用户名: 密码: 验证码:
多播广播单频网的无线资源管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多播广播单频网(Multicast Broadcast Single Frequency Network, MBSFN)作为蜂窝网络中多播业务的传输模式,在提高系统频谱资源利用率的同时,可以增强网络传输的可靠性,以保证多播业务的服务质量。随着无线通信技术及移动多媒体业务的飞速发展,人们对无线资源的需求仍在急剧加大。在移动蜂窝网络中,多播和单播业务混合共享无线资源,如何实现多播与单播业务下高效的无线资源管理是亟须解诀的问题。因此,多播广播单频网的无线资源管理研究是一个新的且重要的问题,受到学术界和工业界的广泛关注。
     本论文将主要针对MBSFN无线资源管理中的切换、负载均衡和调度算法这三方面的问题进行探讨与研究,同时也是作者在参加国家科技重大专项" IMT-Advanced新型无线传输技术研发(项目编号2008ZX03003-004)”和“面向IMT-Advanced跨层优化技术(项目编号2010ZX03003-001)”等科研项目过程中所取得的一些研究成果。
     本论文的具体研究内容如下:
     在MBSFN的切换算法研究方面,针对多播业务的资源需求问题,提出了最小化多播业务需求资源的切换算法和基于多播单播业务负载均衡的切换算法。通过分析单频网(Single Frequency Network, SFN)和点到点(Point-to-point, PTP)两种传输模式下的信号与干扰加噪声比(Signal to Interference plus Noise Ratio, SINR),建立了多播业务需求资源的系统模型,并以最小化多播业务的需求资源为优化目标,在这两种模式之间进行切换来获得最优解;进而考虑单播业务的需求资源,建立了小区需求资源的系统模型,并以最小化最高负载小区的需求资源为优化目标,基于动态的模式切换阈值进行最优化求解。仿真结果表明,所提算法可以有效减少多播业务的需求资源而提高了无线资源利用率。
     在MBSFN的负载均衡算法研究方面,针对由于多播业务需求差异而导致的高负载小区的热点拥塞问题,提出了多播广播单频网区域内的负载均衡算法和多播广播单频网区域间的负载均衡算法。通过分析SFN和点到多点(Point-to-multipoint, PTM)两种传输模式下的SINR,建立了MBSFN区域内各小区需求资源的系统模型,并以最小化最高负载小区的需求资源为优化目标,基于最优化多播业务服务质量(Quality of Service, QoS)进行最优化求解;进而建立各MBSFN区域内最高负载小区需求资源的系统模型,并以最小化各MBSFN区域内最高负载小区需求资源的最大值为优化目标,采用模拟退火算法进行最优化求解。仿真结果表明,所提算法的最高负载小区需求资源最小,具有较好的负载均衡效果。
     在MBSFN的调度算法研究方面,针对实时多播单播联合调度中的业务时延和用户终端能耗的折中问题,提出了保证实时多播业务QoS的调度算法和实时多播单播业务的节能调度算法。通过分析各多效因子来定义调度的优先级函数,并采用并行调度的方法来降低计算的复杂度;进而通过分析用户终端的传输能耗和状态转换能耗,建立了用户终端能耗的系统模型,并采用循环迭代的方法对用户终端平均能耗的最小化问题进行求解。仿真结果表明,所提算法在保证多播单播业务的时延性能下,可以大大地降低用户的终端能耗而达到节能的效果。
Multicast Broadcast Single Frequency Network (MBSFN), as a transmission mode for multicast services in cellular networks, can improve the utilization of spectrum resources and the coverage of wireless network to guarantee the quality of service (QoS) of multicast services. With the increasing demand of radio resources for the rapid development of radio access technologies and related services, multicast and unicast services share available radio resources. Therefore, the radio resources management (RRM) for multicast and unicast services is becoming a new but crucial issue in MBSFN field and catches attentions in both research and industry societies.
     This dissertation mainly focuses on discussing and solving the three problems of handover, load balancing and packet scheduling in RRM for MBSFN, and it is also a collection of results achieved during the author participating in the National Science and Technology Major Project "Research of IMT-Advanced Wireless Transmission Technology (No.2008ZX03003-004)" and "Research of IMT-Advanced Cross-layer Optimization Technology (No.2010ZX03003-001)".
