用户名: 密码: 验证码:
形状记忆合金的本构模型及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于地震、台风等自然灾害或其它因素的影响,混凝土结构在长期的使用过程中,经常会出现裂缝等破坏现象,如何提高混凝土结构的抗震能力以及如何进行结构的修复和加固工作,都成为工程领域亟需解决的问题。因为形状记忆合金(Shape Memory Alloys,简称SMA)材料具有形状记忆效应、超弹性、高阻尼、电阻特性等特性而体现出自感知、自诊断和自适应能力,必将在结构振动控制和结构健康监测等领域,发挥不可忽视的作用。然而,SMA在本构模型特别是多维的本构模型方面,以及在振动控制及混凝土结构修复等方面还存在很多问题有待进一步研究。本文主要针对SMA的本构模型以及在土木工程中的应用,做了基础性的研究,具体内容如下:
     (1)对不同直径的奥氏体相SMA丝进行加载和卸载试验,研究不同的循环次数、应变幅值、加载速率、温度等因素对SMA丝力学性能的影响;并且研究了SMA丝在不同加载条件下的电阻特性。试验结果显示,加载幅值、加载速率和环境温度均是影响SMA丝力学性能的重要参数。
     (2)基于Kazuhiko Arai的理论,利用能量分析的方法,并考虑了SMA相变和应变率变量的影响建立了SMA的一维连续动力学模型。近几十年来,国内外的学者对SMA材料的本构模型做了大量的研究分析,并相继提出了多种模型,但传统的SMA一维模型,多数不考虑应变率的影响,而且加载和卸载阶段要分别用不同的关系式表达。为了证明所提出模型的实用性,利用该模型计算的结果与试验结果进行对比,结果吻合良好。
     (3)利用了塑性力学中的屈服面方程,并结合了Brinsion的一维本构模型的思想和Boyd和Lagoudas模型的概念,提出了一种改进的SMA多维本构模型。该本构模型可以用来计算不同的应力和温度以及不同的加载过程下材料的变形。为了验证该多维模型的有效性,利用MATLAB软件编写程序,对三个不同的算例进行模拟计算,结果表明所提出的改进模型不仅可以很好的描述SMA一维情况的力学行为,也可以很好地定性描述SMA二维薄板的形状记忆效应和超弹性。
     (4)完成了利用SMA形状记忆效应对混凝土梁进行修复的试验。将常温下为马氏体相的SMA丝和SMA绞线埋入混凝土梁中,制成SMA智能混凝土梁,并对试件进行四点弯曲试验,卸载后对SMA丝进行通电激励,利用SMA的形状记忆效应在相变过程中产生的恢复力来修复混凝土梁的裂缝宽度和挠度。观察实验结果可知,由于SMA丝会向周围混凝土散热的原因,使无粘结力SMA混凝土梁比有粘结力SMA混凝土梁修复效果要好;由于接触面积的问题,使配有SMA绞线的混凝土梁比配有单根SMA丝的混凝土梁的修复效果要好;由于配置在受拉区的钢筋阻碍了SMA的恢复,所以没有配置受拉区钢筋的混凝土梁比配置受拉区钢筋的混凝土梁的修复效果要明显。
     (5)设计并制作出了一种新型的SMA-粘滞阻尼器,并完成相关力学性能试验。针对目前阻尼器耗能形式单一、无复位功能的问题,新研制的利用奥氏体状态SMA超弹性阻尼器不但具有高耗能,而且还具有自复位的性能。对该阻尼器进行了加载卸载试验,实验表明,随着加载频率和加载位移幅值的增大,阻尼器的耗能量显著增大;对一个八层简单钢框架结构模型应用复合阻尼器进行动力时程分析,模拟结果显示,复合阻尼器模型对结构的抗震作用明显,可以很好地降低结构的顶层位移和最大加速度。
Because of various disasters, such as earthquakes and Hurricane, etc., concrete structures often appear cracks and other damage phenomena in long-term use. How to improve the seismic capacity of concrete structures and how to repair and reinforce these structures become a much-needed engineering problem. Shape memory alloys (SMAs) have many characteristics such as shape memory effect, super-elasticity, high damping and resistance, etc., reflecting the properties of self-perception, self-diagnostics and adaptive capacity, and these properties are bound to make SMAs play a significant role in the field of vibration control and structural health monitoring. However, there are still many problems to be studied further about the SMAs, for instance, vibration control and concrete structure repair as well as constitutive models, especially the multi-dimensional constitutive model. In this paper, some basic researches about the constitutive model and applications in civil engineering for SMAs are conducted, and the main works of the paper are as follows:
     (1) The basic mechanical properties of Austenite phase SMA wires with different diameters, different cycles, strain amplitudes, loading rates, temperature and other factors were studied by experimental method, and the resistance of the SMA wire at different imposed conditions were also studied. The results showed that loading magnitude, loading rate and temperature were the important parameters, which will affect the mechanical properties of SMA wires.
