用户名: 密码: 验证码:
垂直上升油水及油气水多相流流动参数测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究集流型两相流测井仪器不可视集流通道内的油水两相流流动结构及流动参数测量,本文首先设计了集快关阀、电导式探针、纵向多极阵列电导式传感器、双螺旋电容式传感器和超声传感器于一体的油水两相流测量系统,在内径为20 mm管道内进行了垂直上升油水两相流动态实验,建立了实验流型图,标定了两种电学传感器测量响应,并分析了油水相间滑脱特性,研究了分相流量及油水总流量测量模型,此外利用符号动态滤波方法,从超声传感器波动信号中提取了持油率信息。为了研究油井内大管径垂直上升油气水三相流流动特性,以为油气水三相流测井资料解释方法提供流型研究基础,本文利用纵向多极阵列电导式传感器和电导式探针组合测量方法在内径为125 mm管道内进行垂直上升油气水三相流动态实验,绘制了四种油水总流量下流型图,并对水为连续相的五种流型VMEA传感器电导波动信号进行了时频域和非线性(混沌吸引子形态学和复杂性测度包括Lempel-Ziv复杂性、近似熵和多尺度熵)的处理分析,表征了流型转化的非线性动力学特性。论文研究工作取得了创新性成果如下:
     1.基于微型电导探针测量方法,首先开展了小管径垂直上升油水两相流流型实验及流型物理模型研究,实验发现小管径油水流动时向油包水流型转化边界基本发生在Yw = 0.25,向水包油流型转化边界基本发生在Yw = 0.35,且流型实验结果两相流流型转换边界模型甚为吻合。基于相含率快关阀实验结果,在油水两相流动态测量条件下实际标定了所设计的电导式及螺旋电容式传感器测量响应特性,发现在集流条件下,两种传感器测量响应均标定相含率之间具有较高灵敏度的线性相关关系。基于两相流运动波理论模型及漂移模型,建立了垂直上升油水两相流总流量及分相流量测量模型,取得了较高精度的总流量及分相流量测量结果。
     2.为了探讨高含水时的油水两相流持水率测量问题,开展了超声传感器油水两相流相含率测量方法研究。为解决分散相对超声多次反射造成的测量信号相含率之间关系模糊问题,本课题将符号动态滤波方法引入超声信号处理分析,并提取了持率值密切相关的流动测度特征量,发现超声信号流动测度与持油率具有良好的高分辨率线性相关关系,为高含水时的油水流型相含率测量提供了一种新思路。
     3.通过垂直上升油气水三相流流型实验电导传感器信号测量分析,发现液相中含油率的增加使得水包油段塞流在较低的气相表观速度产生,且在大管径低流速下,液液两相流中由水为连续相到油为连续相的逆转发生在油液比为0.9左右,气体搅拌作用使得相态逆转点向含油率较低的方向偏移。发现五种流型波动信号的相空间吸引子形态能够细节地反映三相流流型动力学演化过程,Lempel-Ziv复杂性测度近似熵组合可以较好地辨识油气水三相流流型,此外,多尺度熵从不同时间尺度上较好地刻画了五种三相流流型的非线性动力学特性,发现多尺度熵率对流型变化敏感,可作为三相流流型划分的有效准则。油气水三相流电导波动信号的多尺度非线性时间序列分析为揭示其流型动力学演化机制提供了新的有效途径。
In order to study on the flow patterns and flow parameter measurement of oil-water two-phase flow in the non-visually concentrating passage of packer type well logging instrument for oil-water two-phase flow, the measurement system composed of quick closing valve, mini-conductance probe, vertical multi-electrode array (VMEA) conductance sensor, helical-surface capacitance sensor and ultrasonic sensor is designed to carry out vertical upward oil-water two-phase flow dynamic experiment in a 20 mm ID pipe. The flow pattern map is constructed and the measuring responses for the two kinds of electrical sensors are calibrated. And also, the author analyzes the oil-water interfacial slippage and researches the measurement models of the partial phase flowrate and total flowrate. Additionally, Symbolic dynamic filtering is applied to extract the information of oil holdup from ultrasonic sensor fluctuating signal. To study vertical upward oil-gas-liquid three-phase flow characteristics in large diameter oil well and provide the flow pattern research basis for oil-gas-water three-phase flow well logging data interpretation method, the vertical upward oil-gas-water three-phase flow dynamic experiment was conducted in a 125 mm ID flow loop using the combination sensors of VMEA sensor and mini-conductance probe and flow pattern maps for four total mixture liquid flowrates are constructed. Also the nonlinear dynamical feature of flow pattern transition are characterized by processing and analyzing the conductance fluctuating signals for the five flow patterns with water as the continuous liquid using traditional time-frequency domain and nonlinear (chaotic attractor morphological description and complexity measures including Lempel-Ziv complexity, approximate entropy and multi-scale entropy) analysis methods and they obtain a good result of flow pattern identification. The creative points of this study are as follows:
     1. Based on the measurement method of mini-conductance probe, the experiment of vertical upward oil-water two-phase flow pattern in a small diameter pipe and the research of flow pattern physical model are firstly conducted. The experiment indicates that the transition boundary of to water in oil flow flow for small diameter oil-water flow basically occurs at Yw = 0.25, and the transition boundary of to oil in water flow is basically at Yw = 0.35. What is more, the flow pattern experiment result is close agreement with the flow pattern transition boundary model. Based on the experiment of quick closing valve for phase volume fraction, the response properties of the two kinds of designed sensors which are the conductance sensor and capacitance sensor are practically calibrated in oil-water two-phase flow dynamic measurement, showing that there are high sensitive and linear relationship between the measurement responses of the two sensors and the calibrated phase volume fraction. And then the measurement models of total flowrate and partial phase flowrate for vertical upward oil-water two-phase flow are established by kinematic wave theoretical model and drift model and they obtain the high precision of measurement for total and partial phase flowrate.