     The main contents of this dissertation are issued as follows:
     In the handover algorithms for MBSFN, to solve the problem of the demanded radio resources for multicast services, the handover algorithm of minimizing the demanded radio resources for multicast services and the handover algorithm of load balancing for the multicast and unicast services are proposed. The system model of the demanded radio resources for multicast services is formulated by analyzing Signal to Interference plus Noise Ratio (SINR) of single frequency network (SFN) mode and point-to-point (PTP) mode, and the minimization problem of the demanded radio resources for multicast services is solved by the switch between the two transmission modes of SFN and PTP; then the system model of the demanded radio resources for the multicast and unicast services in a cell is formulated by considering the demanded radio resources for unicast services, and the minimization problem of the demanded radio resources for the maximum load cell is solved by the dynamic handover threshold. The simulation results show that the proposed handover algorithms can greatly reduce the demanded radio resources of multicast services to improve the spectrum utilization.
     In the load balancing algorithms for MBSFN, to avoid the network congestion of the different demanded radio resources for multicast services, the load balancing algorithm in MBSFN areas and the load balancing algorithm between MBSFN areas are proposed. The system model of the demanded radio resources for a cell in MBSFN areas is formulated by analyzing the SINR of SFN mode and point-to-multipoint (PTM) mode, and the minimization problem of the demanded radio resources for the maximum load cell is solved by multicast QoS optimization; then the system model of the demanded radio resources for the maximum load cell in MBSFN is formulated by the two transmission modes of SFN and PTM, and the Simulated Annealing (SA) algorithm is adopted to solve the minimization problem of the maximum of the demanded radio resources for the maximum load cell in each MBSFN area. The simulation results show that the proposed load balancing algorithms can efficiently reduce the demanded radio resources of the maximum load cell for the better load balancing.
     In the packet scheduling algorithms for MBSFN, to solve the tradeoff problem in the delay performance of real-time multimedia services and the average energy of mobile stations, the packet scheduling algorithm for guaranteeing the QoS requirements of real-time multicast services and the energy efficient packet scheduling algorithm for the real-time multicast and unicast services are proposed. The function of scheduling priority is defined by analyzing multiple utility factors, and the parallel scheduling is adopted to reduce the computation complexity; then the system model of the average energy of mobile stations is formulated by analyzing the energy for the transmission and states exchange of mobile stations, and the circulation and iteration algorithm is adopted to solve the minimization problem of the average energy of mobile stations. The simulation results show that the proposed packet scheduling algorithms can guarantee the minimum average energy of mobile stations with satisfying the delay performance of real-time multimedia services.
引文
[1]张新程等WCDMA切换技术原理优化.北京机械工业出版社,2006年.
    [2]Hsin-Piao Lin, Rong-Terng Juang, Ding-Bing Lin. Validation of an improved location-based handover algorithm using GSM measurement data. IEEE Transactions on Mobile Computing, Vol.4, No.5, PP.530-536,2005.
    [3]Jaimes-Romero F.J, Munoz-Rodriguez D. Generalized Bayesian hypothesis testing for cell coverage determination. IEEE Transactions on Vehicular Technology, Vol.49, No.4, PP.1102-1109, July.2000.
    [4]Po-Hsuan Tseng, Kai-Ten Feng. A predictive movement based handover algorithm for broadband wireless networks. IEEE Wireless Communications and Networking Conference, PP.2834-2839,2008.
    [5]Li Song, Ai-jun Liu, Yi-fei Ma. Adaptive handoff algorithm for multi-beam GEO mobile satellite system. IEEE International Conference on Communications, PP.1947-1951, May.2008.
    [6]Litao Liang, Hui Wang, Ping Zhang. Net utility-based network selection scheme in CDMA cellular/WLAN integrated networks. IEEE Wireless Communications and Networking Conference, PP.3313-3317, Mar.2007.
    [7]Liu Xia, Ling-ge Jiang, Chen He. A novel fuzzy logic vertical handoff algorithm with aid of differential prediction and pre-decision method. IEEE International Communications Conference, PP.5665-5670, June.2007.
