed so as to realize the automatic extraction and make it convenient for the instrument calibration.
     3) It studies the fast calibration method for the stereo measuring instrument of the CBH.
     In order to fasten the speed of the mark point extraction during the calibration of the speed, an automation extraction technology is researched and realized. It adopts Canny algorithm, eight neighborhood tracking and least square ellipse fitting method. According to the positions of the automatically extracted mark points, direct linear transform (DLT) and space resection of single image are utilized to roughly calibrate the measuring instrument. The image coordinates are readjusted according to the mark point errors until the error is less than 0.2 pixel.
     4) It accomplishes accurately measuring the CBH on the basis of self-adapting match of different pyramid layer.
     In order to improve the accuracy of image matching in the process of calculating the CBH, an algorithm named Retinex is detailedly researched and realized, which improves the effect of the image matching. Then, an adaptive stratified image matching algorithm is utilized to ascertain the same points. The concrete process includes: 1) diving the cloud image into a three-layer structure; 2) applying SIFT matching to the top layer; 3) applying the Fostner feature matching algorithm to the second layer; 4) utilizing the least square matching method to obtain sub-pixel accuracy to the bottom layer. At the same time, a direct solution formula of relative orientation for single model is derived to insure the stability of the measuring instrument.
     5) It studies the mosaic method for the whole sky Nephogram.
     As for the 36 images of whole sky obtained by the instrument, the cloud images are firstly transformed into a spherical space with a radius of focal length according to their azimuth angles and pitching angles. And the forward and inverse formulae of the transformation among the image plane, the spherical plane and the horizontal plane are derived. Secondly, a clip method is researched to moderately clip the horizontally projected cloud image in the radius and tangent direction, which reduces the overlaps between images, decrease the operation load, and increases the speed of image mosaic. Finally, a weighted smoothing method is utilized to mosaic the clipped images to acquire the whole sky nephogram.
     This paper has 102 figures,25 tables and 154 references.
引文
[1]李万彪.大气概论[M].北京大学出版社,2009.
    [2] Gabriela Seiz. Ground- and Satellite-based Multi-view Photogrammetric Determination of 3D Cloud Geometry[D]. Swiss: papers for the degree of Doctor of Technical Sciences to the Swiss Federal Institute of Technology Zurich, 2003.
    [3] A. Baran. The Dependence of Cirrus Infrared Radiative Properties on Ice Crystal Geometry and Shape of the Size-distribution Function[J]. Royal Meteorological Society, 2005,131: 1129–1142.
    [4]刘黎平,仲凌志,江源等.毫米波测云雷达系统及其外场试验结果初步分析[J].气象科技,2009,37(5):567-572.
    [5] F. Pasqualucci. Drop Size Distribution Measurements in Convective Storms with a Vertically Pointing Doppler Radar[J]. Radio Sci., 1984,19: 177–183.
    [6]中国气象局.地面气象观测规范[M].气象出版社,2003.
    [7]段炼.航空区域数值天气预报业务系统的研究[D].成都:四川大学,2006.
    [8]张秋荣.低云对飞行安全的影响[J].空中交通管理,2002(5):52-54.
    [9]中国气象学会.大气科学学科发展报告[M].中国科学技术出版社,2010.
    [10]李亚丽,陈高峰,曾英,张红娟.自动气象观测与人工观测气温差异分析[J].陕西气象,2010(1):26-28.
    [11] Shona Mackie. Exploiting Weather Forecast Data for Cloud Detection[D]. Scotland, United Kingdom: papers for the degree of Doctor of Philosophy to the University of Edinburgh, 2009.
    [12]叶小岭,杨大红,周金兰.基于CAN总线的自动气象观测系统设计[J].自动化与仪表,2009(9):19-22.
    [13]霍娟.地基全天空成像系统云与气溶胶参数反演及其应用研究[D].北京:中国科学院大气物理研究所博士论文,2007.
    [14]孙学金,王晓蕾,李浩,张伟星等.大气探测学[M].气象出版社,2009.
    [15]张春光,张玉钧,韩道文,刘文清等.测云技术研究进展[J].光散射学报,2007,19(4):388-394.