     2. The phase volume fraction measurement method by ultrasonic sensor is studied to explore the water holdup of oil-water two-phase flow with high water cut. In order to resolve the fuzzy relation between the phase volume fraction and measured ultrasonic signal, which is caused by the multi-reflection of the ultrasound for the reason of the dispersed phase oil droplets, the symbolic dynamic filtering method is introduced to process and anlyze the ultrasonic signal in the paper and the characteristic quantity named flow measure which is closely related to holdup is extracted. The author finds out that there is a good high resolution and linear relationship between the flow measure calculated by ultrasonic signal and oil holdup. Thus, it provides a new strategy for the phase volume fraction measurement for oil-water two-phase flow with high water cut.
     3. Through the vertical upward oil-gas-water three-phase flow pattern experiment and the analysis of conductance sensor measured signal, the author finds out that the increase of the ratio of oil flowrate to total liquid flowrate makes oil in water type slug flow occur at lower superficial gas velocity; for large diameter pipe and low flow velocity, the continuous liquid inversion occurs at about the ratio of oil flowrate to total liquid flowrate equal to 0.9 and the agitation of gas makes the phase inversion of liquids move to the low ratio of oil flowrate to total florate. The phase space state of attractor reconstructed by flow pattern fluctuating signal could reflect the dynamical evolution characteristics of three-phase flow pattern in details. The combination of Lempel-Ziv complexity measure and approximate entropy could better identify oil-gas-water three-phase flow patterns. Multi-scale entropy could reveals the nonlinear dynamical characteristics of five oil-gas-water three-phase flow patterns from different time sacles and Rate of MSE which sensitively indicates the variation of flow patterns could act as the effective criterion of three-phase flow patterns identification. The multi-scale nonlinear time series analysis of oil-gas-water three-phase flow conductance fluctuating signal provides a new approach to reveal the dynamical evolution mechanism of oil-gas-water three-phase flow pattern.
引文
[1] Hetsroni G (editor-in-chief), Handbook of multiphase systems, Washington: Hemisphere Publication Corporation; New York: Mcgraw-Hill, 1982
    [2]陈学俊,多相流热物理研究的进展,西安交通大学学报,1994, 28(5): 1~8
    [3] Govier, G W and Omer M M, The horizontal pipeline flow of air water mixtures, Can. J. chem. Eng., 1962, 40(3): 93~104
    [4] Mandhane J M, Gregory G A, Aziz K, A flow pattern map for gas-liquid flow in horizontal pipes, Int. J. Multiphase Flow, 1974, 1(4): 537~553
    [5] Taitel Y and Dukler A E, A theoretical approach to the Lockhart-Martinelli correlation for stratified flow, International Journal of Multiphase Flow, 1976, 2(5-6): 591~595
    [6] Barnea D, Shoham O, Taitel Y, er al, Flow pattern transition for gas-liquid flow in horizontal and inclined pipes. Comparison of experimental data with theory, International Journal of Multiphase Flow, 1980, 6(3): 217~225
    [7] Lin P Y, Flow Regime Transitions in horizontal gas-liquid flow, Ph.D. Thesis of Univ. of Illinois, Urbana, 1984
    [8] Lee A H, A study of flow regime trasitions for oil-water-gas mixtures in large diameter horizontal pipelines, Master Thesis of Ohio University, 1993
    [9] Hewitt G F, Measurement of two-phase flow parameters, Academic Press, London, 1978
    [10] Taitel Y, Barnea D, Dukler A E, Modeling flow pattern transition for steady upward gas-liquid flow in vertical tubes. AIChE J 1980, 26(3): 345~354
    [11] Weisman J, Kang S Y, Flow pattern transition in vertical and upwardly inclined lines, Int. J. Multiphase Flow, 1981, 7(3): 271~291
    [12] Kaichiro M and Ishii M, Flow regime transition criteria for upward two-phase flow in vertical tubes, Int. J. Heat Mass Transfer 1984, 27(5), 723~737
    [13] W?lk G, Dreyer M, Rath H J, Flow patterns in small diameter vertical non-circular channels, International Journal of Multiphase Flow, 2000, 26(6): 1037~1061
    [14] Russell T W F, Hodgson G W, Govier G W, Horizontal pipeline flow of mixtures of oil and water, Canadian Journal of Chemical Engineering, 1959, 37(1): 9~17
    [15] Hasson D, Mann U, Nir A, Annular flow of two immiscible liquids, The Canadian Journal of Chemical Engineering, 1970, 48(5): 514~520
    [16] Arirachakaran S, Oglesby K D, Malinowski M S, er al, An analysis of oil/water phenomena in horizontal pipes, SPE Productions Operations Symp, SPE 18836, 1989
    [17] Trallero J L, Sarica C, Brill J P, A study of oil-water flow patterns in horizontal pipes, SPE Production & Facilities, 1997, 12(3):165~172
    [18] Nadler M and Mewes D, Flow induced emulsification in the flow of two immiscible liquids in horizontal pipes, International Journal of Multiphase Flow, 1997, 23(1): 55~68
    [19] Hapanowicz J, Troniewski L and Witczak S, Flow patterns of water-oil mixture flowing in horizontal pipes, International Symposium on Liquid-Liquid Two-Phase Flow and Transport Phenomena, Antalya, Turkey, 3-7 Nov, 1997
    [20] Angeli P and Hewitt G F, Pressure gradient in horizontal liquid-liquid flows, International Journal of Multiphase Flow, 1999, 24(7): 1183~1203
    [21] Shi H, Cai J, Jepson W P, Oil-water two-phase flows in large-diameter pipelines, Journal of Energy Resources Technology, 2001, 123(4): 270~276
    [22] Govier G W, Sullivan G A, Wood R K, The upward vertical flow of oil-water mixtures, Can. J. Chem. Eng., 1961, 39: 67~75
    [23] Brown R A S and Govier G.W, High-speed photography in the study of two-phase flow. Canadian Journal of Chemical Engineering 1961, 39: 159-164.
