用户名: 密码: 验证码:
拉伸形变主导作用的TPU增韧复合材料制备及其结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拉伸形变主导作用的聚合物塑化输运机理是由拉伸形变支配的聚合物动态塑化加工新方法,实现了聚合物加工成型原理和方法由基于剪切流变到基于拉伸流变的变革,开辟了聚合物加工成型技术及理论研究的新领域。拉伸形变主导作用的聚合物动态塑化加工成型设备与传统螺杆挤出机相比,具有塑化输运过程能耗低、对物料的适应性广以及设备体积小等优点。在研究叶片塑化输运机理的基础上深入探讨聚氨酯增韧复合材料的制备,对基于拉伸流变的高分子材料塑化输运方法及设备的推广应用无疑具有重要意义。
     通过体积拉伸形变主导作用的叶片塑化输运技术制备聚氨酯/聚丙烯增韧复合材料,并与双螺杆挤出机的剪切流场塑化加工进行对比,揭示拉伸形变主导作用的叶片塑化加工对复合材料结构与性能的影响规律。研究表明,热塑性聚氨酯分散相在叶片单元内获得原位成纤,复合材料有着更完善的晶体构型、更好的热稳定性和两相相容性,最终在宏观上表现出更优越的力学性能。体积拉伸形变加工方法具有分散混合效果好、机械热历程短、原位成纤作用明显以及对物料的低剪切、低损伤等独特的加工特性。
     利用拉伸形变支配的叶片塑化挤出机制备高性能聚氨酯/聚乳酸复合材料,并建立了分散相含量与材料宏观性能之间的关系。结果表明,热塑性聚氨酯能明显提高聚乳酸韧性,在高含量时独特的纤维状结构使得材料拉伸强度反而比低含量下有所提高,聚氨酯在拉伸流场作用下呈现出对聚乳酸独特的增韧作用。
     在叶片塑化挤出机上制备生物可降解的聚氨酯/聚乳酸/蒙脱土纳米复合材料,并对材料在拉伸流场作用下的纳米颗粒网络结构与基体的协同作用进行深入研究。结果表明,蒙脱土在经过叶片挤出机塑化加工后在基体中呈现出插层与剥离共存的分散结构,剥离程度随着蒙脱土含量的增加而增加,而且复合材料的模量均高于聚乳酸。熔融曲线呈现独特的“双熔融峰”及其明显左移、熔融温度降低,表明复合材料在叶片挤出机的熔融挤出过程中所受热历程较短、破坏较小,分子链在拉伸流场作用下排列规整、有序取向。聚氨酯/聚乳酸/蒙脱土纳米复合材料在保持高强度的同时,模量和韧性都有着明显的提高,复合材料在强度和韧性之间取得良好的平衡。剥离的蒙脱土片层在叶片挤出机的拉伸流场作用下呈现出一种楔形收敛结构,它有利于减小了聚合物插层时所受的阻力,更有效的使蒙脱土片层发生剥离并均匀分散在聚合物基体中,并以此提出纳米蒙脱土在拉伸流场作用下分散和剥离的“双层剥离”机理。
     拉伸形变主导作用的聚合物叶片塑化输运方法及设备是一种全新的聚合物加工理论和设备,本文的研究在聚氨酯增韧复合材料制备、加工成型的理论方面取得了创新性研究成果,形成了全新的高分子复合材料制备加工技术,解决了传统成型加工方法不能胜任的许多关键技术问题,为进一步研究聚合物叶片塑化挤出过程与机理打下了良好的基础,也为聚合物叶片塑化输运设备的推广应用提供了重要的理论依据。
Polymer plasticizing conveying mechanism based on elongational deformation is a novelnon-screw dynamic plasticizing processing method dominated by elongational deformation. Itis a great change of polymer processing theory from shear flow to elongational flow, breakingnew ground on polymer processing technology. Polymer dynamic plasticizing processingequipment based on elongational flow has advantages over screw equipment in low energyconsμmption, extensive adaptive for materials and small volμme. Therefore, the deeplyresearch on the dispersed mixing process of incompatible plastic is of great significance to thepopularization and application of polymer plasticizing conveying method and equipmentbased on elongational flow.