     (2) Based on Kazuhiko Arai's theory for which the method of energy analysis was used, one-dimensional continuous dynamic model for the SMAs was established by taking into account the affects of the transformation of SMA and the variables of strain rate. In recent decades, scholars at home and abroad had made a great deal of research and analysis for the constitutive model of the SMA material. However, the most of the researched models were not pay attention to the influence of the strain rate, and use different relationship to express the process of loading and unloading. In order to prove the usefulness of the proposed model, the results calculated by using the proposed model were compared with the results by experiments, and the results were in good agreement.
     (3) An improved three-dimensional constitutive model of the SMAs was established by using the yield surface equation of plasticity, combining with the idea of Brinsion's one-dimensional constitutive model and the concept of Boyd and Lagoudas model. The proposed constitutive model can be used to calculate the deformation of the SMAs under different temperatures, different stresses and different loading paths. In order to verify the validity of the three-dimensional model, the MATLAB software was used for programming and the simulation of three different examples, and the simulation results showed that the improved model can not only well describe the SMA's mechanical behavior under one-dimensional situation, but also be very well to qualitatively describe the SMA shape memory effect and superelasticity of two-dimensional sheet.
     (4) A validation test for repairing cracks and deformation of concrete beams by using shape memory effect was conducted in a laboratory. The SMA smart concrete beams were made by embedding the SMA wires and SMA strands in the concrete beams, which all the SMAs were under martensite phase at room temperature. The specimens used for the four-point bending experiment were experimentally developed. After completely unloading, the embedded SMAs were drived by Joule heating to repair the cracks width and deflection in concrete beams by using the restoring force which generated in the process of phase transformation. The experimental results showed that the repairing effect for the damaged concrete beams without bond strength was better than those with bond strength because of the easy heat transmission from the SMA wires to the surrounding concrete. The repairing effect of the concrete beam with the SMA strands was better than that with a single SMA wire for the different contact areas. The repairing effect of the concrete beams without tension reinforcement was better than that with tension reinforcement for the tension reinforcement hindered the recovery of the SMAs.
     (5) A novel type of SMA-viscous damper was designed and manufactured and the corresponding mechanical property test was conducted. At present, the damper has only a single form of energy consumption and no self-centrical function. The developed damper by using the superelastic of the austenitic SMAs has not only highly energy-consuming but also the performance of self-reset. The proposed damper was tested by loading and unloading, and experimental results showed that the energy consumption capacity of the damper could increase significantly by increasing the loading frequency and load displacement amplitude. A dynamic time-history analysis for a model of simple eight storey steel frame structure installed the proposed SMA dampers under earthquake excitations was carried out and the simulation results showed that the new SMA damper can well reduce the displacement and maximum acceleration at the top of the structure. This can be proved that the developed SMA damper can significantly reduce the vibration of this structure.
引文
[1]喻俊志,陈尔奎,王硕,谭民.仿生机器鱼研究的进展与分析[J].控制理论与应用,2003,20(4):.485-491.
    [2]喻俊志,工硕,谭民.多仿生机器负控制与协调[J].机器人技术与应用,2003(3):27-35.
    [3]Michael S., Lane D M., Davies J.B C. Review of fish swimming modes for aquatic locomotion [J]. IEEE J of Oceananic Engineering,1999,24(2):237-252.
    [4]章永华,何建慧,张世武,杨杰.仿生鱼鳍中形状记忆合金驱动器的水下变形精度分析[J].机器人,2007,29(4):320-325.