    [16]吴达鸿,张志坤,欧阳彩虹,陈建文.提高地面气象观测的目测能力[J].华章,2010(28):158,160.
    [17]周线娅.浅谈如何提高目测低云云高的准确性[J].陕西气象,2002(6):33-34.
    [18]王宗海,陆剑红,刘晋生.目测云的几点认识[J].气象,2003(29):56-57.
    [19] ZhienWang, Kenneth Sassen. Cloud Type and Macro-physical Property Retrieval Using Multiple Remote Sensors[J]. Applied Meteorology, 2001, 40(10): 1665-1682.
    [20] J. L. Gaumet, J. C. Heinrich, M. Cluzeau. Cloud-Base Height Measurements with a Single-Pulse Erbium-Glass Laser Ceilometer[J]. Atmospheric and Oceanic Technology, 1998, 15(2): 37-45.
    [21]王青梅,张以谟,刘铁根,郑义忠.一种便携式激光测云仪的云底高度反演方法[J].强激光与粒子束,2005,17(9):1312-1316.
    [22] Winker, D. M., and M. A. Vaughan. Vertical distribution of Clouds Over Hampton, Virginia, Observed by Lidar Under the ECLIPS and FIRE ETO Programs[J]. Atmos. Res., 1994: 34, 117-133.
    [23] Klett J D. Stable Analytical Inversion Processing Lidar Returns[J]. Appl Opt, 1981, 20: 211-220.
    [24] E. E. Clothiaux, G. G. Mace and T. P. Ackerman. An Automated Algorithm for Detection of Hydrometeor Returns in Micro-pulse Lidar Data[J]. Atmospheric and Oceanic Technology, 1998, 15(8): 1035-1042.
    [25] Pal S R, Steinbrecht W, Carswell A I. Automated Method for Lidar Determination of Cloud-Base Height and Vertical Extent[J]. Appl Opt, 1992, 31(10): 1488-1494.
    [26]宋德武.激光云高仪探测高度的计算与分析[J].气象水文海洋仪器,1998(2):4-11.
    [27]宋德武. CT12K云高仪硬件系统分析[J].气象水文海洋仪器,1998(1):18-28.
    [28] Montse Costa-suros, Josep Calbo, Josep Abel Gonzalez. Monthly Distributions of Cloud Base Height Measured with a Ceilometer[J]. Current Science, 2009, 96(4): 561.
    [29] Andrew D. Richardson, Ellen G. Denny, Thomas G. Siccama and etc. Evidence for a Rising Cloud Ceiling in Eastern North America[J]. Journal of Climate, 2003, 16(6): 2093-2098.
    [30] Michael P. Jensen, Eugene E. Clothiaux. Diurnal Cloud and Thermodynamic Variations in the Stratocumulus Transition Regime: A Case Study Using In Situ and Remote Sensors[J]. The Atmospheric Science, 1998, 55(7): 2294-2310.
    [31] Peter G. Duynkerke. Comparison of the ECMWF Reanalysis with FIRE I Observations: Diurnal Variation of Marine Stratocumulus[J]. Climate, 2001, 14(4): 1466-1478.
    [32] J-C. Dupont, M. Haeffelin, Y. Morille and etc. Macro-physical and Optical Properties of Mid-altitude High-altitude Clouds from 4 Ground-based Lidars and Collcated CALIOP Observations[C]. Proceedings of the 8th International Symposium on Tropospheric Profiling, 2009: S07-P07-1~S07-P07-4.
    [33] Hamza Varikoden, R. Harikumar, V. Sasi Kumar and etc. Propeteries of Cloud Base Height During Southwest Monsoon Period Over a Tropical Station[J]. Current Science, 2009, 96(4): 562-568.
    [34] Jennifer M. Comstock, Kenneth Sassen. Retrieval of Cirrus Cloud Radiative andBackscattering Properties Using Combined Lidar and Infrared Radiometer(LIRAD) Measurements[J]. Atmospheric and Oceanic Technology, 2001, 18(10): 1658-1673.