    [24] Hasson D, Orell A, Fink M, A study of vertical annular liquid–liquid flow—Part I, laminar conditions. Multi-phase Flow Systems Symposium, The Institution of Chemical Engineers Symposium Series no 38, Paper no. A5, Glasgow, 1974: 1~16
    [25]张宝群,油水两相滑动实验,测井技术,1981, 5(2): 13~20
    [26]王宝春,利用压差式密度计确定含水率的方法,大庆石油地质开发,1984, 3(2): 285~291
    [27] Zavareh F, Hill A D, Podio A, Flow regimes in vertical and inclined oil/water flow in pipes, SPE Annual Technical Conference and Exhibition, 2-5 October 1988
    [28] Hasan A R and Kabir C S, A new model for two-phase oil/water flow: production log interpretation and tubular calculation, SPE Production Engineering, May 1990, 5(2): 193~199
    [29] Farrar B and Bruun H H, A computer based hot-film technique used for flow measurements in a vertical kerosene-water pipe flow. International Journal of Multiphase Flow 1996, 22(4): 733~751
    [30] Flores J G, Chen X T, Sarica C et al, Characterization of oil-water flow patterns in vertical and deviated wells, SPE Annual Technical Conference and Exhibition, 5-8 October 1997
    [31] Flores J G, Oil-water flow in vertical and inclined wells, Ph.D. Thesis of The University of Tulsa, 1997
    [32]钟兴福,黄志尧,吕鹏举等,125mm垂直圆管中油水两相流流型辨识研究,石油学报, 2001, 22(5): 89~94
    [33]金宁德,宁英男,王微微等,垂直上升管中油水两相流流型表征,化工学报,2001, 52(10): 907~915
    [34]胡志华,刘磊,周芳德等,油水两相乳化液流动特性的实验研究,上海交通大学学报,2005, 39(2): 314-316
    [35]赵鑫,纵向多极阵列电导式两相流测量方法研究,天津大学博士学位论文,2006
    [36] Sobocinski D P and Huntingdon R L, Concurrent flow of air, gas-oil and water in a horizontal pipe, Trans ASME 1958, 80: 252~256
    [37] Schlichting P, The transport of oil-water-gas mixtures in oil field gathering systems, Erdol-Erdgas-Zeitschrift, 1971, 86(6): 235~249
    [38] Stapelberg H H and Mewes D, The flow of two immiscible liquids and air in a horizontal pipe, ASME Proc. Conf. Advances in gas-liquid flows, FED 99 HTD 155 Dallas Texas, 1990: 89~96
    [39] Stapelberg H H and Mewes D, Three phase flow of oil , water and air in horizontal pipes, VDI Forschungsheft 1991, 57(668): 1~60
    [40] Stapelberg H H and Mewes D, The pressure loss and slug frequency of liquid-liquid-gas in horizontal pipes, International Journal of Multiphase Flow, 1994, 20(2): 285~303
    [41] Baker O, Simultaneous flow of oil and gas, Oil Gas J. 1954, 53(12): 185~195
    [42] Nuland S, Skavsvag K, Seether G, et al, Phase fractions in three phase gas-oil-water flow, Proc. 5th Int. Conf. Multiphase Prod., 1991: 3~30
    [43] Acikgoz M, Franca F and Lahey Jr R T, An experimental study of three-phase flow regimes, International Journal of Multiphase Flow, 1992, 18(3): 327~336
    [44] Taitel Y and Dukler A E, A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J. 1976, 22(1): 47~55
    [45] Taitel Y, Barnea D and Brill J P, Stratified three phase flow in pipe, International Journal of Multiphase Flow, 1995, 21(1): 53~60
    [46] Pan L, High pressure three-phase (gas/oil/water) flow, Ph.D. Thesis of Imperial College of Science, Technology and Medicine, University of London, 1996
    [47] Hewitt G F, Khor S K and Pan L, Three-phase gas-liquid-liquid flow: flow patterns, holdups and pressure drop, Proc. of Int. Symp. On Multiphase Flow, Beijing: International Academic Publishers, 1997: 1~18.
    [48] Odozi U A, Mendes-Tatsis M A and Hewitt G F, Three phase air-oil-water flow patterns, ASME, Heat Transf. Div., (Publication) HTD, 1998, 361-5: 423~428
    [49] Khor S H, Three-phase liquid-liquid-gas stratified flow in pipeline, Ph.D. Thesis of University of London, 1998
    [50]胡志华,钱焕群,鹿院卫等,水平管内油-气-水三相流流型的研究,西安交通大学学报,2001, 35(9): 899~902, 913
    [51] Sarica C and Zhang H, Development of next generation multiphase pipe flow prediction tools, Technical Report, The University of Tulsa, 2006
    [52] Trallero J L, Oil-water flow patterns in horizontal pipes, Ph.D. Thesis of The University of Tulsa, 1995
    [53] Spedding P L, Donnelly G F and Cole J S, Three phase oil-water-gas horizontal co-current flow: I. experimental and regime map, Chemical Engineering Research and Design, 2005, 83(4): 401~411
    [54] Wegmann A, Melke J and von Rohr P R, Three phase liquid–liquid–gas flows in 5.6 mm and 7 mm inner diameter pipes, International Journal of Multiphase Flow, 2007, 33(5): 484~497