    [8]D. Avidor, N. Hegde and S. Mukherjee. On the impact of the soft handoff threshold and the maximum size of the active group on resource allocation and outage probability in the UMTS system. IEEE Transactions on Wireless Communications, Vol.3, No.2, PP.565-577, Mar.2004.
    [9]M. Akar and U. Mitra. Soft handoff algorithms for CDMA cellular networks. IEEE Transactions on Wireless Communications, Vol.2, No.6, PP.1259-1274, Nov.2003.
    [10]M. N. Halgamuge, H. L. Vu, K. Ramamohanarao, M. Zukerman. Signal-based evaluation of handoff algorithms. IEEE Communications Letter, Vol.9, No.9, PP.790-792, Sept.2005.
    [11]S. Das, W. M. MacDonald and H. Viswanathan. Sensitivity analysis of handoff algorithms on CDMA forward link. IEEE Transactions on Vehicular Technology, Vol.54, No.1, PP.272-285, Jan.2005.
    [12]Sae-Young Chung, Humblet P.A. An optimal soft handoff algorithm for rayleigh fading channels. IEEE Transactions on Wireless Communications, Vol.7, No.2, PP.726-735, Feb.2008.
    [13]Kemeng Yang, Gondal I., Bin Qiu. Context aware vertical soft handoff algorithm for heterogeneous wireless networks. IEEE 68th Vehicular Technology Conference, PP.1-5, Sept.2008.
    [14]Kim S, Varshney P K. Adaptive load balancing with preemption for multimedia cellular networks. IEEE Wireless Communications and Networking Conference, PP.1680-1684, Mar.2003.
    [15]Velayos H, Aleo V, Karlsson G. Load balancing in overlapping wireless LAN cells. IEEE International Conference on Communications, PP.3833-3836, June.2004.
    [16]Du L, Bigham J, Cuthbert L. Towards intelligent geographic load balancing for mobile cellular networks. IEEE Transactions on Systems, Vol.33, No.4, PP.480-491,2003.
    [17]Lee C, Kang H, Park T. Dynamic sectorization of microcells for balanced traffic in cdma:genetic algorithms approach. IEEE Transactions on Vehicular Technology, Vol.51, No.1, PP.63-72,2002.
    [18]Lobinger A, Stefanski S, Jansen T, et al. Load balancing in downlink LTE self-optimizing networks. IEEE Vehicular Technology Conference, PP.1-5, May.2010.
    [19]Kyuho Son, Song Chong, Veciana G. Dynamic association for load balancing and interference avoidance in multi-cell networks. IEEE Transactions on Wireless Communicarions, Vol.8, No.7, PP.3566-3576,2009.
    [20]Hongseok Kim, Gustavo de Veciana, Xiangying Yang, et al. Alpha-optimal user association and cell load balancing in wireless networks. Proceedings of IEEE International Conference on Computer Communications, PP.1-5, Mar.2010.
    [21]Min Song, Yanxiao Zhao, Jun Wang, et al. A high throughput load balance algorithm for multichannel wireless sensor networks. IEEE International Conference on Communications, PP.1-5,2009.
    [22]Petrova M, Olano N, Mahonen P. Balls and bins distributed load balancing algorithm for channel allocation. The 17th International Conference on Wireless On-demand Network Systems and Services, PP.25-30,2010.
    [23]Wu H, Qiao C, De S, et al. Integrated cellular and ad-hoc relaying systems: iCAR. IEEE Journal on Selected Areas in Communications, Vol.19, No.10, PP.2105-2115, Oct.2001.
    [24]Yanmaz E, Tonguz O K. Dynamic load balancing and sharing performance of integrated wireless networks. IEEE Journal on Selected Areas in Communications, Vol.22, No.5, PP.862-872, June.2004.
    [25]Ghaboosi N, Jamalipour A. A cooperative cellular architecture with emphasis on traffic load balancing. IEEE Wireless Communications and Networking Conference, PP.1-6,2010.
    [26]Brickley O, Rea S, Pesch D. Load balancing for QoS optimisation in wireless LANs utilizing advanced cell breathing techniques. IEEE 61st Vehicular Technology Conference, PP.2105-2109,2005.