     Thermoplastic polyurethane/polypropylene composite was prepared by Vane plasticizingconveying technology based on elongational deformation. The results were compared to thatprocessed by conventional shear flow, revealing the effect of plasticizing conveyingtechnology dominated by elongational flow on the structure and performance of composite.The results reveal that dispersed phase become in-situ fibrillation under the combined actionof axial flow and circμmferential flow in vane unit. The composite has smaller and narrowerparticle distribution, better crystal texture, thermal stability and compatibility, ultimatelydemonstrating better mechanical performance.
     High-performance thermoplastic polyurethane/polylactic acid composite was preparedby vane plasticizing conveying technology dominated by elongational force, and therelationship between dispersed phase content and mechanical performance was established.The results show that thermoplastic polyurethane toughens polylactic acid evidently. Theunique fiberlike texture makes the tensile strength with high content larger than that with lowcontent.
     Biodegradable polylactic acid/nanoclay composite and thermoplasticpolyurethane/polylactic acid/montmorillonite nanocomposites were prepared by VaneExtruder based on elongational flow. Montmorillonite presents intercalation and exfoliationstructure. Exfoliation increases with the content of montmorillonite. All of the modulus ofcomposites are higher than polylactic acid, with unique “bimodal melting peak” and reducedmelt temperature on melting curves. It states that the composites experience short heat historyand small damage during the extrusion in vane extruder, and molecular chains line array andordered orientation.The synergy of nano particle network configuration and elastomer underelongational flow was also investigated. The results show that the stiffness and toughness of composite increase evidently with the tensile strength remaining high level. The compositefinds a proper equilibriμm between strength and toughness.Besides, in the effect of VaneExtruder elongational flow exfoliated montmorillonite platelets present a convergent structuredecreasing the resistance during polymer intercalation, which makes the montmorilloniteplatelets exfoliate more effectively and homodisperse in polymer matrix. According to that,“double platelets exfoliation” mechanism of montmorillonite is put forward in the effect ofelongational flow.
     Polymer plasticizing conveying method and equipment based on elongational flow arebrand new polymer processing theory and equipment. Creative progress has been made in theresearch about polymer preparation and processing theory. Brand new preparation processingtechnology of polymer composite reaches a certain scale and many key technical problemsleft by conventional processing method have been solved. It lays the first stone of furtherresearch about extrusion process and principle of vane plasticizing and provides the basis ofthe popularization and application of vane plasticizing conveying equipment.
引文
[1]朱复华.挤出理论及应用[M].北京:中国轻工业出版社,2001:1-2
    [2]怀特,波滕特.螺杆挤出[M].何红,金志明译.北京:化学工业出版社,2005:1
    [3]北京化工大学,华南理工大学合编.塑料机械设计[M].第2版.北京:中国轻工业出版社,1995:1
    [4]许政仓.我国塑料机械制造工业概况及展望[J].工程塑料应用,2002,30(7):51-53
    [5]吴大鸣,李晓林,刘颖.单螺杆精密挤出成型技术进展[J].中国塑料,2003,17(2):1-8