    [55] Tek M R, Multiphase flow of water, oil and natural gas through vertical flow strings, J. Pet. Tech., 1961: 1029~1036
    [56] Shean A R, Pressure drop and phase fraction in oil-water-air vertical pipe flow, M. S. Thesis of Massachusetts Institute of Technology, Cambridge, MA, 1976
    [57] Pleshko A and Sharma M P, An experimental study of vertical three phase (oil-water-air) upwards flows, ASME Proc. Conf. Advances in gas-liquid flows, FED 99 HTD 155 Dallas Texas, 1990: 81~88
    [58] Guo H M, Zhou C D and Jin Z W, Interpretative method for production logs in three phase flows, Australia: SPE Asia-Pacific Conference, 1991: 229~235
    [59]陈宣政,垂直上升管内油气水三相流动特性研究,西安交通大学博士学位论文,1991
    [60] Woods G S, Spedding P L, Watterson J K, et al, Three-phase oil/water/air vertical flow: Oil and natural gas production, Chemical Engineering Research and Design, 1998, 76(5): 571~584
    [61] Spedding P L, Woods G S, Raghunathan R S, et al, Flow pattern, holdup and pressure drop in vertical and near vertical two- and three-phase upflow, Chemical Engineering Research and Design, 2000, 78(3): 404~418
    [62] Oddie G, Shi H, Durlofsky L J, et al, Experimental study of two and three phase flows in large diameter inclined pipes, International Journal of Multiphase flow, 2003, 29(4): 527~558
    [63] Petalas N and Aziz K, A mechanistic model for multiphase flow in pipe, J. Can. Pet. Technol., 2000, 39(6): 43~55
    [64] Chupin G and Nydal O J, An experimental study of air/oil/water pipe flow at low liquid loading, International Conference on Multiphase: Extending the Boundaries of Flow Assurance, 2003: 391~405
    [65] Hewitt G F, Three-phase gas-liquid-liquid flows in the steady and transient states, Nuclear Engineering and Design, 2005, 235(10-12): 1303~1316
    [66] Furukawa T and Fukano T, Effects of liquid viscosity on flow patterns in vertical upward gas–liquid two-phase flow, International Journal of Multiphase Flow, 2001, 27(6): 1109~1126
    [67] Vigneaux P, Chenais P and Hulin J P, Liquid-liquid flow in an inclined pipe, AIChE J., 1988, 34(5): 781~789
    [68] Angeli P and Hewitt G F, Flow structure in horizontal oil-water flow, International Journal of Multiphase Flow, 2000, 26(7): 1117~1140
    [69] Lovick J and Angeli P, Impedance probe for phase distribution measurements and flow pattern identification in oil-water flows. Proceedings of the Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, 2001, 2: 1489~1494.
    [70] Lovick J and Angeli P, Droplet size and velocity profiles in liquid-liquid horizontal flows, Chem. Eng. Sci., 2004, 59(15): 3105~3115
    [71] Mishra R, Lucas G P and Kieckhoefer H, A model for obtaining the velocity vectors of spherical droplets in multiphase flows from measurements using an orthogonal four-sensor probe, Measurement Science and Technology, 2002, 13(9): 1488~1498
    [72] Panagitopoulos N and Lucas G P, Simulation of a local four-sensor conductance probe using a rotating dual-sensor probe, Measurement Science and Technology, 2007, 18(8): 2563~2569
    [73] Dong F, Liu X P, Deng X, et al, Identification of two-phase flow regimes in horizontal, inclined and vertical pipes, Measurement Science and Technology, 2001, 12(8): 1069~1075
    [74] Pietruske H and Prasser H M, Wire-mesh sensors for high-resolving two-phase flow studies at high pressure and temperatures, Flow Measurement and Instrumentation, 2007, 18(2): 87~94
    [75] Silva M J D, Schleicher E and Hampel U, Capacitance wire-mesh sensor for fast measurement of phase fraction distributions, Measurement Science and Technology, 2007, 18(7): 2245~2251
    [76] Tjugum S A, Hjertaker B T and Johansen G A, Multiphase flow regime identification by multibeam gamma-ray densitometry, Measurement Science and Technology, 2002, 13(8): 1319~1326
    [77] Hubbard M G and Dukler A E, The characterization of flow regimes for horizontal two-phase flow, Proc. Heat Transfer & Fluid Mechanics Inst, 1966: 100~121
    [78] Jones Jr O C, Zuber N, The interrelation between void fraction fluctuation and flow pattern in two-phase flow, Int. J. Multiphase Flow, 1975, 2(3): 273~306
    [79]劳力云,基于动态压差信号分析的两相流参数辨识方法研究,浙江大学博士学位论文,1998
    [80] Bakshi B R, Zhong H, Jiang P, et al, Analysis of flow in gas-liquid bubble columns using multi-resolution methods, Trans IChemE, 1995, 73(A6): 608~614.