    [5]Shinjo N., and Swain G.W. Use of a shape memory alloy for the design of an oscillatory propulsion system[J]. Journal of oceanic engineering,2004,29:750-755.
    [6]Witting J.H., Ayers J., and Safak K. Development of a biomimetic underwater ambulatory robot: advantages of matching biomimetic control architecture with biomimetic actuators [C]. Proceedings of SPIE, Sensor Fusion and Decentralized Control in Robotic Systems, USA,2000,4196:54-61.
    [7]杨大智.智能材料与智能系统[M].天津:天津大学出版社,2000.
    [8]San J. J., No M. L. Damping behavior during martensitic transformation in shape memory alloys [J]. Journal of Alloys and Compounds,2003,355(1-2):65-71.
    [9]Delemont, M. Seismic retrofit of bridges using shape memory alloys [D]. Georgia Institute of Tehnology, USA,2001.
    [10]Lin C., Wu S.K. and Yeh M.T., Ping A. Characteristics of NiTi shape memory alloys [J]. Metal Trans,1993,24A (10):2189.
    [11]Liu Y. Some aspects of the properties of NiTi shape memory alloy [J]. Journal of Alloys an ComPounds,1997,247:115-121.
    [12]赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性[M].北京:国防工业出版社,2002.
    [13]吴波,孙科学,李惠等.形状记忆合金力学性能的试验研究[J].地震工程与工程振动,1999,19(2):104-111.
    [14]崔迪,李宏男,宋钢兵.形状记忆合金在土木工程中的研究与应用进展[J].防灾减灾工程学报,2005,25(1):86-94.
    [15]吴晓东,吴建生等.NITi形状记忆合金丝的电阻与应力、应变的关系研究[J].功能材料,1998,29(2):161-164.
    [16]Carballo M., Pu Z. and Wu K.H. Variation of electrical resistance and the elastic modulus of shape memory alloys under different loading and temperature conditions [J]. Journal of intelligent Material Systems and structures,1995,6(7):557-565.
    [17]何浩祥,闫维明,马华,等.结构健康监测系统设计标准化评述与展望[J].地震工程与工程振动,2008,28(4):154-160.
    [18]张岩.健康监测的发展动态[J].山西建筑,2009,35(23):354.
    [19]王山山.基于振动理论的水工结构无损检测技术研究[D].南京:河海大学,2004.
    [20]杨风艳.基于振动测试的结构损伤诊断方法研究[D].青岛:中国海洋大学,2006.
    [21]杨秋伟.基于振动的结构损伤识别方法研究进展[J].振动与冲击,2007,26(10):86-88
    [22]杜红秀,张雄,赵碧华.火灾混凝土建筑物红外热像鉴定技术与案例[J].工程质量,2004(4):10-13.
    [23]张亚琴,郁标.红外成像无损检测技术基本原理及其应用范围[J].上海地质,2002(4):47-52.
    [24]黄文浩,艾军,田裕鹏等.粘钢加固结构钢板粘贴质量的检测新方法[J].建筑技术,2006,37(6):465-467.
    [25]唐岱新,王风来.土木工程结构检测鉴定与加固改造新进展及工程实例[M].北京:中国建材工业出版社,2006.
    [26]王迅,金万平,张存林等.红外热波无损检测技术及其进展[J].无损检测,2004,26(10):497-501.
    [27]黄莉.基士红外热像的碳纤维混凝土损伤分析与研究[D].武汉:武汉理工大学,2005.
    [28]李国强,李杰.工程结构动力检测理论与研究[M].北京:科学出版社,2002.
    [29]陶宝棋.智能材料结构[M].北京:国防工业出版社,1997.
    [30]姜绍飞.基于神经网络的结构优化与损伤检测[M].北京:科学出版社,2002.
    [31]张令弥.智能结构研究的进展与应用[J].振动、测试与诊断,1998,18(2):79-84.
    [32]安国.神奇的智能材料[J].国外科技动态,1999(8):30-31.
    [33]崔金泰.暂露头角的智能材料[J].国外科技动态,1999(12):11-12.
    [34]姜德生,Claus R O.智能材料、器件、结构与应用[M].武汉:武汉工业大学出版社,2001.
    [35]Osada Y, Gong J P. Soft and wet materials:polymer gels. Advanced Materials,1998,10(11):82-837.