    [35] J. A. Curry, P. V. Hobbs, M. D. King and etc. FIRE Arctic Clouds Experiment. http://modis-atmos.gsfc.nasa.gov/_docs/Curry_et_al._(2000).pdf, 2000, 81(1): 5-29.
    [36] W. L. Smith, C. M. R. Platt. Comparison of Satellite-Deduced Cloud Heights with Indications from Radiosonde and Ground-Based Laser Measurements[J]. Applied Meteorology, 1979, 17(12): 1796-1802.
    [37] W. L. Eberhard. Cloud Signals from Lidar and Rotating Beam Ceilometer Compared with Pilot Ceiling[J]. Atmospheric and Oceanic Technology, 1986, 3(9): 499-512.
    [38] Alison W. Grimsdell and Wayne M. Angevine. Convective Boundary Layer Height Measurement with Wind Profilers and Comparison to Cloud Base[J]. Atmospheric and Oceanic Technology, 1998, 15(9): 1331-1338.
    [39] Edward P. Luke, Pavlos Kollias and Karen L. Johnson. A Technique for the Automatic Detection of Insect Clutter in Cloud Radar Returns[J]. Atmospheric and Oceanic Technology, 2008, 25(9): 1498-1513.
    [40]熊兴隆,闫朴,将立辉等.测风激光雷达应用于机场能见度及云底高探测[J].激光与红外,2010,40(8):817-820.
    [41] Morille Y., Haeffelin M., Drobinski P., Pelon J.. An Automated Algorithm to Retrieve the Vertical Structure of the Atomosphere from single Channel Lidar Data[J]. Atmospheric and Oceanic Technology, 2007, 24(9): 761-765.
    [42] Xin Jin, John M. Hanesiak and David G. Barber. Time Series of Daily Averaged Cloud Fractions over Landfast First-Year Sea Ice from Multiple Data Sources[J]. Applied Meteorology and Climatology, 2007, 46(11): 1818-1827.
    [43] Hanesiak, J.. 1998: Ice camp meteorological observations. NOW’98 Sea Ice/Climate Dynamic Subgroup Field Summary. T. N. Papakyriakou, C. J. Mundy, and D. G. Barber, Eds., Centre for Earth Observation Science, Geography Department, University of Manitoba, CEOS Tech. Rep. 98-8-2, 21–32.
    [44]仲凌志,刘黎平,葛润生.毫米波测云雷达的特点及其研究现状与展望[J].地球科学进展,2010,24(4):383-391.
    [45]石星.毫米波雷达的应用和发展[J].电讯技术,2006(1):1-9.
    [46]魏重,林海,忻妙新.毫米波气象雷达的测云能力[J].气象学报,1985,43(3):378-383.
    [47]苏涛,黄兴玉,方文贵,高仲辉. SCRMP型毫米波测云雷达探测性能与应用浅析[C].第26届中国气象学会年会航空与航天气象技术交流会分会场论文集,2009:414-418.
    [48]仲凌志,刘黎平,葛润生,周秀骥.毫米波测云雷达(HMBQ)在国内的研究应用介绍[C].第27届中国气象学会年会雷达技术开发与应用分会场论文集,2010.
    [49] EUGENE E. CLOTHIAUX, THOMAS P. ACKERMAN etc. Ground-Based Remote Sensing of Cloud Properties Using Millimeter-Wave Radar Radiation and Water in the Climate System: Remote Measurements, E. Raschke, Ed., NATO, 323–366.
    [50] Kennth P. Moran, Brooks E. Martner, M. J. Post and etc. An Unattended Cloud-Profiling Radar for Use in Climate Research [J]. Bulletin of the American Meteorological Society, 1998, 79(3): 443–455.
    [51] Xiquan Dong, Patrick Minnis, Gerald G. Mace and etc. Comparison of Stratus Cloud Properties Deduced from Surface, GOES, AND Aircraft Data during the March 2000 ARM Cloud IOP[J]. The Atmospheric Sciences, 2002, 59(23): 3265–3284.
    [52] Eugene E. Clothiaux, Thomas P. Ackerman, Gerald G. Mace and etc. Objective Determination of Active Remote Sensors at the ARM CART Sites[J]. Applied Meteorology, 2000, 39(5): 645–665.