    [81]孙斌,周洪亮,张宏建等,基于Hilbert-Huang变换的涡街信号处理方法,浙江大学学报(工学版),2005, 39(6): 801~804
    [82] Jana A K, Das G, Das P K, Flow regime identification of two-phase liquid-liquid upflow through vertical pipe, Chemical Engineering Science, 2006, 61(5): 1500~1515
    [83] Jana A K, Das G, Das P K, A novel technique to identify flow patterns during liquid-liquid two-phase upflow through a vertical pipe, Ind. Eng. Chem. Res., 2006, 45(7): 2381~2393
    [84] Oddie G M, On the detection of a low-dimensional attractor in disperse two-component (oil-water) flow in a vertical pipe, Flow. Meas. Instrum. 1991, 2(4): 225~231
    [85] Jin N D, Nie X B, Ren Y Y, et al, Characterization of oil/water two-phase flow patterns based on nonlinear time series analysis, Flow Measurement and Instrumentation, 2003, 14(4-5): 169~175
    [86]金宁德,李伟波,赵鑫,利用符号时间序列分析方法表征垂直上升管中油水两相流流型,化工学报,2005, 56(1): 116~120
    [87]肖楠,金宁德,基于混沌吸引子形态特性的两相流流型分类方法研究,物理学报,2007, 56(9): 5149~5156
    [88]宗艳波,金宁德,马文衡等,油水两相流流型混沌吸引子形态特性,化工学报,2008, 59(4): 851~858
    [89]金宁德,陈万鹏,混沌递归分析在油水两相流流型识别中的应用,化工学报,2006, 57(2): 274~280
    [90]董芳,金宁德,宗艳波等,两相流流型动力学特征多尺度递归定量分析,物理学报, 2008, 57(10): 6145~6154
    [91]郑桂波,金宁德,两相流流型多尺度熵及动力学特性分析,物理学报,2009, 58(7): 4485~4492
    [92] Gao Z K, Jin N D, Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks, Physcial Review E, 2009, 79(6), 066303
    [93] Lee J Y, Kim N S, Ishii M, Flow regime identification using chaotic characteristics of two-phase flow, Nuclear Engineering and Design, 2008, 238(4): 945~957
    [94] Fan L T, Neogi D and Yashima M, Stochastic analysis of a three-phase fluidized bed: Fractal Approach, AICHEJ, 1990, 36(10): 1529~1534
    [95] Fan L T, Kang Y, Neogi D, et al, Fractal analysis of fluidized particle behavior in liquid-solid fluidized beds, AICHEJ, 1993, 39(3): 513~517
    [96] Daw C S and Halow J S, Evaluation and control of fluidization quality through chaotic time series analysis of pressure-drop measurements, AIChE Symposium Series, 1993, 89(296): 103~122
    [97] Kikuchi R, Tsutsumi A and Yoshida K, Fractal aspect of hydrodynamics in a three-phase fluidized bed, Chemical Engineering Science, 1996, 51(11): 2865~2870
    [98] Kikuchi R. and Tsutsumi A, Characterization of nonlinear dynamics in a circulating fluidized bed by rescaled range analysis and short-term predictability analysis, Chemical Engineering Science, 2001, 56(23): 6545~6552
    [99] Yano T, Kuramoto K, Tsutsumi A, et al, Scale-up effect in nonlinear dynamics of three-phase reactors, Chemical Engineering Science, 1999, 54(21): 5259~5263
    [100]金宁德,王微微,任英玉等,模拟井中油气水三相泡状流型的分形及混沌特征,地球物理学报,2001, 44(Z1): 266~274
    [101] Wu H J, Zhou F D and Wu Y Y, Intelligent identification system of flow regime of oil–gas–water multiphase flow, International Journal of Multiphase Flow, 2001, 27(3): 459~475
    [102] Fraguio M S, Cassanello M C, Larachi F, et al, Classifying flow regimes in three-phase fluidized beds from CARPT experiments, Chemical Engineering Science, 2007, 62(24): 7523~7529
    [103]黄志尧,王保良,李海青等,软测量技术在多相流检测中的应用,仪器仪表学报,2001, 22(3): 421~424
    [104]吴新杰,王师,王凤翔,基于粗糙集理论两相流流型辨识方法研究,仪器仪表学报,2003, 24(3): 221~225
    [105]邵晓寅,黄志尧,冀海峰等,基于电容层析成像和模糊模式识别的油气两相流流型辨识新方法的研究,高校化学工程学报,2003, 17(6): 616~621
    [106]周云龙,孙斌,陆军,改进BP神经网络在气液两相流流型识别中的应用,化工学报,2005, 56(1): 110~115
    [107]马龙博,张宏建,周洪亮等,基于Hilbert-Huang变换和支持向量机的油水两相流流型识别,化工学报,2007, 58(3): 617~622
    [108] Han J, Dong F and Xu Y Y, Gas/liquid two-phase flow regime recognition based on adaptive wavelet-based neural network, 4th International Conference on Natural Computation, Jinan, China, 2008,
    [109]李英伟,于莉娜,孔令富,基于多特征的LS-SVM油水两相流流型识别,燕山大学学报,2008, 32(3): 258~262
    [110] Wang H X, Zhang L F, Identification of two-phase flow regimes based on support vector machine and electrical capacitance tomography, Measurment Science and Technology, 2009, 20(11), 114007
    [111]白博峰,张少军,赵亮等,多相流流型在线识别理论研究,中国科学E辑:技术科学,2009, 39(4): 655~660
    [112] Valle A, Multiphase pipeline flows in hydrocarbon recovery, Multiphase Science and Technology 1998, 10(1): 1~139
    [113]劳力云,张宏建,吴应湘等,水平管道气液两相流中空隙率对动态压降信号的影响,化工学报,2000, 51(4): 547~551
    [114]张修刚,牛冬梅,苏新军等,水平管内油水两相流动摩擦压降的试验研究,油气储运,2003, 22(2): 47~50
    [115]邢荣亮,基于差压测量方法的油水两相流流动特性研究,天津大学硕士学位论文,2006
    [116]徐英,于中伟,张涛等,V形内锥流量计关键参数对流出系数的影响,机械工程学报,2008, 44(12): 105~111
    [117] Tan C and Dong F, Modification to mass flow rate correlation in oil–water two-phase flow by a V-cone flow meter in consideration of the oil-water viscosity ratio, Meas. Sci. Technol., 2010, 21(4), 045403
    [118]张宏建,岳伟挺,马龙博等,文丘里管中气液两相流差压波动信号空隙率关系,化工学报,2005, 56(11): 2102~2107