    [36]Song G and Mo Y L. Increasing concrete structural survivability using smart materials [R]. Grants to Enhance and Advance Research (GEAR), Houston:University of Houston,2003.
    [37]Song G, Mo Y L, Otero K and Gu H. Health monitoring and rehabilitation of a concrete structure using intelligent materials [J]. Smart Mater. Struct.2006,15:309-314.
    [38]袁慎芳,陶宝祺,等.强度型损伤自诊断自适应智能结构[J].实验力学,1996,11(1):30-37.
    [39]梁大开,陶宝祺,等.埋入式光纤应变传感器[J].南京航空航天大学学报,1994,26(6):842-849
    [40]Shi Lihua, Tao Baoqi. Application of piezo electricmaterials as sensors in smart structures [J]. Transaction of Nanjing University of Aeronautics and Astronautics,1996,13 (2):100-127.
    [41]陶宝祺,梁大开,熊克,等.形状记忆合金增强智能复合材料结构的自诊断、自修复的研究[J].航空学报,1998,19(2):250-252.
    [42]Li Hui, Liu Z. Q, Li. Z. W. et al. Study on damage emergency repair performance of a simple beam embedded with shape memory alloys [J]. Advances in Structural Engineering,2004,7(6):495-502.
    [43]Li Hui, Liu Z. Q. and Ou J. P. Study on reinforced concrete beams strengthened using shape Memory alloy wires in combination with carbon-fiber-reinforced polymer Plates [J]. Smart Mater. Stluct,2007,16:2550-2559.
    [44]Liu Z. Q. and Li H. Study of a reinforced concrete beam strengthened using a combination SMA wire and CFRP plate [C]. Proceedings of SPIE, San Jose, California,2006.
    [45]Liu Z.Q. and Li H. Experimental study of simple concrete and reinforced concrete beam monitored and driven by shape memory alloy wires [C]. Proeeedings of the 2nd International Conference on Structural Health Monitoring of Intelligent Infrastructure, Shenzhen, China,2005.
    [46]刘志强.SMA智能混凝土梁损伤自监测与自修复研究[D].哈尔滨:哈尔滨工业大学,2006.
    [47]狄生奎,李慧,杜永峰等.SMA混凝土梁的裂缝监测及自修复[J].建筑材料学报,2009,12(1):27-31.
    [48]狄生奎,花尉攀,汲生伟,李慧,Steve Zou约束态SMA.混凝土梁的裂缝监测及自修复[J].建筑材料学报,2010,13(2):237-241.
    [49]Mayes J J, Lagoudas D, Henderson B K. An experimental investigation of shape memory alloy pseudoelastic springs for passive vibration isolation [C]. AIAA Space 2001 Conference and Exposition, Albuquerque, NM,2001.
    [50]Attanasio M, Faravelli L. Marioni A. Exploiting SMA bars in energy dissipators [C]. Proceedings of the 2nd International worshop on structural control, Hong Kong,1996:123-130.
    [51]Dolce M, Cardone D. Mechanical behavior of shape memory alloys for seismic applications.1. Martensite and austenite NiTi bars subjected to torsion [J]. International Jounal of Mechanical Sciences,2001(43):2631-2656.
    [52]Dolce M, Cardone D. Mechanical behavior of shape memory alloys for seismic applications.2. Austenite NiTi wires subjected to tension [J]. International Journal of Mechanical Seiences, 2001(43):2657-2677.
    [53]Dolce M, Cardone D, Mametto R. SMA Re-centering Devices for Seismic Isolation of Civil Structures [C]. Proceedings of SPIE,2001(4330):238-249.
    [54]李贵生,任勇生.土木工程结构抗震的SMA被动阻尼设计方法及其应用[J].太原理工大学学报,2001,32(2):112-119.
    [55]Robert C. K., et al. Structural damping with shape memory alloys:one class devices [C]. Proceedings of SPIE 2445,1995,225-240.
    [56]李宏男,钱辉等.一种新型SMA阻尼器的试验和数值模拟研究[J].振动工程学报,2008,21(4):179-184.
    [57]左晓宝,李爱群,倪立峰等.超弹性形状记忆合金丝(NiTi)力学性能的试验研究[J].土木工程学报,2000,37(12):10-16.