    [53]仲凌志.毫米波测云雷达系统的定标和探测能力分析及其在反演云微物理参数中的初步研究[D].南京:南京信息工程大学, 2009.
    [54]中国气象学会.用风廓线雷达的信噪比资料来进行云底高度的判定[C].中国气象学会2007年年会气象综合探测技术分会场论文集,2007:928-946.
    [55] Patrick W. Heck, David F. Young. Inference of Cirrus Cloud Properties Using Satellite-observed Visible and Infrared Radiances. Part II: Verification of Theoretical Cirrus Radiative Properties[J]. The Atmospheric Sciences, 1993, 50(9): 1305-1321.
    [56] Xiquan D, Patrick M, Gerald G M, et al. Comparison of stratus cloud properties deduced from surface, GOES, and aircraft data during the March 2000 ARM cloud IOP[J]. Journal of the Atmospheric Sciences, 2002, 59(23): 3265~3284.
    [57] AshwinMahesh, von P.Walden and Stephen G. Warren. Ground-based Infrared Remote Sensing of Cloud Properties over the Antarctic Plateau. Part I: Cloud-Base Heights[J]. Journal of Applied Meteorology, 2005, 40(7): 1265-1278.
    [58]章文星,吕达仁,常有礼.地基热红外亮温遥感云底高度可行性的模拟研究[J].地球物理学报,2007,50(2):354-363.
    [59] Gary P. Ellrod and Ismail Gultepe. Inferring Low Cloud Base Heights at Night for Aviation Using Satellite Infrared and Surface Temperature Data[J]. Pure and Applied Geophysics, 2007, 164: 1193-1205.
    [60] Todd Berendes, Sailes K. Sengupta, Ron M. Welch and etc. Cumulus Cloud Base Height Estimation from High Saptial Resolution Landsat Data: A Hough Transform Approach[J]. IEEE Transactions on Geoscience and remote sensing, 1992, 30(3): 430-443.
    [61] R. Meerkotter, L. Bugliaro. Diurnal evolution of cloud base heights in convective cloud fields from MSG/SEVIRI data[J]. Atmospheric Chemistry and Physics, 2009(9): 1767-1778.
    [62] L. Berger, Le Mans, Pays de La Loire, et al. Image Comparison from Two Cloud Cover Sensor in Infrared and Visible Spectral Regions[C]. 21st International Conference on Interactive Information Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, 2005.
    [63] B. Thurairajah, J. A. Shaw. Infrared Cloud Imager Measurements of Cloud Statistics from the 2003 Cloudiness Inter-comparison Campaign[C]. Fourteenth ARM Science Team Meeting Proceedings, 2004.
    [64] E. Hirsch, E. Agassi and I. Koren. A Novel Technique for Extracting Clouds Base Height Using Ground Based Imaging[J]. Atmospheric Measurement Techniques, 2010, 4: 117-130.
    [65]孙学金,高太长,翟东力等.基于非制冷红外焦平面阵列的全天空红外测云系统[J].红外与激光工程, 2008,37(5):761~764.
    [66] Randolph Ware, Richard Carpenter, Jurgen Guldner, et al. A Multi-channel Radiometric Profiler of Temperature, Humidity, and Cloud Liquid[J]. Radio Science, 2003, 38(4): 1-13.
    [67] Wilfried Linder. Digital Photogrammetry[M]. Springer,2006.
    [68]李德仁,周月琴,金为铣.摄影测量与遥感概论[M].测绘出版社,2001.
    [69] Bradbury D. L., Fujita T.. Computation of Height and Velocity of Clouds from Dual, Whole-sky, Time-lapse Picture Sequences. Satellite and Meso-meteorology Research Project(SMRP) Research Paper 90, Department of the Geophysical Sciences, University of Chicago, March 1968.
    [70] Gabriela Seiz. Ground- and Satellite-Based Multi-view Photogrammetric Determination of 3D Cloud Geometry[D]. University of Zurich, 2003.
    [71] M. Allmen and W. P. Kegelmeyer. Three-Dimensional Cloud Characterization from Paired Whole-Sky Imaging Cameras[C]. Proceedings of the Third Atmospheric Radiation Measurement(ARM) Science Team Meeting, 1993.