    [119]马龙博,张宏建,周洪亮等,基于差压法的油水两相流的流量测量,浙江大学学报(工学版),2007, 41(2): 365~368
    [120] Fang L D, Zhang T, Jin N D, A comparison of correlations used for Venturi wet gas metering in oil and gas industry, Journal of Petroleum Science and Engineering, 2007, 57(3-4): 247~256
    [121]耿艳峰,石岗,李玉星等,槽式孔板的低含液率气液两相流测量特性,化工学报,2007, 58(7): 1719~1725
    [122] Fossa M, design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows, Flow Measurement and Instrumentation, 1998, 9(2): 103~109
    [123] Lucas G P, Cory J C and Waterfall R C, A six-electrode local probe for measuring solids velocity and volume fraction profiles in solids-water flows, Meas. Sci. Technol. 2000, 11(10): 1498~1509
    [124]胡金海,刘兴斌,黄春辉等,一种同时测量流量和含水率的电导式传感器,测井技术,2002, 26(2): 154~157
    [125] Jin N D, Zhao X, Wang J et al, Design and geometry optimization of a conductive probe with a vertical multiple electrode array for measuring volume fraction and axial velocity of two-phase flow. Meas. Sci. Technol. 2008, 19(4), 045403
    [126] Zhao D J, Guo L J, Hu X W, et al, Experimental study on local characteristics of oil-water dispersed flow in a vertical pipe, International Journal of Multiphase Flow, 2006, 32(10-11): 1254~1268
    [127] Lucas G P and Panagiotopoulos N, Oil volume fraction and velocity profiles in vertical, bubbly oil-in-water flows, Flow Measurement and Instrumentation, 2009,20(3): 127~135
    [128] Abouelwafa M S A and Kendall E J M., The use of capacitance sensors for phase percentage determination in multiphase pipelines, IEEE T. Instrum.Meas., 1980
    [129] Geraets J J M and Borst J C, A capacitance sensor for two-phase void fraction measurement and flow pattern identification, Int. J. Multiphs. Flow, 1988, 14(3): 305~320
    [130] Hammer E A, Tollefsen J and Olsvik K, Capacitance transducers for non-intrusive measurement of water in crude oil, Flow Meas. Instrum., 1989, 1(1): 51~58
    [131]王一鸣,张宝芬,两相流流量测量中的梯度相关法研究,计量学报,1996, 17(2): 149~153
    [132]金锋,路增喜,张宏喜等,一种新型极板结构的电容式相浓度传感器,东北大学学报(自然科学版),1998, 19(6): 610~613
    [133] Chiang C T and Huang Y C, A semicylindrical capacitive sensor with interface circuit used for flow rate measurement, IEEE Sensors Journal, 2006, 6(6): 1564~1570
    [134] Ahmed W H, Capacitance sensors for void-fraction measurements and flow-pattern identification in air-oil two-phase flow, IEEE Sensors Journal, 2006, 6(5): 1153~1163
    [135]胡红利,周屈兰,徐通模等,电容式气固两相流浓度测量系统,仪器仪表学报,2007, 28(11): 1947~1950
    [136]曹章,王化祥,气固两相流固相浓度电容式传感器优化设计,仪器仪表学报,2007, 28(11): 1956~1959
    [152]刘继承,刘兴斌,庄海军等,非集流油水两相含率超声波测量方法的实验研究,测井技术,2005, 29(5): 453~455
    [153]徐立军,徐苓安,超声层析成像监测气/液两相泡状流体分布,天津大学学报,1995, 28(2): 129~135
    [154] Nyfors E and Vainikainen P, Industrial microwave sensors, Artech House, 1989
    [155] Nyfors E, Cylindrical microwave resonator sensors for measuring materials under flow, Ph. D. Thesis of Helsinki University of Technology, 2000
    [156] Bo O L and Nyfors E, Application of microwave spectroscopy for the detection of water fraction and water salinity in water/oil/gas pipe flow, Journal of Non-Crystalline Solids, 2002, 305(1-3): 345~353
    [157]王进旗,强锡富,张勇奎,同轴线式相位法测量油井含水率,仪器仪表学报,2002, 23(1): 74~76
    [158]何安定,李斌,周芳德等,一种测量油水比的新方法,油气储运,1998, 17(12): 53~56
    [159] Schleicher E, Silva M J D and Hampel U, Enhanced Local Void and Temperature Measurements for Highly Transient Multiphase Flows, IEEE Transactions on Instrumentation and Measurement, 2008, 57(2): 401~405
    [160] Bird A, The role of multiphase flow in oil and gas production, Proc. Conf. Advances in Multiphase Operations Offshore London, 1995
    [161] Abouelwafa M S A and Kendall E J M, Optimization of continuous wave nuclear magnetic resonance to determine in situ volume fractions and individual flow rates in two component mixtures. Rev. Sci. Instrum. 1979, 50 (12): 1545~1549
    [162]赵鑫,金宁德,李伟波,油水两相流相含率的软测量方法,化工学报,2005, 56(10): 1875~1879
    [163]段玉波,刘继承,王琼,RBF神经网络在油水两相流含率超声测量中的应用,信息控制,2005, 34(4): 476~480
    [164] Warsito W and Fan L S, Neural network based on multi-criterion optimization image reconstruction technique for imaging two- and three-phase flow systems using electrical capacitance tomography, Measurement Science and Technology, 2001, 12(12): 2198~2210
    [165]金宁德,赵鑫,郑华等,油井伞集流油气水三相流流动参数的软测量方法,化工学报,2006, 57(12): 2847~2853
    [166]何世钧,王化祥,周勋,基于SVM的ECT图像重建算法,计量学报,2007, 28(2): 137~140
    [167]韩骏,谭超,徐遥远等,小波神经网络在油水两相流软测量中的应用,天津大学学报,2009, 42(9): 808~812
    [152]刘继承,刘兴斌,庄海军等,非集流油水两相含率超声波测量方法的实验研究,测井技术,2005, 29(5): 453~455
    [153]徐立军,徐苓安,超声层析成像监测气/液两相泡状流体分布,天津大学学报,1995, 28(2): 129~135