    [58]倪立峰,李爱群,左晓宝,陈庆福.形状记忆合金拉压型超弹性阻尼器的试验研究[J].地震工程与工程振动,2003,23(5):205-208.
    [59]李惠,毛晨曦.新型SMA耗能器及结构地震反应控制试验研究[J].地震工程与工程振动,2003,23(1):133-139.
    [60]毛晨曦,李惠,欧进萍.形状记忆合金被动阻尼器及结构地震反应控制试验研究和分析[J].建筑结构学报,2005,26(3):38-44.
    [61]王社良,苏三庆,沈亚鹏.形状记忆合金拉索被动控制结构地震响应分析[J].土木工程学报,2000,33(1):68-74.
    [62]王社良,巨生国,苏三庆.形状记忆合金的动力响应特性及振动控制[J].西安建筑技大学报,1999,31(1):14-17.
    [63]Saadat S., Noori M., Davoodi H., et al. Using NiTi SMA tendons for vibration control of coastal structures [J]. Smart Materials and Structures,2001,10:695-704.
    [64]韩玉林,李爱群,林萍华.基于形状记忆合金耗能器的框架振动控制试验研究[J].东南大学学报,2000,30(4):16-20.
    [65]DesRoehes R., Delemont M. Seismic retrofit of simply supported bridges using shape memory alloys [J]. Engineering Structures,2002,24(3):325-332.
    [66]Adachi Y, Unjoh S. Experimental study on seismic response control of bridge by damper devices using shape memory alloys. In:Proceedings of the Second World Conference on Structural Control.Kyoto,Japan:1998.
    [67]Adachi Y., Unjoh S. Development of shape memory alloy damper for intelligent bridge systems [C]. Proceedings of SPIE 3671,1990,31-42.
    [68]张纪刚,吴斌,欧进萍.锥形形状记忆合金阻尼器性能分析与试验研究[J].地震工程与工程振动,2004,24(6):126-130.
    [69]Wilde K., Gardoni P., Fujino Y. Seismic response of base isolated structures with shape memory alloy damping devices [C]. Proceedings of SPIE3043,1997,122-133.
    [70]邓宗才,孙宏俊等.新型SMA隔震支座动载性能试验研究[J].中国工程科学,2005,7(12):62-68.
    [71]薛素铎等.一种SMA复合摩擦阻尼器的设计与性能研究[J].世界地震程,2006,22(2):1-6.
    [72]左晓宝,李爱群,倪立峰,陈庆福.一种超弹性SMA复合阻尼器的设计与试验[J].东南大学学报(自然科学版),2004,34(4):459-463.
    [73]卞晓芳,薛素铎SMA-MR复合型阻尼器[J].世界地震工程,2004,20(2):23-29.
    [74]姚远,禹奇才等.一种新型形状记忆合金(SMA)-粘滞阻尼器[J].广州大学学报(自然科学版)2008,7(2):91-94.
    [75]禹奇才,刘爱荣,姚远.新型SMA-粘滞阻尼器的试验研究[J].中山大学学报(自然科学版),2008,47(6):120-123.
    [76]Shahin A R,Meckl P H, Jones J D. Modeling of SMA tendons for active control of structures [J]. Journal of intelligent Material Systems and Structruals,1997,8(1):51-70.
    [77]欧进萍.结构振动控制-主动、半主动和智能控制[M].北京:科学出版社,2003.
    [78]霍永忠.形状记忆合金的主动控制研究[c].功能材料会议论文集.1997.
    [79]王吉军,初奕,马孝江,王刚,齐民,崔立山,杨大智.NiTi形状记忆合金振动感知与主动控振研究[J].大连理工大学学报,1997,11,37(6):736-741.
    [80]EPPs J, Chandra R. Shape memory alloy actuation for active tuning of composite beams [J]. Smart Materials and Structures,1997,6:251-264.
    [81]Bidaux J E, Manson J, Gotthardt R. Active stiffening of composite materials by embedded Shape-memory-alloy fibers [J]. Materials for Smart Systems Ⅱ,1997:107-117.
    [82]任勇生,王世文,李俊宝等.形状记忆合金在结构主被动控制中的应用[J].力学进展,1999,29(1):19-33.