    [6]朱复华,李辉玲.挤出工程和挤出理论发展史研究[J].塑料,2003,32(1):39-43
    [7]黄汉雄.挤出机的研究新进展和发展趋势[J].中国塑料,1991,5(3):3-11
    [8]高峰,李海梅,申长雨.挤出成型发展现状[J].工程塑料应用,2003,31(6):52-55
    [9]张春吉,唐跃,张惠敏.塑料挤出成型发展概况[J].工程塑料应用,2004,32(2):67-70
    [10] Lagendijk RP, Hogt AH, BuijtenhuijsA,. Peroxydicarbonate modification ofpolypropylene and extensional flow properties[J]. Polymer,2001,42(25):10035-10043
    [11] Chung C I. Plasticating single-screw extrusion theory [J]. Polym. Eng. Sci.,1971,11(2):93-98
    [12] Bakalis S,KarweM V. Velocity distributions and volμme flow rates in the nip andtranslational regions of a co-rotating, self-wiping, twin-screw extruder [J]. J. Food Eng.,2002,5(4):273-282
    [13]刘廷华.聚合物成型机械[M].北京:中国轻工业出版社,2005:37-85
    [14]劳温代尔.塑料挤出[M].第2版.陈文瑛等译.北京:中国轻工业出版社,1996:160-243
    [15]瞿金平.聚合物动态塑化成型加工理论与技术(上卷)[M].北京:科学出版社,2005:2-3
    [16] Tadmor Z, Gogos C G. Principles of Polymer Processing[M].2nded. New Jersey: JohnWiley&Sons, Inc.,2006:473-475
    [17]瞿金平.聚合物电磁动态塑化挤出方法及设备[P].中国:90101034.0,1990;美国:5217302,1993;欧洲:044306B1,1995
    [18]瞿金平.电磁式聚合物动态注射成型方法及装置[P].中国: ZL96108387.5,1999;美国:005951928A,1999;俄罗斯:2145543,2000;欧洲:0818298,2000;澳大利亚:711248,2000
    [19] Qu JP, Shi BS, Feng YH, He HZ.Dependence of Solids Conveying on Screw AxialVibration in Single Screw Extruders[J]. J. Appl. Polym. Sci.,2006,102(3):2998-3007
    [20] Qu JP, Feng YH, He HZ, Jin G, Cao XW. Effects of the Axial Vibration of Screw onResidence Time Distribution in Single-Screw Extruders [J].Polym.Eng. Sci.,2006,46(2):198-204
    [21]瞿金平.聚合物塑化挤出新概念[J].华南理工大学学报(自然科学版),1992,20(4):1-8
    [22] Qu J.P. Polymer Dynamic Plasticating Processing: Theory and Technology [M].Cambridge: Woodhead Publishing Ltd.,2010
    [23] Qu JP, Cai YH. Experimental Studies and Mathematical Modeling of Melt-PulsedConveying in Screw Extruders [J].Polym.Plast. Technol. Eng.,2006,45(10):1137-1142
    [24] Qu JP, Zeng GS, FengYH, Jing G, He HZ, Cao XW.Effect of Screw Axial Vibration onPolymer Melting Process in Single-Screw Extruders[J].J. Appl. Polym. Sci.,2006,100(5):3860-3876
    [25]瞿金平.塑料加工成型技术的最新研究进展[J].中国工程科学,2011,13(10):58-68
    [26]瞿金平.基于拉伸流变的高分子材料塑化输运方法及设备[P].中国:2008100260254,2008.1.25
    [27] Qu JP. A method for plasticating and conveying macromolecular materials based onelongational flow [P]. U.S.A, Europe, Japan, Russia, Canada, Australia, etc.:PCT/CN2008/000643,2008
    [28]黄磊,欧相麟,吴世见.拉伸流场对聚合物填充体系的分散混合作用[J].中国塑料,2006,20(9):53-58
    [29]何光建,殷小春,瞿金平.基于拉伸流动的聚合物复合材料分散混合研究进展[J].塑料,2010,39(3):8-10
    [30] Tadmor Z. Forces in dispersive mixing [J]. Ind. Eng. Chem. Fundamen.,1976,15(4):346-348
    [31] ErwinL.Theory of laminar mixing [J].Polym. Eng. Sci.,1978,18(13):1044-1048
    [32]瞿金平,殷小春,邹新良.一种新型的混合分散装置[P].中国:200920004892.7,2009.11.25
    [33]刘力铭,谭斌,刘树荣,等.叶片挤出机制备SF增强PP复合材料的性能研究[J].塑料工业,2011,39(12):109-112
    [34] Qu, J. P.; Yang, Z. T.; Yin, X. C. Characteristics study of polymer melt conveyingcapacity in vane plasticization extruder.Polym. Plast.Techno. Eng.2009,48,269-286.
    [35] Qu, J.P.; Liu, L.M.; Tan, B. Effect of dynamical converging channels on fiberorganization and damage during vane extrusion ofsisal fiber-reinforced polypropylenecomposites.Polym. Composite.2012,33,185-191.
    [36] Qu, J.P.; Zhao, X.Q.; Li, J.B.; Cai, S.Q.Power consμmption in the compacting processof polymer particulate solids in avane extruder.J. Appl. Polym. Sci.2012,DOI:10.1002/app.36806.
