用户名: 密码: 验证码:
饱和地基高频振动特性的数值分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为加固砂土类地基的有效措施,振冲法在得到了广泛应用的同时,也逐渐暴露出一些施工难题:在处理深厚砂土地基、含卵砾中粗砂地基时,出现了地基深处成孔缓慢、加固效果差、难以达到设计深度等问题。目前普遍使用的电动型振冲器难以解决这些问题,因此在一些大型工程的地基处理中已经应用进口高频液压振冲器。液压型振冲器具有振动频率高、激振力大、贯穿能力强、输出功率大等特点,有利于振冲器的贯入而无需冲水成孔,适用范围广。
     但是目前饱和砂土地基高频振动液化特性的研究较少,不利于高频振冲器的开发和推广应用工作。因此,本文将采用有限差分程序FLAC2D对振冲法施工过程进行数值模拟,分析振动过程中振动时间、孔隙水压力、地基土体水平振动加速度与振动频率的关系,以了解振动频率对饱和砂土地基振动液化情况的影响。
     高频振动技术是国外近10年来在桩基施工方面开发并推广应用的新技术,了解高频液压振动桩锤将有助于国产高频液压振冲器的研制开发。因此,本文在饱和软粘土地基上对国产高频振动桩锤的工作性能进行了初步的监测,分析振动频率对桩身振动量、地基土体振动量的影响,结果表明我国已经具备研制液压高频振冲器的技术能力。
     本文是国家自然科学基金资助项目“饱和土的高频振动特性及其应用研究”(50779034)的部分内容。
As the effective method of densifying sandy soils, vibroflotation has been used widely around the world. But some difficult problems were gradually discovered. When vibroflotation was used to deal with deep deposits of sand or complex geology, the effect of improvement was not as good as people’s expection in advance. And the slow velocity of drilling, the unsatisfactory improvement and the phenomena of difficult drilling were also discovered. It is difficult to deal with these problems only by depending on electric vibrator. So imported vibrator of high-frequency has been used in the foundation treatment of some large construction. Because of high frequency, strong vibration ability, strong penetration ability, large output power and so on, imported vibrator of high-frequency can deal with these problems that electric vibrator can not deal with. It also can penetrate without water of pressure, and is suitable for different condition.
     However, there is little work on the research of dynamic behavior of soil under high frequencies. It is not advantaged for the development and wide use of this mechanism. The paper mainly focuses on the research of saturated sand foundation at high frequencies through finite-difference computer codes FLAC. The relationship between vibration frequency and time of vibration, pore water pressure and the acceleration of soil will be study. The effect of vibration frequency on the liquefaction of sand foundation will be researched.
     Piling with high-frequency vibration has been developed and widely used abroad in recent 10 years. It is significative to study the mechanism of piling with high-frequency vibration for the development and use of vibrator of high-frequency. The monitoring research of the piling on saturated foundation at high frequencies is done to analyze the effect of frequency on the acceleration, the velocity, the displacement of the pile and the soil. It is doable for our countries to develop vibrator of high-frequency through the result of research.
     The research work in this paper was supported by the Natural Science Foundation of China with the grant number 50779034.
引文
[1] 冶金工业部建筑研究总院. 强力夯实法与振动水冲法[M]. 北京:冶金工业出版社, 1989.
    [2] 张德骅, 陈祖煜, 熊思政. 国外松软地基的振冲加固技术[J]. 水利水电技术, 1978, (2): 59-64.
    [3] 施履祥. 振冲法在砂土地基中的应用和发展[J]. 建筑施工, 1985, (2): 25-34.
    [4] 叶观宝, 高廖斌. 振冲法和砂石桩法加固地基[M]. 北京:机械工业出版, 2005.
    [5] 南京水利科学研究院, 软基加固新技术-振动水冲法(1983 年振冲加固法经验交流学术讨论会论文选编)[C]. 北京: 中国水利电力出版社, 1986.
    [6] 康景俊. 振冲技术的应用与回顾[J]. 水利水电技术, 1995, (6): 2.
    [7] 康景俊, 尤立新. 铜街子水电站大坝左岸深槽漂卵石层下粉细砂振冲加固[J]. 水利水电技术, 1995, (6): 3-7.
    [8] 龚晓南. 地基处理技术发展与展望[M]. 北京:中国水利水电出版社, 2004.
    [9] 张志良. 大隆水利枢纽工程坝基处理[J]. 水利水电技术, 2005, (12): 46-49.
    [10] 邓德安. 振冲挤密砂基在深圳妈湾电厂中的应用[J]. 施工技术, 1993, (1): 32-33.
    [11] 施尚伟, 谢新宇, 应宏伟等. 振动挤密砂石桩加固大型油罐砂性地基效果评价[J]. 岩石力学与工程学报, 2004, 23(S1): 4576-4580.
    [12] 张剑峰, 陈昌斌. 青岛发电厂吹填砂地基上的振冲济密砂极加固试验[J]. 电力勘测, 1996, (1): 20-24.
    [13] 邱大进, 杨喜军, 李大勇. 新沙港码头格形钢板墩回填砂振冲加密[J]. 水利水电技术, 1995, (6): 43-44.
    [14] 沈荣根. 用振冲桩加固汤浦水库坝基[J]. 浙江水利科技, 1998, (1): 47-49.
    [15] 孙述祖. 振动加固机具设计中的几个问题[J]. 建筑机械, 1990, (9): 32-37.
    [16] 沙炳春, 华国荣, 刘允召. 振冲器—快速加固软弱地基的机具[J]. 建筑机械, 1984, (2): 22-28.
    [17] Mitchell J K. Soil improvement: state-of-the-art report[C]. Proceedings of the 10th International Conference on Soil Mechanics and Foundations Engineering, Stockholm, 1981, (4):509-565.