    [83]王征,陶宝棋.智能材料结构的振动抑制[J].振动、测试与诊断,1995,15(1):47-50.
    [84]Shu S G, Lagoudas D C, Hughes D, et al. Modeling of a flexible beam actuated by shape memory alloy wires[J]. Smart Materials and Structures,1997,6:265-277.
    [85]Liang C, Rogers C A. Design of shape memory alloys prings with applications in vibration control[J] J Vibration acoustics,1993,115(1):135
    [86]王社良,苏三庆.形状记忆合金的超弹性恢复力模型及其结构抗震控制[J].工业建筑,1999,29(3):49-52.
    [87]王社良,巨生国,苏三庆.形状记忆合金的动力响应特性及振动控制[J].西安建筑科技大学学报,1999,31(1):14-17.
    [88]Han H P, Ang K K, Wang Q, Taheri F. Buckling enhancement of ePoxy columns using embedded shape memory alloy sPring actuators [J]. ComPosite Struetures,2006,72:200-211.
    [89]Shahin A R, Meckl P H, Jones J D. Modeling of SMA tendons for active control of structures [J]. Journal of intelligent Material Systems and Structures,1997,8(1):51-70.
    [90]Tarefder R A, Ma N, Song GB. Dynamic Behavior of a two-story building frame braced with SMA for vibration control [J]. ASCE Conferenee Proceedings, Earth and SPace, Houston, USA,2006.
    [91]毛晨曦.结构地震损伤监测与控制的SMA智能系统[D].哈尔滨:哈尔滨工业大学,2006.
    [92]Baz A. Lmam K. and Mccoy J. Active Vibration Control of Flexible Beams Using Shape Memory Actuators [J]. Sound and Vibration.1990,140 (3):431-56.
    [93]汪劲松.用于微系统驱动的形状记忆合金弹簧特性试验研究[J].机械工程学报,1994,30(5):87-89.
    [94]Lagoudas D.C and Kinra C.K. Design of High Frequency SMA Actuators. Disclosures of invention TAMUS 803 [R].Texas A & M University.1993.
    [95]Bhattacharyya A. On the Role of Thermoelectric Heat Transfer in the Design of SMA Actuators: Theoretical Modeling and Experiments [J]. Smart mater Struct,1995 (4):252-263.
    [96]任勇生,王世文,李俊宝等.形状记忆合金在结构主被动控制中的应用[J].力学进展,1999,29(1):19-33.
    [97]黄兵民蔡伟,赵蔚,赵连城.热处理和冷变形对Ti-Ni合金非线性超弹性的影响[J].宇航材料工艺,1997,5:24-28.
    [98]吴波,孙科学,李惠等.形状记忆合金力学性能的试验研究[J].地震工程与工程振动,1999,19(2):104-111.
    [99]Shaw J. A. and Kyriakides S. Thermomechanical aspects of NiTi [J]. Journal of Mechanics, Physics and Solids,1995,43(8):1243-1281.
    [100]巩建鸣,户伏寿昭.承受各种循环加载的TINi形状记忆合金的超弹性变形行为[J].功能材料,2002,33(4):391-393.
    [101]李启全,祁珊.NiTi形状记忆合金超弹性的研究进展[J].国外金属热处理,2003,24(4):5-9.
    [102]左晓宝,李爱群,倪立峰,陈庆福.超弹性形状记忆合金丝(NiTi)力学性能的试验研究[J].土木工程学报,2004,37(12):10-16.
    [103]Tobushi H., Shimeno Y., Hachisuka T., Tanaka K. Influence of stain rate on superelastici of TiNi shape memory alloy [J]. Mechanics of Materials,1998, (30):141-148.
    [104]Song, G., Mo Y. L., Otero K. and Gu H. Health monitoring and rehabilitation of a concrete structure using intelligent materials [J]. Smart Materials & Structures,2006,15(2):309-314.
    [105]Ma N. Shape memory alloys:property characterization, control development and innovative applications [D]. Houston, USA:University of Houston,2005.
    [106]Zhao J. System identification and tracking control of a thunder actuator system with hysteresis compensation [D]. Akron, USA:University of Akron,2003.
    [107]Qiu F. et al. Development of the software for strain monitoring of Human Bridge PB 4696-03 [R]. Smart Structures and Materials, San Diego,2002.