    [37] Suzaka Y. Mixing device [P]. U.S.A: US4334783,1982.6.15
    [38] Nguyen X Q, Utracki L A. Extensional flow mixer [P]. U.S.A: US5451106,1995.9.19
    [39] Rauwendaal C, Osswald T, Gramann P. Design of dispersive mixing devices [J]. Int.Polym. Proc.,1999,14(1):28-34
    [40]吴大鸣,孟庆云,刘颖.原位气泡拉伸分散法研究[J].中国塑料,2004,18(4):59-63
    [41] Luker K, Extruder mixer for mixing plastic or plastified flowable material [p]US6962431-B1,2005.11.08
    [42] Xiao Z.G. Extensional flow static mixer [p] CN200810101467A2008.03.08
    [43] Saemann H. Screw extruder has housing and two housing bore holes with two axes [p]US2011007598-A12011.01.13
    [44] Padmanabhan.B. Method for operating twin screw extruder for mixing processedmaterials [p] US2011063940-A12011.03.17
    [45]杨爱新,崔慎言.聚丙烯的共混改性及应用[J].湖北化工,2000,(l):31-32
    [46]宋军,汪丽,金荣波,等.聚丙烯改性的重要技术)共混改性[J].国外油田工程,2001,17(10):40-41
    [47]周正亚,陈显东,杨晓华.聚丙烯共混增韧改性研究[]J.现代塑料加工应用,1998,10(4):l-4
    [48] Ivnao.C,Giulinaa.G,Roberto.P.Stcutural orgnaziation and transport properties ofiPP/LLDPE blends solidified at controlled coolingrates [J].Joμmal of Applied PolymerScience,2001,82:2237-2244
    [49] JunLi,RobertA.Shaenks,YuLong. Isothermal crystallization and sphuerlite structure ofPartially miseible Polyorpylne linear lowdnesity Polyehtylneeblneds [J].Jomual ofApplied Polymer Science,2001,82:628一639
    [50] JunLi,RobertA.Shaekns,YuLong.Miseibility and crystallization of Polypropylene/linearlow density Polythelene blneds [J].Polymer2001,42:1941-1951
    [51] Chao.Z,Tatsuo.M,Teruyoshi.M Morphology and electrical breakdown properties ofLDPE-Polypropylene copolymerblends.[J].Jounral of Applied PolymerScience,2001,39:1741-1748
    [52]李笃信,贾德民.PP/PA共混改性研究进展[J].工程塑料应用,1998,26(10):27-30
    [53]李笃信,贾德民.增容PP/PA6共混物的界面相互作用[J].现代塑料加工应用,2000,12(6):21-23
    [54] Shi.S.Q,Wang Y.Z,Wang.L.L., Influence of compatibilizer on the dynamic mechanicalbehviaor of PP/PA blneds [J]. Joμmal of Ningbo University,2003,16(4):388-392
    [55]段建华,张增民.PA/PP/SEBS三元合金的结构与性能[J].中国塑料,1995,9(6):40-44
    [56]钱庆荣,陈庆华,肖荔人.EPDM/PP共混型热塑性弹性体的研制[J].中国塑料,2000,14(10):38-42
    [57]肖汉文,黄世强,何昌鑫.EPDM/PP共混物的形态结构与性能[J].中国塑料,2001,15(4):25-27
    [58]赵永仙,任巍,王晓军.EPDM/PP共混物老化性能的研究[J].塑料工业,1999,27(4):30-32
    [59]吴唯,徐种德,周达飞.反应性聚丙烯/三元乙丙橡胶共混物的流变性能研究[J].现代化工,2000,20(7):34-37
    [60]田明,刘力,田洪池.EPDM/PP共混型热塑性硫化胶的增容研究[J].合成橡胶工业,2003,26(3):144-147
    [61]常平,洪重奎.乙丙橡胶增韧聚丙烯共混物中橡胶相形态[J].塑料科技,2002,(l):4-7
    [62]张玲,王政华,黄锐.PP/EOC共混物形态及性能的研究[J].中国塑料,2002,16(l):41-44
    [63] AnaLuciaN.Silva, MarisaC.G.Rocha, Fermanda M.B.Coutinho. Study of rheologicalbehavior of elastomer/Polypropylene blends [J].Polymer Testing,2002,21:289-293
    [64]张玲,黄锐.新型热塑性弹性体增韧PP的原位成纤[J].塑料,2000,29(5):37-38
    [65]唐忠兴,苏新.PP/共聚PP/POE汽车保险杠专用料的研制[J].工程塑料应用,2003,31(5):12-14
    [66]赵全友,平孝香,李玉萍.PP/共聚PP/POE汽车保险杠专用料的研制[J].工程塑料应用,2001,29(11):5-7
    [67]曹民干.EVA含量与PP/EVA共混体系机械性能的研究[J].塑料,2003,32(4):21-23
    [68]王兵,赵家森.EVA/pp共混体系相容性、相态及结晶形态的考察[J].中国塑料,1999,13(3):23-26