    [27]Bahl P, Hajiaghayi M T, Jain K, et al. Cell breathing in wireless LANs: algorithms and evaluation. IEEE Transactions on Mobile Computing, Vol.6, No.2, PP.164-178,2007.
    [28]Bejerano Y, Han S J. Cell breathing techniques for load balancing in wireless LANs. IEEE Transactions on Mobile Computing, Vol.8, No.6, PP.735-749, 2009.
    [29]Huang C F, Lee H W, Tseng Y C. A two-tier heterogeneous mobile ad-hoc network architecture and its load-balance routing problem. ACM Mobile Networking and Applications, Vol.9, No.4, PP.379-391,2004.
    [30]Yamada M, Shinkuma R, Takahashi T. Cooperative networking in heterogeneous infrastructure multihop mobile networks. IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, PP.1-5, Sept.2006.
    [31]Jiang Qing, Xu Mei, Tang Lun. Research on load balancing based on multi-agent in ubiquitous networks. The International Conference on Intelligent Computation Technology and Automation, PP.10-13,2010.
    [32]邴红艳,何晨,蒋铃鸽.下一代异构网络中基于进化博弈论的业务负载均衡.通信学报,Vo1.24,No.B 1 1,PP.39-44,2003.
    [33]Yu Zhou, Yanxia Rong, Hyeong-Ah Choi, et al. Utility-based load balancing in WLAN-UMTS internetworking systems. IEEE Radio and Wireless Symposium, PP.587-590,2008.
    [34]Song W, Zhuang W H, Cheng Y. Load balancing for Cellular/WLAN integrated networks. IEEE Network, Vol.21, No.1, PP.27-33, Jan.2007.
    [35]Quoc-Thinh Nguyen-Vuong, Agoulmine N, Ghamri-Doudane Y. Novel approach for load balancing in heterogeneous wireless packet networks. IEEE Network Operations and Management Symposium Worshops, PP.26-31,2008.
    [36]Wai GenYee, Shamkant B.Navathe, Edward omiecinski and Chris Jermaine. Effieient data allocation over multiple channels at broadcast servers. IEEE Transactions on Computers, Vol.51, No.10, PP.1231-1236,2002.
    [37]Elia Ardizzoni, AlanA.Bertossi, Maria Cristina Pinotti, Shashank Ramaprasad, Romeo Rizzi and Madhusudana V.S.Shashanka. Optimal skewed data allocation on multiple channels with flat broadcast per channel. IEEE Transactions on Computers, Vol.54, No.5, PP.558-572,2005.
    [38]胡虚怀.移动计算环境中数据广播调度算法的研究.湖南理工学院学报(自然科学版),Vo1.18,No.2,PP.79-82,June.2005.
    [39]李国徽,李金磊.移动计算环境中变长数据的广播.华中科技大学学报(自然科学版),Vol.34,No.1,PP.30-32,Jan.2006.
    [40]Jen-Jou Hung and Andre Seifert. Flexsehed:a parameterized data schedule generator for multi-channel broadcast systems. Proceedings of the 7th International Conference on Mobile Data Management, PP.129-129, May.2006.
    [41]J. L. Xu, X. Y. Tang, W. C. Lee. Time-critical on-demand data broadcast: algorithms, analysis and performance evaluation. IEEE Transactions on Parallel and Distributed Systems, Vol.17, No.1, PP.3-14,2006.
    [42]Jun Chen, Ganping Huang, Lee.V.C.S. Scheduling algorithm for multi-item requests with time constraints in mobile computing environments.2007 International Conference on Parallel and Distributed System, Vol.2, PP.1-7, Dec. 2007.
    [43]Jun Chen, Kai Liu, Lee.V.C.S. Analysis of data scheduling algorithms in supporting real-time multi-item requests in on-demand broadcast environments. IEEE International Symposium on Parallel and Distributed Processing, PP.1-8, May.2009.
    [44]Chih-Lin Hu. On-demand real-time information dissemination:a general approach with faimess, productivity and urgeney. The 21st International Conference on Advanced Information Networking and Applications, PP.362-369, May.2007.
    [45]Jiun-Long Huang, Wen-Chih Peng and Ming-Syan Chen. Som:dynamic push-pull channel allocation framework for mobile data broadcasting. IEEE Transactions on Mobile Computing, Vol.5, No.8, PP.974-990,2006.