    [72] Mark C. Allmen and W. Philip Kegelmeyer. The Computation of Cloud Base Height from Paired Whole-Sky Imaging Cameras[J]. Machine Vision and Applications, 1997, 9(4): 160-165.
    [73] Gabriela Seiz, Emmanuel P. Baltsavias, and Armin Gruen. Cloud Mapping from the Ground: Use of Photogrammetric Methods[J]. Photogrammetric Engineering & Remote Sensing, 2002, 68(9): 941-951.
    [74] Gabriela Seiz, Manos Baltsavias. Cloud Mapping Using Ground-Based Imagers[C]. 11th AMS Symposium on Meteorological Observations and Instrumentations, 2001.
    [75] Evgueni kassiganov, Charles N. Long and Jason Christy. Cloud-Base-Height Estimation from Paired Ground-Based Hemispherical Observations[J]. Applied Meteorology, 2005, 44: 1221-1233.
    [76]谭涌波,陶善昌,吕伟涛,刘亦风.双站数字摄像测量云高[J].应用气象学报,2005,16(5):629-638.
    [77] Fernando M. Janeiro, Frank Wagner, Pedro M. Ramos and A. M. Silva. Cloud Base Height Estimation Using a Low-cost Digital Camera[C]. XIX IMEKO World Congress Fundamental and Applied Metrology, 2009(9): 2270-2273.
    [78]高太长,刘磊,赵世军等.全天空测云技术现状及进展[J].应用气象学报,2010,21(1):101-109.
    [79] Long C. N. and Slater D. W.. Total Sky Imager Model 880 Status and Testing Results. ARM Technical Report ARM TR-006, US Department of Energy, Washington DC, 2001.
    [80] Shields J. E., Karr M. E., Tooman T. P., et al. The Whole Sky Imager- A Year of Progress[C]. Eighth Atmospheric Radiation Measurement(ARM) Science Team Meeting, Tucson, Arizona, 1998.
    [81]霍娟,吕达仁.全天空数字相机观测云量的初步研究[J].南京气象学院学报,2002,25(2):242-246.
    [82]穆菁清.一体化球型摄像机控制系统的设计及实现[D].南京:南京理工大学, 2007.
    [83]任广振.基于ARM的嵌入式高速智能球机的设计与开发[D].南京:南京林业大学, 2009.
    [84]韦伟.基于USB2.0的CCD相机系统的设计与实现[D].南京:南京理工大学, 2009.
    [85]周颖慧.基于CCD图像传感原理的温度监测方法及应用研究[D].秦皇岛:燕山大学工学, 2010.
    [86]张闻文.基于噪声特性的电子倍增CCD最佳工作模式研究[D].南京:南京理工大学, 2009.
    [87]戚龚骏.数字成像系统的光学低通滤波理论及应用研究[D].杭州:浙江大学, 2009.
    [88]王之江,顾培森.实用光学技术手册[M].机械工业出版社,2007.
    [89]赵书朵,谌海云,高凤水等.视频监控系统中云台控制模块的设计与实现[J].重庆科技学院学报,2010,12(1):144-146.
    [90]冯文灏,李欣,胡震天.准二维控制场的建立及其应用[J].武汉大学学报(信息科学版),2005,30(2):101-104.
    [91]张秀平.基于近景摄影测量的植物生长量量测方法研究[D].中南大学,2008.
    [92]谭燕.基于非量测数码相机的近景摄影测量技术研究[D].中南大学,2009.
    [93]王留召,张建霞,王宝山.航空摄影测量数码相机检校场的建立[J].河南理工大学学报,2006,25(1):46-49.
    [94]许磊,王留召,余洁等.一种新型的数码相机室内检校场的建立方法[J].北京测绘,2008(2): 20-22,31.
    [95]吴庆双.基于空间后方交会的三维坐标测量方法研究[D].武汉大学, 2005.
    [96]王成亮.基于普通数码影像的近景摄影测量技术研究与应用[D].中南大学, 2006.