    [69]张育英,郝广杰,郭天瑛.EVA增容PP/HDPE共混体系的形态结构与性能[J].离子交换与吸附,2000,16(5):449-453
    [70]邹盛欧.EVA在通用聚合物共混改性中的应用[J].石油化工动态,1998,6(6):51-55
    [71]杜丽利,金艳,郑同利.SEBS在PP共混物中的研究进展[J].合成树脂及塑料,2002,19(5):60-64
    [72]郭红革,谢雁,葛涛.橡胶改性PP共混体系的研究[J].塑料工业,2001,29(l):13-15
    [73]邱桂学,吴人洁.茂金属聚乙烯弹性体mPE增韧改性聚丙烯的研究[J].塑料工业,2001,29(1):23-25
    [74]唐卫华,唐键,金日光.茂金属乙烯/苯乙烯增韧PP-R的力学性能与相态结构[J].中国塑料,2002,16(9):26-29
    [75] Fan Z.Q, Zhang Y.Z, Xu J.T., Structure and Properties of Polypropylene/Poly(ehtylene-co-propylene) insitu blneds synthesized by spherical ZieglerNattacatalyst [J].Polymer2001,42:5559-5566
    [76]杨慧丽,徐俊,宋春雷.辐射对PP/BR共混体系界面粘接的影响[J].合成橡胶工业,1995,21(6):346-349
    [77]董理,刘光烨.热塑性聚氨酯弹性体共混改性材料研究进展[J].塑料,1999,28(l):23-28
    [78]祝元龙,郑昌仁,殷敬华.热塑性聚氨酯弹性体的合成与结构表征[J].南京化工大学学报,1996,18(4):86-92
    [79]程时远,李建宗,陈清元.热塑性聚氨酯弹性体的形态学[J].高分子通报,1994,(l):37-41
    [80]陈大俊,李瑶君.热塑性聚氨酯弹性体中的氢键作用-1.动态力学分析[J].高等学校化学学报,2001,22(5):844-846
    [81]陈大俊,李瑶君.热塑性聚氨酯弹性体中的氢键作用-2.红外热分析[J].化学世界,2001,(10):525-528
    [82]宋国君,舒文艺.聚合物合金的相容性与增容[J].青岛大学学报,1995,10(l):90-96
    [83] Banhegyi.G, F.E.Karasz,Z.S.Petrovic. Dielectric relaxation properties in Polypropylene/Polyurethane composites.[J].JAppl PolymSci,1990,40(3):435-452
    [84] Zonar.S.Petrvic, Jaroslava Budinski Simendic, Vkadimir Divjakovic. Polyurethane/Polyproylene blends.[J].JAppl Polym Sci,1991,42:779-790
    [85] Petra.P,Katrin.W,Holger.F. Morphology and properties of blends with differentthermoplastic polyrethanesand polyolefines[J].JAppl Polym Sci,1997,64:749-762
    [86] Wallheinke K,P.Potschke,H.Sutz.Influenceofcompatibilizeradditionon particlesizeandcoalescenceinTPU/PPblneds.[J].JApplPolym Sci,1997,65:2217-2226
    [87] Katrin. W, Petra.P. Coalescence in Blends of Thermoplastic PolyurethaneWithPolyolefins.[J].POLYM ENG SCI,1999,39:1022-1034
    [88] Petra.P,Jurgen.P,Herbert.S. Surfacetension,interfacial tension, and morphology in blendsof thermoplastic polyurethanes and polyolefins.Part1Surface tension of melts of TPUmodel substances and polyolefins.[J].Polymer,2002,43:6965-6972
    [89] Shadi H. Ajili,Nadereh G. Ebrahimi,Mohammad T. Khorasani. Study on ThermoplasticPolyurethane/Polypropylene(TPU/PP) Blend as a Blood Bag Material.[J].JAppl PolymSci,2003,89:2496-2501
    [90] Shadi H. Ajili,Nadereh Golshan Ebrahimi. Studies on TPU/PP Blend and Comparingitwith PVC Used as Blood Bag.[J].JAppl Polym Sci,2003,12:179-184
    [91] Herbert.S,Walter. H, Petra.P.Structural effects of compatibilizer localization andeffectivity in thermoplastic polyurethane/polyolefinblneds,[J],JAppl PolymSci,2002,83:2901-2905
    [92] Qiwei Lu, ChristopherW. Macosko. Comparing the compatibility of variousfunctionalized polypropyleneswith thermoplastic polyurethane (TPU).[J]. Polymer,2004,45:1981-1991
    [93] Qiwei Lu,C.W.Macosko,J.Horrion. Melt amination of polypropylenes.[J].J Polym SciPartA:Polym Chem,2005,43:4217-4232
    [94] Qiwei Lu,C.W.Macosko,J.Horrion.Compatibilized blends of thermoplastic PU andPP.[J].Macromol.Symp,2003,198:221-232