    [46]Chih-Lin Hu and Ming-Syan Chen. Adaptive balanced hybrid data delivery for multi-channel data broadcast. Proeeedings of the IEEE International Conference on Communications, PP.960-964,2002.
    [47]Jing Cai, Tsutomu Terada, Takahiro Hara and Shojiro Nishio. An adaptive control method in the hybrid wireless broadcast environment. The 8th Intenational Conference on Mobile Data Management, PP.86-93, May.2007.
    [48]Kanghee Kim, Hongku Kang, Kiseon Kim. Providing quality of service in adaptive resource allocation for OFDMA systems. IEEE 59th Vehicular Technology Conference, Vol.3, PP.1612-1615, May.2004.
    [49]Patrick Svedman, Sarah Kate Wilson, Bjorn Ottersten. A QoS-aware proportional fair scheduler for opportunistic OFDM. IEEE 60th Vehicular Technology Conference, Vol.1, PP.558-562,2004.
    [50]Zhen Kong, Yu-Kwong Kwok, Jiangzhou Wang. A low-complexity QoS-aware proportional fair multicarrier scheduling algorithm for OFDM systems. IEEE Transactions on Vehicular Technology, Vol.58, No.5, PP.2225-2235, Jun.2009.
    [51]Jun Cai, Xuemin Shen, Mark J.W. Downlink resource management for packet transmission in OFDM wireless communication systems. IEEE Transactions on Wireless Communications, Vol.4, No.4, PP.1688-1703, July.2005.
    [52]Matthew Andrews, Krishnan Kumaran, Kavita Ramanan, Alexander Stolyar, Phil Whiting. Providing quality of service over a shared wireless link. IEEE Communications Magazine, Vol.39, No.2, PP.150-154,2001.
    [53]J. H. Rhee, J. Holtzman, D. K. Kim. Scheduling of real/non-real time services: adaptive EXP/PF algorithm. Proceedings of IEEE 57th Vehicular Technology Conference, Vol.1, PP.462-466, Apr.2003.
    [54]徐国鑫,张建华,罗强,张平OFDMA下行链路的延迟加权动态子载波分配算法.北京邮电大学学报,PP.70-73,2005年10月.
    [55]Cecchi M, Fantacci R, Marabissi D, Tarchi D. Adaptive scheduling algorithms for multimedia traffic in wireless OFDMA systems. IEEE Global Telecommunications Conference, PP.1-5,2008.
    [56]Guocong Song, Ye Li. Utility-based resource allocation and scheduling in OFDM-based wireless broadband networks. IEEE Communications Magazine, Vol.43, No.12, PP.127-134, Dec.2005.
    [57]Xiaolu Zhang, Meixia Tao, Chun Sum Ng. A generalized gradient scheduling algorithm in wireless networks for variable rate transmission. IEEE Global Telecommunications Conference, PP.3473-3477, Nov.2007.
    [58]Zixiong Chen, Kai Xu, Feng Jiang, Ying Wang, Ping Zhang. Utility based scheduling algorithm for multiple services per user in MIMO OFDM system. IEEE International Conference on Communications, PP.4734-4738, May.2008.
    [59]Danhua Zhang, Xiaoming Tao, Jianhua Lu, Meng Wang. Dynamic resource allocation for real-time services in cooperative OFDMA systems. IEEE Communications Letters, Vol.15, No.5, PP.497-499, May.2011.
    [60]Fathi M, Taheri H, Mehrjoo M. Utility maximisation in channel-aware and queue-aware orthogonal frequency division multiple access scheduling based on arrival rate control. IET Communications, Vol.6, No.2, PP.235-241, Jan.2012.
    [1]M. Ylianttila, J. Makela and K. Pahlavan. Geolocation information and inter-technology handoff. Proceedings of IEEE ICC, Vol.3, PP.1573-1577, June.2000.
    [2]H. P. Lin, R. T. Juang and D. B. Lin. Validation of an improved location-based handover algorithm using GSM measurement data. IEEE Transactions on Mobile Computing, Vol.4, No.5, PP.530-536,2005.