    [97]黄桂平.圆形标志中心子像素定位方法的研究与实现[J].武汉大学学报(信息科学版), 2005,30(5):388-391.
    [98]王树根.摄影测量原理与应用[M].武汉大学出版社, 2009.
    [99]张剑清,潘励,王树根.摄影测量学[M].武汉大学出版社, 2003.
    [100]冯文灏.关于近景摄影机检校的几个问题[J].测绘通报,2000,10:1-3.
    [101]冯文灏.工业测量-武汉大学学术丛书[M].武汉大学出版社,2004.
    [102]于起峰,尚洋.摄像测量学原理与应用研究[M].科学出版社,2009.
    [103]李国胜,林宗坚,任超锋等.相机检校中标志点的自动提取[J].测绘科学,2010,35(6):161-163.
    [104] Canny John. A Computational Approach to Edge Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
    [105] H. Freeman. Computer processing of line-drawing images[J]. ACM Comput, 1974, 6(1): 57-97.
    [106]刘相滨,胡峰松,张邦基.一种新的区域种子填充算法[J].计算机工程与应用,2002,(6):101-103.
    [107]赵伶俐,朱建军,刘帅等.直线特征标志子像素级定位方法的研究[J].测绘工程,2009,18(2):12-15.
    [108]雷玉堂,罗辉,马娟. CCD摄像机的误差及其检校[J].光学与光电技术,2004,2(4):48-50.
    [109]陈利奇.高分辨率遥感卫星几何定标技术[D].河南理工大学,2009.
    [110]冯文灏,商浩亮,侯文广.影像的数字畸变模型[J].武汉大学学报(信息科学版),2006,31(2):99-104.
    [111]章毓晋.图像处理和分析[M].清华大学出版社,1999.
    [112]阮秋琦.数字图像处理学[M].电子工业出版社,2008.
    [113] E. P. Baltsavias. Multi-photo Geometrically Constrained Matching[D]. Institute of Geodesy and Photogrammetry, ETH Zurich, Ph. D. thesis,1991.
    [114] Edwin. H. Land. An alternative technique for the computation of the designator in the Retinex theory of color vision [J]. Physics, 1986, 83(5): 3078-3080.
    [115] Edwin. H. Land, John J. McCANN. Lightness and Retinex theory[J]. The Optical Society of America, 1971, 61(1): 1-11.
    [116]郭朋,杨平先,刘雨.一种改进的全局Retinex监控视频图像增强方法[J].四川理工学院学报(自然科学版),2010,23(6):716-718.
    [117]占必超,吴一全,纪守新.基于平稳小波变换和Retinex的红外图像增强方法[J].光学学报,2010,30(10):2788-2793.
    [118]张鹏强,余旭初,韩丽.遥感图像薄云滤波增强[J].海洋测绘,2008,28(2):13-16.
    [119]熊杰,韩丽娜,耿国华等.使用类似Retinex方法增强数字医学图像[J].计算机工程与应用,2009,45(24):14-17.
    [120]李学明.基于Retinex理论的图像增强算法[J].计算机应用研究. 2005(2): 235-237.
    [121]宋凯,沈红,刘昶.多尺度Retinex灰度图像增强算法[J].辽宁大学学报(自然科学版), 2008,35(1):46-48.
    [122] E. Land. The Retinex[J]. American Scientist, 1964, 52: 247-264.
    [123] Daniel J. Jobson, Zia-ur Rahman. Land. Properties and performance of center/surround Retinex[J]. IEEE Trans Image Processing: Special Issue on Color Processing, 1997, 6(7): 451-462.
    [124] Daniel J. Jobson, Zia-ur Rahman. Land. A multi-scale Retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Trans Image Processing: Special Issue on Color Processing, 1997, 6(7): 965-976.
    [125] Ron Kimmel, Michael Elad, Doron Shaked, et al. A Variational Framework for Retinex [J]. International Journal of Computer Vision, 2003, 52(1): 7-23.
    [126] J. Frankle, J. McCann. Method and apparatus for lightness imaging. U.S. Patent: 4384336, 1983.