    [95] Emi G.B., Ivan.S,Mirela.L. Blends of Thermoplastic Polyurethane andPolypropylene. I.Mechanical and Phase Behavior.[J].JAppl Polym Sci,2007,104:3980-3985
    [96] Emi G.B., Ivan. S,Mirela. L.Blends of Thermoplastic Polyurethane and Polypropylene.II. Thermal and Morphological Behavior.[J].JAppl Polym Sci,2010,117:1378-1384
    [97] Kannan M., Bhagawan S.S., Kuruvilla. J, Sabu.T. Mechanical Properties andMorphology of Nanoclay-Filled Different TPU/PP Blends.[J]. Polymer-PlasticsTechnology and Engineering,2009,48:871-876
    [98] Kannan M., Bhagawan S.S., Kuruvilla. J,Sabu T. Effect of sequence of nanoclayaddition in TPU/PP blends: thermomechanical properties.[J]. J.Mater.Sci,2010,45:1078-1085
    [99] Kannan M., Bhagawan S.S., Kuruvilla. J,Sabu T. Preparation and Characterization ofNanoclay-FilledPolyurethane/Polypropylene Blends.[J].POLYM ENG SCI,2010, DOI10.1002/pen.21703
    [100] Jia Z., Tan J., Han C. Poly (ethylene glycol copropylene glycol) as a macromolecularplasticizing agent for polylactide: Thermomechanical properties and aging.[J]. Journalof Applied Polymer Science,2009,114(2):1105-1117
    [101] Ramar P., Alagar M. Studies on mechanical and morphological behavior ofhybridnanoclay reinforced EPDM‐g‐TMEVS/PS blends.[J]. Journal of AppliedPolymerScience,2009,111(6):2859-2871
    [102] Zhang S.L., Wang D., Guan S.W. Toughening mechanism of PA1010/ester-basedTPUblends [J]. Materials Letters,2007,61(1):267-273
    [103] Phinyocheep P., Saelao J., Buzare J. Mechanical properties, morphology andmolecularcharacteristics of poly (ethylene terephthalate) toughened by natural rubber[J]. Polymer,2007,48(19):5702-5712
    [104] Li Y.J., Shimizu H. Toughening of polylactide by melt blending with a biodegradablepoly(ether) urethane elastomer [J]. Macromolecular bioscience,2007,7(7):921-928
    [105]韩娟娟. PLA/TPU共混物及其纳米复合材料的流变-形态-性能研究[D].广州:华南理工大学,2011
    [106] Yuan Y., Ruckenstein E. Polyurethane toughened polylactide [J]. Polymer Bulletin,1998,40(4):485-490
    [107] Zhang W., Chen L., Zhang Y. Surprising shape-memory effect of polylactideresultedfrom toughening by polyamide elastomer [J]. Polymer,2009,50(5):1311-1315
    [108] Ishida S., Nagasaki R., Chino K., Toughening of poly (L‐lactide) by meltblendingwith rubbers [J]. Journal of Applied Polymer Science,2009,113(1):558-566
    [109] Zaman H.U., Song J.C., Park L.S. Poly (lactic acid) blends with desiredend-useproperties by addition of thermoplastic polyester elastomer and MDI [J].Polymer Bulletin,2011,67(1):1-12
    [110] Li Y.J., Shimizu H. Improvement in toughness of poly (l-lactide)(PLLA) throughreactiveblending with acrylonitrile-butadiene-styrene copolymer (ABS): Morphologyand properties.[J]. European Polymer Journal,2009,45(3):738-746
    [111] Liu H., Chen F., Liu B. Super Toughened Poly (lactic acid) Ternary BlendsbySimultaneous Dynamic Vulcanization and Interfacial Compatibilization.[J].Macromolecules,2010,43(14):6058-6066
    [112]宫蕾.聚乳酸(PLA)纳米材料的研究进展[J].广东橡胶,2007,30(12):8-10