    [154] Nyfors E and Vainikainen P, Industrial microwave sensors, Artech House, 1989
    [155] Nyfors E, Cylindrical microwave resonator sensors for measuring materials under flow, Ph. D. Thesis of Helsinki University of Technology, 2000
    [156] Bo O L and Nyfors E, Application of microwave spectroscopy for the detection of water fraction and water salinity in water/oil/gas pipe flow, Journal of Non-Crystalline Solids, 2002, 305(1-3): 345~353
    [157]王进旗,强锡富,张勇奎,同轴线式相位法测量油井含水率,仪器仪表学报,2002, 23(1): 74~76
    [158]何安定,李斌,周芳德等,一种测量油水比的新方法,油气储运,1998, 17(12): 53~56
    [159] Schleicher E, Silva M J D and Hampel U, Enhanced Local Void and Temperature Measurements for Highly Transient Multiphase Flows, IEEE Transactions on Instrumentation and Measurement, 2008, 57(2): 401~405
    [160] Bird A, The role of multiphase flow in oil and gas production, Proc. Conf. Advances in Multiphase Operations Offshore London, 1995
    [161] Abouelwafa M S A and Kendall E J M, Optimization of continuous wave nuclear magnetic resonance to determine in situ volume fractions and individual flow rates in two component mixtures. Rev. Sci. Instrum. 1979, 50 (12): 1545~1549
    [162]赵鑫,金宁德,李伟波,油水两相流相含率的软测量方法,化工学报,2005, 56(10): 1875~1879
    [163]段玉波,刘继承,王琼,RBF神经网络在油水两相流含率超声测量中的应用,信息控制,2005, 34(4): 476~480
    [164] Warsito W and Fan L S, Neural network based on multi-criterion optimization image reconstruction technique for imaging two- and three-phase flow systems using electrical capacitance tomography, Measurement Science and Technology, 2001, 12(12): 2198~2210
    [165]金宁德,赵鑫,郑华等,油井伞集流油气水三相流流动参数的软测量方法,化工学报,2006, 57(12): 2847~2853
    [166]何世钧,王化祥,周勋,基于SVM的ECT图像重建算法,计量学报,2007, 28(2): 137~140
    [167]韩骏,谭超,徐遥远等,小波神经网络在油水两相流软测量中的应用,天津大学学报,2009, 42(9): 808~812
    [168]李强伟,黄志尧,王保良等,基于ECT和蚂蚁算法的油气两相流空隙率在线测量,化工学报,2007, 58(1): 61~66
    [169]张春晓,张涛,基于最小二乘支持向量机和遗传算法的热式油水两相流含油率建模,化工学报,2009, 60(7): 1651~1655
    [170] Devia F and Fossa M, Design and optimization of impedance probes for void fraction measurements, Flow Measurement and Instrumentation, 2003, 14(4-5): 139~149
    [171] Maxwell J C, A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, 1882
    [172] Bruggeman D A G, Calculation of different physical constants of heterogeneous substances: I. Dielectric constant and conductivity of media of isotropic substances (Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen: I. Dielektrizit?tskonstanten und Leitf?higkeiten der Mischk?rper aus isotropen Substanzen). Annalen der Physik, 1935, 416(7): 636~664
    [173]王涛,水平油水两相流相含率电容传感器优化及设计,天津大学硕士学位论文,2009
    [174] Yang W Q, Handware design of electrical capacitance tomography systems, Meas. Sci. Technol., 1996, 7(3): 225~232
    [175]金宁德,聂向斌,任玉英等,垂直上升管中油水两相流流型辨识,工程热物理学报,2003, 24(5): 793~796.
    [176] Harmathy T Z, Velocity of large drops and bubbles in media of infinite or restricted extent, AIChE Journal, 1960, 6(2): 281~288
    [177] Schlumberger, Production Looging Interpretation, 1973
    [178] Zuber N, Findlay J A, Average volumetric concentration in two-phase systems, Transaction ASME. Journal of Heat Transfer, 1965, 3(9): 453~468.
    [179] Lucas G P and Jin N D, Investigation of drift velocity model for predicting superficial velocities of oil and water in inclined oil-in-water pipe flows with a centre dody, Measurement Science and Technology, 2001, 12(9): 1546~1554
    [180]徐苓安,相关流量计的设计应用,天津:天津大学出版社,1992
    [181] BouréJ A and Mercadier Y, Existence and properties of flow structure waves in two-phase bubbly flows, Proc. IUTAM Symp., Pasadena, CA, 1981
    [182] Bernier R N, Unsteady two-phase flow instrumentation and measurement, Ph. D. Thesis of California Institute of Technology, Pasadena, 1982
    [183] Saiz-Jabardo J M and BouréJ A, Experiments on void fraction waves, Int. J. Multiphase Flow, 1989, 15(4): 483~493
    [184] Bieshuevel A and Gorissen W C M, Void fraction disturbances in a uniform bubbly fluid, Int. J. Multiphase Flow 1990, 16(2): 211~231
    [185] Kytomaa H K, Brennen C E, Small amplitude kinematic wave propagation in two-component media, Int. J. Multiphase Flow, 1991, 17(1): 13~26.
    [186] Lucas G P and Waltont I C, Flow rate measurement by kinematic wave detection in vertically upward bubbly two-phase flows, Flow Meas. Instrum.,1997, 8(3/4): 133~143.
    [187] Lucas G P, Jin N D, A new kinematic wave model for interpreting cross correlation velocity measurements in vertically upward bubbly oil-in-water flows, Measurement Science and Technology, 2001,12(9): 1538~1545.