    [127] John McCann. Lessons Learned from Mondrians Applied to Real Images and Color Gamuts [C]. Seventh Color Imaging Conference, 1999: 1-8.
    [128]张祖勋,张剑清.数字摄影测量学[M].武汉大学出版社. 1997.
    [129]明洋.特殊航空影像自动匹配的关键技术研究[D].武汉大学博士学位论文. 2009.
    [130]张迁,刘政凯,庞彦伟等.一种遥感影像的自动配准方法[J].小型微型计算机系统. 2004,25(7):1129-1131.
    [131]吴波.自适应三角形约束下的立体影像可靠匹配方法[D].武汉大学博士学位论文. 2006.
    [132] Brown Lisa G. A Survey of Image Registration Techniques [J]. ACM Computing Surveys. 1992, 24(4): 325-376.
    [133]陈庆芳,吴小俊.基于分块互信息的图像配准[J].计算机工程与应用. 2011,47(9):160-163.
    [134]李国胜,张继贤,宋伟东等.遥感影像中控制点的自动提取[J].辽宁工程技术大学学报. 2005,24(1):41-44.
    [135]刘晓光,陈曦,陈政伟等.基于图像灰度的SSDA匹配算法[J].航空计算技术. 2010,40(1):54-57.
    [136]王国刚,史泽林,刘云鹏.采用黎曼度量的Hausdorff距离及其在图像匹配中的应用[J].红外与激光工程. 2011,40(2):847-851.
    [137]符艳军,程咏梅,潘泉等.基于不变矩的景象匹配辅助导航快速匹配算法[J].系统工程与电子技术. 2011,33(4):365-369.
    [138]李坤伦,孙大跃,赵东生.视频检测的颜色直方图目标匹配算法[J].电脑与信息技术. 2008,16(5):7-10.
    [139]吴刚,唐振民,程勇等.灰度共生矩阵纹理特征的运动目标跟踪方法[J].南京理工大学学报(自然科学版). 2010,34(4):459-463.
    [140]黄帅,吴克伟,苏菱.基于Harris尺度不变特征的图像匹配方法[J].合肥工业大学学报(自然科学版). 2011,34(3):379-382.
    [141] David G. Lowe. Object recognition from local scale-invariant features[C]. International Conference on Computer Vision. 1999: 1150-1157.
    [142] David G. Lowe. Distinctive image features from scale-invariant key-points[J]. International Journal of Computer Vision. 2004, 60(2): 91-110.
    [143]张书真,宋海龙,向晓燕等.采用快速SIFT算法实现目标识别[J].计算机系统应用. 2010,19(6):82-86.
    [144]汪道寅,胡访宇.基于改进SIFT算法的视频序列图像配准[J].无线电工程. 2011,41(2):16-19.
    [145]刘浩,孙继银,高文广等.基于全景图的校园导游系统[J].计算机与信息技术. 2010(2):69-71.
    [146]刘俊承,王淼鑫.一种机器人导航中自然路标的匹配与跟踪方法[J].计算机工程与应用. 2008,44(24):215-218.
    [147]柯杉,王博亮,黄晓阳.一种改进的SIFT算法及其在医学图像配准中的应用[J].厦门大学学报(自然科学版). 2010,49(3):354-358.
    [148]刘焕敏,王华,段慧芬.一种改进的SIFT双向匹配算法[J].兵工自动化. 2009,28(6):89-91.
    [149] Jan J. Koenderink. The structure of images[J]. Biological Cybernetics, 1984, 50(5): 363-396.
    [150] Tony Lindeberg. Scale-space theory: A basic tool for analysing structures at different scales [J]. Journal of Applied Statistics, 1994, 21(2): 224-270.
    [151] Forstner W. A Framework for Low Level Feature Extraction[C]. European Conference on Computer Vision, Stochholm, Sweden, 1994: 383-394.
    [152]高太长,刘磊,赵世军等.全天空测云技术现状及进展[J].应用气象学报. 2010,21(1):101-109.
    [153]史金瞎,王铮.一种拼接缝消除方法[J].现代电子技术,2005,204(13):116-118.
    [154]姜丽凤.全景图拼接关键技术的研究[D].山东理工大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700