    [3]A. Markopoulos, S. Kyriazakos, K. Tsagkaris, et al. Performance of cellular networks and mobile location-driven handover algorithms. Proceedings of IEEE VTC, Vol.4, PP.2430-2436, May.2004.
    [4]R. Y. Kim, I. Jung, X. Y. Yang and C. C. Chou. Advanced handover schemes in IMT-advanced systems [WiMAX/LTE Update]. IEEE Communications Magazine, Vol.48, No.8, PP.78-85, Aug.2010.
    [5]J. K. Seok and M. Gohar. Multicast handover agents for fast handover in wireless multicast networks. IEEE Communications Letters, Vol.14, No.7, PP.676-678,July.2010.
    [6]J. H. Lee, S. Pack, T. Kwon and Y. Choi. Reducing handover delay by location management in mobile WiMAX multicast and broadcast services. IEEE Transactions on Vehicular Technology, Vol.60, No.2, PP.605-617, Feb.2011.
    [7]F. He and F. R. Wang. Position aware vertical handoff decision algorithm in heterogeneous wireless networks. Proceedings of IEEE WiCOM, PP.1-5, Sept.2008.
    [8]P. H. Tseng and K. T. Feng. A predictive movement based handover algorithm for broadband wireless networks. Proceedings of IEEE WCNC, PP.2834-2839, Mar.2008.
    [9]N. Saxena and A. Roy. Novel framework for proactive handover with seamless multimedia over WLANs. IET Communications, Vol.5, No.9, PP.1204-1212, June.2011.
    [10]L. Song, A. J. Liu and Y. F. Ma. Adaptive handoff algorithm for multi-beam GEO mobile satellite system. Proceedings of IEEE ICC, PP.1947-1951, May.2008.
    [11]D. Triantafyllopoulou, N. Passas, A. Kaloxylos and L. Merakos. Coordinated handover initiation and cross-layer adaptation for mobile multimedia systems. IEEE Transactions on Multimedia, Vol.11, No.6, PP.1131-1139, Sept.2009.
    [12]L. Rong, Q. Haddada and S. Elayoubi. Analytical analysis of the coverage of a MBSFN OFDMA network. Proceedings of IEEE GLOBECOM, PP.1-5, Dec.2008.
    [1]L. Du, J. Bigham and L. Cuthbert. Towards intelligent geographic load balancing for mobile cellular networks. IEEE Transactions on Systems, Man, and Cybernetics, Vol.33, No.4, PP.480-491,2003.
    [2]C. Lee, H. Kang and T. Park. Dynamic sectorization of microcells for balanced traffic in cdma:genetic algorithms approach. IEEE Transactions on Vehicular Technology, Vol.51, No.1, PP.63-72,2002.
    [3]S. Kyuho, C. Song and G. Veciana. Dynamic association for load balancing and interference avoidance in multi-cell networks. IEEE Transactions on Wireless Communicarions, Vol.8, No.7, PP.3566-3576,2009.
    [4]A. F. AI Rawi, B. S. Sharif and C. C. Tsimenidis. User priority aware scheduling and dynamic resource allocation in orthogonal frequency division multiple access. IET Communicarions, Vol.5, No.7, PP.1006-1019,2011.
    [5]R. Aggarwal, M. Assaad, C. E. Koksal and P. Schniter. Joint scheduling and resource allocation in the OFDMA downlink:utility maximization under imperfect channel-state information. IEEE Transactions on Signal Processing, Vol.59, No.11,PP.5589-5604,2011.
    [6]Hongseok Kim, G. de Veciana, X. Y. Yang and M. Venkatachalam. Alpha-optimal user association and cell load balancing in wireless networks. Proceedings of IEEE INFOCOM, PP.1-5, Mar.2010.
    [7]N. Ghaboosi and A. Jamalipour. A cooperative cellular architecture with emphasis on traffic load balancing. Proceedings of IEEE WCNC, PP.1-6, Apr.2010.
    [8]W. C. Xu, C. Q. Hua and A. P. Huang. A game theoretical approach for load balancing user association in 802.11 wireless networks. Proceedings of IEEE GLOBECOM, PP.1-5, Dec.2010.
    [9]P. Bahl, M. T. Hajiaghayi, K. Jain, et al. Cell breathing in wireless LANs: algorithms and evaluation. IEEE Transactions on Mobile Computing, Vol.6, No.2, PP.164-178,2007.