    [188] Zuber N, On the dispersed two-phase flow in the laminar flow regime, Chem. Eng. Sci., 1964, 19(11): 897~917
    [189] Chakraborty S, Keller E, Talley J, et al, Void fraction measurement in two-phase flow processes via symbolic dynamic filtering of ultrasonic signals, Measurement Science and Technoogy, 2009, 20(2), 023001
    [190] Ray A, Symbolic dynamic analysis of complex systems for anomaly detection, Signal Process, 2004, 84(7): 1115~1130
    [191] Subbu A and Ray A, Space partitioning via Hilbert transform for symbolic time series analysis, Applied Physics Letters, 2008, 92(8): 4107~4109
    [192] Buhl M and Kennel M B, Statistically relaxing to generating partitions for observed time-series data, Physical Review E, 2005, 71(4): 6213~6226
    [193] Rajagopalan V and Ray A, Symbolic time series analysis via wavelet-based partitioning, Signal Process, 2006, 86(11): 3309~3320
    [194] Thompson J M T and Stewart H B, Nonlinear dynamics and chaos, Wiley, Chichester, UK, 1986
    [195] May R M, Simple mathematical models with very complicated dynamics, Nature, 1976, 261(5560): 459~467
    [196] Zong Y B, Jin N D,Wang Z Y, et al,Nonlinear dynamic analysis of large diameter inclined oil-water two phase flow pattern,International Journal of Multiphase Flow, 2010, 36(3): 166~183
    [197] Yeh G C, Haynie Jr F H and Moses R A, Phase-volume relationship at the point of phase inversion in liquid dispersion, AICHE J., 1964, 10(2): 260~265
    [198] Descamps M., Oliemans R V A, Ooms G, et al, Influence of gas injection on phase inversion in an oil-water flow through a vertical tube, International Journal of Multiphase Flow, 2006, 32(3): 311~322
    [199]刘文红,郭烈锦,程开河等,水平及微倾斜管内油气水三相流流型特性,2006, 27(3): 120~125
    [200] Wigner E P, On the Quantum Correction for Thermodynamic Equilibrium, Physical Review, 1932, 40(5): 749~759
    [201] Ville J, Theorie et applications de la notion de signal analytique, Cables et Transmission, 1948, 2A(1): 61~74
    [202] Annunziato M and Abarbanel H D I, Nonlinear dynamics for classification of multiphase flow regimes, Proceedings of International Conference on Soft Computing, SOCO, Genova, Italy, 1999
    [203] Llauro F X and Llop M F, Characterization and classification of fluidization regimes by non-linear analysis of pressure fluctuations, International Journal of Multiphase Flow, 2006, 32(12): 1397~1404
    [204] Zheng G B, Jin N D, Jia X H, et al, Gas–liquid two phase flow measurement method based on combination instrument of turbine flowmeter and conductance sensor, 2008, 34(11): 1031~1047
    [205] Takens F, Detecting strange attractors in fluid turbulence, Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics 898 (Springer, Berlin), 1981: 366~381
    [206] Kolmogorov A N, Three approaches to the quantitative definition of information, Problems Information Transmission, 1965, 1(1): 1~7
    [207] Lempel A and Ziv J, On the complexity of finite sequences, Information Theory, IEEE Transactions on, 1976, 22(1): 75~81
    [208] Bates J E and Shepard H K, Measuring complexity using information fluctuation, Physics Letters A, 1993, 172(6): 416~425
    [209] Rezek I A and Roberts S J, Stochastic complexity measures for physiological signal analysis, IEEE Transactions on Biomedical Engineering, 1998, 45(9): 1186~1191
    [210] Pincus S M, Approximate entropy as a measure of system complexity, Proc. Natl. Acad. Sci. USA, 1991, 88(6): 2297~2301
    [211]陈伟,洪良斌,阳永荣等,加压流化床中差压脉动时间序列的复杂性,化工学报, 1997, 48(6): 746~750
    [212]陈伯川,黄蓓,黄春燕等,三种复杂性测度在气固流化床压力脉动中的应用,高校化学工程学报,2002, 16(4): 415~420
    [213]林萍,王晓萍,陈伯川等,近似熵的性质及其在气固流化床复杂性研究中的应用,高校化学工程学报,2004, 18(3): 281~286
    [214] Zhao S, Jin N D, Hai M, et al, Characterization of oil/water two-phase flow based on complexity theory, IEEE-The Third International Conference on Machine Learning and Cybernetics, August 26-29, 2004, 3: 1530~1534
    [215]金宁德,董芳,赵舒,气液两相流电导波动信号复杂性测度分析及其流型表征,物理学报,2007, 56(2): 720~729
    [216] Kaspar F and Schuster H G, Easily calculable measure for the complexity of spatiotemporal patterns, Physical Review A, 1987, 36(2): 842~848
    [217] Richman J S and Moorman J R, Physiologic time-series analysis using approximate entropy and sample entropy, Am. J. Physiol. Heart Circ. Physiol. 2000, 278(6): 2039~2049
    [218]庄建军,宁新宝,邹鸣等,两种熵测度在量化射击运动员短时心率变异性信号复杂度上的一致性,物理学报,2008, 57(5): 2805~2811
    [219] Costa M, Goldberger A L and Peng C K, Multiscale entropy analysis of complex physiologic time series, Physical Review Letters, 2002, 89(6), 068102
    [220] Costa M, Goldberger A L and Peng C K, Multiscale entropy analysis of biological signals, Physical Review E, 2005, 71(2), 021906
    [221] Escudero J, Abasolo D, Hornero R, et al, Analysis of electroencephalograms in Alzheimer's disease patients with multiscale entropy, Physiological Measurement, 2006, 27(11): 1091~1106
    [222] Norris P R, Stein P K and Morris Jr J A, Reduced heart rate multiscale entropy predicts death in critical illness: A study of physiologic complexity in 285 trauma patients, Journal of Critical Care, 2008, 23(3): 399~405
    [223]陈建萍,多尺度熵方法用于电子器件噪声分析,西安电子科技大学硕士学位论文,2007
    [224]何亮,杜磊,庄奕琪等,金属互连电迁移噪声的多尺度熵复杂度分析,物理学报,2008, 57(10): 6545~6550
    [225] Nikulin V V and Brismar T, Comment on“Multiscale Entropy Analysis of Complex Physiologic Time Series”, Physical Review Letters, 2004, 92(8), 089803
    [226] Costa M, Goldberger A L, Peng C K, Costa, Goldberger, and Peng Reply:, Physical Review Letters, 2004, 92(8), 089804
    [227] Henon M, A two-dimensional mapping with a strage attractor, Communications in Mathematical Physics, 1976, 50(1): 69~77
    [228] Lorenz E N, Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 1963, 20(2): 130~141
    [229] Chen G, Ueta T, Yet another chaotic attractor, International Journal of Bifurcation and Chaos, 1999, 9(7): 1465~1466

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700