    [113] Nam J.Y., Ray S.S., Okamoto M. Crystallization behavior and morphology ofbiodegradable polylactide/layered silicate nanocomposite [J]. Macromolecules,2003,36(19):7126-7131
    [114] Suprakas S.R, Maiti P., Okamoto M. New polylactide/layered silicatenanocomposites.1.Preparation, characterization, and properties [J]. Macromolecules,2002,35(8):3104-3110
    [115] Suprakas S.R, Yamada K., Okamoto M.New polylactide/layered silicatenanocomposites.3. High-performance biodegradable materials [J]. Chemistry of materials,2003,15(7):1456-1465
    [116] Suprakas S.R, Yamada K., Okamoto M.New polylactide-layered silicatenanocomposites.2. Concurrent improvements of material properties, biodegradability andmelt rheology[J]. Polymer,2003,44(3):857-866
    [117] Suprakas S.R, Yamada K., Okamoto M. New polylactide/layered silicatenanocomposites,4. Structure, properties and biodegradability.[J].Composite Interfaces,2003,10:435–450
    [118] Suprakas S.R, Yamada K., Okamoto M. New polylactide/layered silicatenanocomposites.5. Designing ofmaterials with desired properties.[J]. Polymer,2003,44:6633–664
    [119] Suprakas S.R, Yamada K., Okamoto M. New Polylactide/Layered SilicateNanocomposites,6Melt Rheology and Foam Processing.[J].Macromol.Mater. Eng.2003,288:936–944
    [120] Wang R., Wang S., Zhang Y. Morphology, mechanical properties, and thermal stabilityofpoly (L‐lactic acid)/poly (butylene succinate‐co‐adipate)/silicon dioxidecomposites [J].Journal of Applied Polymer Science,2009,113(6):3630-3637
    [121] Zaidi L., Bruzaud S., Bourmaud A. Relationship between structure andrheological,mechanical and thermal properties of polylactide/Cloisite30Bnanocomposites [J]. Journal ofApplied Polymer Science,2010,116(3):1357-1365
    [122] Jiang L., Liu B., Zhang J. Properties of Poly (lactic acid)/Poly (butyleneadipate-co-terephthalate)/Nanoparticle Ternary Composites [J]. Industrial&EngineeringChemistry Research,2009,48(16):7594-7602
    [123] Meng B., Tao J., Deng J. Toughening of polylactide with higher loading ofnano-titaniaparticles coated by poly ([epsilon]-caprolactone)[J]. Materials Letters,2011,65(4):729-732
    [124] Balakrishnan H., Hassan A., Wahit M.U. Novel toughened polylacticacidnanocomposite: Mechanical, thermal and morphological properties [J]. Materialsand Design,2010,31(7):3289-3298
    [125] Li B., Dong F.X., Wang X.L. Organically modified rectorite toughened poly (lacticacid):Nanostructures, crystallization and mechanical properties [J]. European PolymerJournal,2009,45(11):2996-3003
    [126] Paul M.A, Michae A., Philippe D, Catherine H. New nanocomposite materials based onplasticized poly(L-lactide) andorgano-modified montmorillonites: thermal andmorphological study.[J].Polymer,2003,44:443–450
    [127] Di Y.W., Salvatore I., Ernesto D.M., Luigi N. Poly(lactic acid)/OrganoclayNanocomposites: Thermal, Rheological Properties and Foam Processing.[J]. Journal ofPolymer Science: Part B: Polymer Physics,2005,43:689–698