    [108]Schulz W. et al. Real-time damage assessment of civil structure using fiber grating sensors and modal analysis PB 4696-28 [R]. Smart Structures and Materials, San Diego,2002.
    [109]Sundaresan M. J. et al. Potential applications of piezoceramic and nanotube materials for structural health monitoring PB 4702-03 [R]. NDE for Health Monitoring and Diagnostics, San Diego,2002.
    [110]Markris N, Burton S A, Hill D, et al. Analysis and design of ER damper for seismic protection of structures [J]. Journal of Engineering Mechanics,1996,122(10):1003-1011.
    [111]周博.形状记忆合金的本构模型[D].哈尔滨:哈尔滨工程大学,2006.
    [112]朱祎国.形状记忆合金及其复合材料的本构关系[D].大连:大连理工大学,2002.
    [113]Muller I, A model for a body with shape-memory [J]. Shanghai Journal of Mechanics,1979,70: 61-77.
    [114]王健,沈亚鹏,王社良.形状记忆合金的本构关系[J].上海力学,1998,19(3):185-195.
    [115]Lin, P. H., Tobushi, H., Tanaka, K., Hattori, T., Ikai, A. Influence of strain rate on deformation properties of NiTi shape memory alloy [J]. JSME International Journal,1996,39(1):117-123.
    [116]郑雁军,崔立山,杨大智.形状记忆合金回复力模型[J].大连理工大学学报,2000,40(2):180-182.
    [117]Bernard, Y., Mendes E. and Bouillault F. Dynamic hysteresis modeling based on the preisach model [C]. IEEE Transactions on Magnetics, Washington,2002.
    [118]Arai K., Aramaki S., Yanagisawa K. Continuous system modeling of shape memory alloy (SMA) for control analysis [C]. Proceedings of the 5th IEEE International Symposium on Micro Machine and Human Science, Washington,1994.
    [119]李俊良,杜彦良,孙宝臣.形状记忆合金本构关系的研究综述[J].石家庄铁道学院学报,2002,15(4):78-83.
    [120]Sun Q. P., Keh C. H. Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloy [J]. Mech. Phys. Solids,1993,41(1):1-33.
    [121]李贵生,任勇生.土木工程结构抗震的SMA被动阻尼设计方法及其应用[J].太原理工大学学报,2001,32(2):112-119.
    [122]Tanaka K. A thermomechanical sketch of shape memory effect:one-dimensional tensile behavior [J]. Mechanics,1986,18:251-263.
    [123]Magee C. L. The nucleation of martensite, phase transformation [M]. London:edited by American Society for Metals, Metals Park,1970.
    [124]Keith W, George C., Robert B. Passive-adaptive vibration absorbent using shape memory alloy [C]. Proc. of SPIE.1999,3668:630-641.
    [125]Liang C., Rogers C. A. One-dimensional thermomechanical constitutive relations for shape memory materials [J]. Intelligent Material Systems and Structures,1990,1(1):207-234.
    [126]Liang C., Rogers A. A multi-dimensional thermomechanical constitutive relations for shape memory alloys [J]. Eng Mathematics,1992,26:429-443.
    [127]Brinson, L. C. One-dimensional constitutive behavior of shape memory alloys:thermo-mechanical derivation with non-constant materials function and redefined martensite internal variable [J]. Journal of Intelligent Material Systems and Structures,1993,4(2):229-242.
    [128]Qidwai M. A., Lagoudas D. C. Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms [J]. Num. Meth. Engng,2000, 47:1123-1168.
    [129]Boyd J. G., Lagoudas D. C. A thermomechanical constitutive model for shape memory materials part 1:the monolithic shape memory alloy [J]. International Journal of Plasticity,1996,12(6): 805-842.
    [130]Khan M. M.& Lagoudas D. Modeling of shape memory alloy pesudoelastic spring elements using Preisach model for passive vibration isolation[C]. SPIE,2002,4693:336-347.
    [131]邹静,钟伟芳.形状记忆合金的多维本构关系[J].固体力学学报,1999,20(2):171-176.
    [132]Ivshin Y., Thomas J. P. A constitutive model for hysteretic phase transition behavior [J]. Engng. Sci. 1994,32(4):681-704.