    [10]Y. Bejerano and S. J. Han. Cell breathing techniques for load balancing in wireless LANs. IEEE Transactions on Mobile Computing, Vol.8, No.6, PP.735-749,2009.
    [11]V. D. Papoutsis and S. A. Kotsopoulos. Chunk-based resource allocation in multicast OFDMA systems with average BER constraint. IEEE Communicarions Letter, Vol.15, No.5, PP.551-553,2011.
    [12]C. C. Ribeiro, S. L. Martins and I. Rosseti. Metaheuristics for Optimization Problems in Computer Communications. Computer Networks, Vol.30, No.4, PP.656-669,2007.
    [1]K. H. Kim, H. K. Kang and K. Kim. Providing quality of service in adaptive resource allocation for OFDMA systems. Proceedings of IEEE VTC, Vol.3, PP.1612-1615, May.2004.
    [2]P. Svedman, S. K. Wilson and B. Ottersten. A QoS-aware proportional fair scheduler for opportunistic OFDM. Proceedings of IEEE VTC, PP.558-562, 2004.
    [3]Z. Kong, Y. K. Kwok and J. Z. Wang. A low-complexity QoS-aware proportional fair multicarrier scheduling algorithm for OFDM systems. IEEE Transactions on Vehicular Technology, Vol.58, No.5, PP.2225-2235, June.2009.
    [4]Q. Li and R. Negi. Scheduling in wireless networks under uncertainties. Proceedings of IEEE ICC, PP.1-5, May.2010.
    [5]J. Hajipour and V. C. M. Leung. Proportional fair scheduling in multi-carrier networks using channel predictions. Proceedings of IEEE ICC, PP.1-5, May.2010.
    [6]L. Xiao, S. D. Zhou and Y. Yao. QoS-oriented scheduling algorithm for mobile multimedia in OFDM. Proceedings of IEEE PIMRC, Vol.1, PP.545-549, Sept.2003.
    [7]Y. J. Wang, S. Z. Xu, F. Q. Liu, X. H. Wang, Y. Q. Qian and Y. L. Wang. A QoS-oriented cross-layer packet scheduling algorithm for a downlink wireless OFDMA system. Proceedings of IEEE CCWMSN, PP.793-796, Dec.2007.
    [8]M. Cecchi, R. Fantacci, D. Marabissi and D. Tarchi. Adaptive scheduling algorithms for multimedia traffic in wireless OFDMA systems. Proceedings of IEEE GLOBECOM, PP.1-5,2008.
    [9]G. C. Song and Y. Li. Utility-based resource allocation and scheduling in OFDM-based wireless broadband networks. IEEE Communications Magazine, Vol.43, No.12, PP.127-134, Dec.2005.
    [10]X. L. Zhang, M. X. Tao and C. S. Ng. A generalized gradient scheduling algorithm in wireless networks for variable rate transmission. Proceedings of IEEE GLOBECOM, PP.3473-3477,2007.
    [11]Z. X. Chen, K. Xu, F. Jiang, Y. Wang and P. Zhang. Utility based scheduling algorithm for multiple services per user in MIMO OFDM system. Proceedings of IEEE ICC, PP.4734-4738, May.2008.
    [12]J. Shi, G. Fang, Y. Sun, J. Zhou, Z. Li and E. Dutkiewicz. Improving mobile station energy efficiency in IEEE 802.16e WMAN by burst scheduling. Proceedings of IEEE GLOBECOM, PP.1-5,2006.
    [13]R. Cohen and R. Rizzi. On the trade-off between energy and multicast efficiency in 802.16e-like mobile networks. Proceedings of IEEE INFOCOM, PP.1-9, 2006.
    [14]田霖,杨育波,方更法,石晶林,DUTKIEWICZ Eryk基于调度集合的多播单播数据联合调度算法Journal of Software, Vol.19, No.12, PP.3196-3206, Dec.2008.
    [15]Sharangi S, Krishnamurti R and Hefeeda M. Energy-efficient multicasting of scalable video streams over WiMAX networks. IEEE transactions on multimedia, Vol.13, No.1, PP.102-115, Feb.2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700