    [128] Nam J.Y., Suprakas S.R., Masami O. Crystallization Behavior and Morphology ofBiodegradable Polylactide/Layered Silicate Nanocomposite.[J]. Macromolecules2003,36,7126-7131
    [129] Miroslaw P. Melt Compounding of Polylactide/Organoclay: Structureand Properties ofNanocomposites.[J]. Journal of Polymer Science: Part B: Polymer Physics,2006,44,3392–3405
    [130] Miroslaw P, Paul M.A., Michael A., Philippe D. Plasticized Polylactide/ClayNanocomposites. I. The Roleof Filler Content and its Surface Organo-Modificationonthe Physico-Chemical Properties.[J]. Journal of Polymer Science: Part B: PolymerPhysics,2006,44,299–311
    [131] Miroslaw P., Galeski,M. Alexandre,M.-A. Paul,P. Dubois. Polylactide/MontmorilloniteNanocomposites andMicrocomposites Prepared by Melt Blending: Structureand SomePhysical Properties.[J]. Journal of Applied Polymer Science,2002,86,1497–1506
    [132] Miroslaw P., Jeszka J.K., Boiteux G. Polylactide/montmorillonite nanocompositesStructure, dielectric, viscoelastic and thermal properties.[J]. European Polymer Journal2007,43,2819–2835
    [133] Mohanty A K, Misra M, Drzal L T. Sustainable bio-composites from renewableresources: opportunities and challenges in the green materials world [J]. J. Polym.Environ.,2002,10(1-2):19-26
    [134] JoshiS V, Drzal L T, Mohanty A K.Are nature fiber composites environmentallysuperior to glass fiber reinforced composites?[J]. Composites Part A,2004,35(3):371-376
    [135] Zhang D. F., Zumbrunnen D. A., Liu Y. H. Morphology development in shear flows ofstraight and folded molten fibers [J]. AIChE Journal,1998,44:442-451
    [136] Liu Y. H., Zumbrunnen D. A. Toughness enhancement in polymer blends due to thein-situ formation by chaotic mixing of fine-scale extended structures [J]. Journal ofMaterials Science,1999,34(8):1921-1931
    [137] Kim G. M., Michler G. H. Micromechanical deformation processes in toughenedand particle-filled semicrystalline polymers: Part1. Characterization of deformationprocesses in dependence on phase morphology.[J].Polymer1998,39,5689-5697
    [138] Liu Z., Zhu X., Wu L., Li Y., Qi Z., Choy C., Wang F.Effects of interfacial adhesion onthe rubber toughening of poly(vinyl chloride) Part1. Impact tests.[J].Polymer2001,42,737-746
    [139] Edmondo M.B., Valerio C, Carla M., Antonio M.,Giuseppe F., Angelo F., Marco C.,Fabiana F. Morphological and structural characterization of polypropylene basednanocomposites.[J]. Polymer2005,46,8275-8285
    [140] Jiang L., Zhang J.W., Michael P. W.Comparison of polylactide/nano-sized calciumcarbonateand polylactide/montmorillonite composites: Reinforcingeffects andtoughening mechanisms.[J]. Polymer2007,48,7632-7644
    [141] Hong J.S., Kim Y.K., Ahn K.H. Interfacial tension reduction in PBT/PE/claynanocomposite [J].Rheologica acta,2007,46(4):469-478
    [142] Fornes T.D., Yoon P.J., eskkula H.K,.Paul D.R. Nylon6nanocomposites: the effect ofmatrix molecular weight.[J]. Polymer2001,42,9929-9940

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700