    [133]Graesser E. J., Cozzarelli F A. Shape memory alloys as new materials for aseismic isolation [J]. J. of Eng. Mech,1991,117 (11):2590-2608.
    [134]任文杰,李宏男,宋钢兵.一种新的形状记忆合金本构模型[J].大连理工大学学报,2006(12):S157-S160.
    [135]钱辉,李宏男,宋钢兵,赵大海.基于塑性理论的形状记忆合金本构模型、试验和数值模拟[J].智能材料,2007,7(38):1114-1118.
    [136]邓宗才,霍达,杜修力.形状记忆合金本构模型的研究进展[J].北京工业大学学报,2002,28(4):452-458.
    [137]Falk F. Model free energy, mechanics and thermodynamics of shape memory alloys [J]. Acta Metallurgrical,1980,28:1773-1780.
    [138]Falk F. One-dimensional model of shape memory alloys [J]. Arch Mechanics,1983,35:63-84.
    [139]Falk F. Pseuodoelastic stress-strain curves of polycrystalline shape memory alloys caculated from single crystal data [J]. Int J Eng Sci,1989,27:277-284.
    [140]Ikuta K., Tsukamoto M., Hirose S. Mathematical model and experimental verification of shape memory alloy for designing micro actuator [C]. Proc. of IEEE international workshop on Micro Electro mechanism (MEMS'91), Nara, Japan,1991.
    [141]Adachi Y., Unjoy S. Experimental study on seismic response control of bridge by damper devices using shape memory alloys[C]. Proceedings of the second World Conference on Structural Control, Japan,1998.
    [142]Muhammad A. Q., Pavlin B. E., Dimitris C. L., et al. Modeling of the thermo-mechanical behavior of porous shape memory alloys [J]. International Journal of Solids and Structures,2001,38: 8653-8671.
    [143]Itin V. I., Gyunter V. E., Shabalovskaya S. A., et al. Mechanical properties and shape memory of porous nitinol [J]. Materials characters,1994,32,179-87.
    [144]Ono N., Kusaka M., Taya M., et al. Design of fish fin actuators using shape memory alloy composites [C]. Proceedings of the SPIE (Vol.5388):Smart Structures and Materials 2004-Industrial and Commercial Applications of Smart Structures Technologies, Bellingham, WA, USA:SPIE,2004.
    [145]Boyd J. G, Lagoudas D. C. Thermo-mechanical response of shape memory composites [J]. Journal of Intelligent Material Systems and Structures,1994,5(3):382-390.
    [146]Boyd J. G., Lagoudas D. C. A thermomechanical constitutive model for shape memory materials part 1:the monolithic shape memory alloy [J], International Journal of Plasticity,1996,12(6): 805-842.
    [147]Hill J. A self-consistent mechanics of composite material[J]. Journal for Mechanics and Physics of Solids,1965,13:213-222.
    [148]丁怡洁.形状记忆合金的多维本构关系研究[D].西安:西安建筑科技大学,2005.
    [149]Qidwai M. A. Thermo-mechanical constitutive modeling and numerical implementation of polycrystalline shape memory alloy materials [D]. Texas A&M University, USA,1999.
    [150]Lin P., Tobushi H., Tanaka K. and Hattori T. Deformation properties associated with martensitic and R-phase transformation in NiTi shape memory alloy [J]. Trans. J of SME,1994,60,569(A): 126-133.
    [151]Lim T. J. and McDowell D. L. Path dependence of shape memory alloys during cyclic loading [J]. Journal of Intelligent Material Systems and Structures,1995,6:817-839.
    [152]Liu A. R., Pan Y. S. and Zhou B. K. Simulation to thermo-mechanical behavior of shape memory alloys [J]. Chinese Journal of Computational Mechanics,2002,19(1):48-52.
    [153]杨杰,吴月华.形状记忆合金及其应用[M].北京:中国科学技术出版社,1993.
    [154]欧进萍.重大工程结构的累积损伤与安全性评定[C].中国科协第9次青年科学家论坛报告文集,1996:179-199.
    [155]倪立峰,李爱群等.形状记忆合金超弹性阻尼性能的试验研究[J].地震工程与工程振动,2002,22(6):129-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700