    [18] 华国荣, 沙炳春. 振冲加固法的发展—双向振动振冲器的应用[J]. 工业建筑, 1981, (7): 15-17.
    [19] 孙述祖. 加固水下松软地基的新机具—双向振冲器[J]. 机械建筑, 1992, (1): 2-4.
    [20] D’Appolonia E. Loose sands-their compaction by vibroflotation[J]. American Society for Testing and Materials, 1953, (16):138-154.
    [21] D’Appolonia E, Miller L E, Ware T M. Sand compaction by vibroflotation[J]. Journal of the Soil Mechanical and Foundational Division, ASCE, 1953, (20):1-20.
    [22] Solymar Z V, Reed D J. Comparison of foundation compaction techniques[J]. Canadian Geotechnical Journal, 1986, 23 (2): 271-280.
    [23] Dobson T. Case histories of the vibro systems to minimize the risk of liquefaction[C]. Soil Improvement-A Ten Year Update,New Jersey, ASCE Specialty Publication, 1987, (12): 167-183.
    [24] Brown R E. Vibroflotation compaction of cohesionless soils[J]. Journal of the Geotechnical Division, ASCE, 1977, 103(12): 1437-1451.
    [25] Metzger G V, Koerner R M. Modeling of soil densification by vibroflotation[J]. Journal of the Geotechnical Engineering Division,ASCE,1975,101(4): 417-421.
    [26] Harder L F, Hammond W D, Ross P S. Vibroflotation compaction at Thermalito Afterbay[J]. Journal of the Geotechnical Engineering, 1984, 110(1): 57-70.
    [27] Renton R D G, Bunce G C, Finlay D W. Vibro-replacement for industrial plant on reclaimed land, Bahrain[J]. Geotechnique, 2000, 50(6): 727-737.
    [28] 王盛源. 振冲法加固松软地基[J]. 岩土工程学报,1986, 8 (5): 39-49.
    [29] 黄茂松, 吴世明. 振冲加固粉细砂地基的动孔压测试与分析[J]. 浙江大学学报,1991, 25(6): 651-657.
    [30] 周健, 章丹峰, 贾敏才. 振冲法加固饱和疏松粉细砂试验研究[J]. 勘察科学技术, 2005, (1): 3-6.
    [31] 王余庆, 张维全. 振冲法施工对邻近建筑物的影响[J]. 工业建筑, 1981, (5):18-21.
    [32] Finn W D L. Liquefaction potential development since 1976[C]. Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 1981.
    [33] Seed H B, Lee K L. Liquefaction of saturated sands during cyclic loading[J]. Journal of the Soil Mechanical and Foundational Division,ASCE, 1966, 92(2): 47-70.
    [34] Ishihara K. Undrained deformation and liquefaction of sand under cyclic stress[J]. Soils and Foundation, 1975, 15(1): 39-44.
    [35] Ghaboussi J, Dikmen S U. Liquefaction analysis horizontally layered sands[J]. Journal of the Geotechnical Engineering Division, 1978, 104(3): 341-356.
    [36] Yoshiaki Y. Settlement of building on saturated sand during earthquake[J]. Soils and Foundation, 1977, 17(1): 23-38.
    [37] Ishibashi I, Sherif M A, Tsuchiya C. Pore pressure rise mechanism and soil liquefaction[J]. Soils and Foundations, 1977, 17(2): 17-27.
    [38] Martin G B, Finn W D L,Seed H B. Fundamentals of liquefaction under cyclic loading[J]. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(5): 423-438.
    [39] Chameau J L, Clough G W. Probabilistic pore pressure analysis for seismic loading[J]. Journal of the Geotechnical Engineering Division, ASCE, 1983, 109(4):507-524.
    [40] Ziekiewicz. Soils and other saturated media under transient dynamic conditions[J]. Soil Mechanics Transient and Cyclic loading, 1982, (4):173-192.
    [41] Vaid Y P, Thomas J. Liquefaction and postliquefaction behavior of sand[J]. Journal of the Geotechnical Engineering, ASCE, 1995, 121(2):163-173.
    [42] 黄文熙. 砂基和砂坡的液化研究[J]. 水利水电技术, 1962, (1):38-39.
    [43] 汪闻韶. 饱和砂土振动孔隙水压力试验研究[J]. 水利学报, 1962, (2): 35-39.
    [44] 吴世明. 动荷载下土的变形特性及其测试[J]. 水利学报, 1987, (12):33-47.
    [45] 谢定义, 巫志辉. 不规则动荷脉冲对砂土液化特性的研究[J]. 岩土工程化学报, 1987, (4): 254-259.
    [46] 谢定义. 土动力学[M]. 西安:西安交通大学出版社, 1988.
    [47] 徐志英, 周健. 土坝地震孔隙水压力产生、扩散和消散的三维动力分析[J]. 地震工程与工程振动, 1985,5 (4):57-72.
    [48] 卢盛松, 姜朴, 郭志平. 某核电站渠道边坡抗震稳定性研究[J]. 河海大学学报(自然科学版), 1985, (1):51-62.
    [49] 盛虞, 卢盛松, 姜朴. 土工建筑物动力固结的耦合振动分析[J]. 水利学报, 1989, (12):31-41.
    [50] 孙述祖. 振动器参数的分析研究[J]. 建筑机械, 1987, (7):14-21.
    [51] 杨智勇. 液压振冲在处理地基中的应用[J]. 工程地质与基础处理. 2006, (6): 38-39.
    [52] 卢伟, 宋红英, 徐海荣. 含卵砾中粗砂振冲加密机具试验与工程实践[J]. 水利水电技术, 2005, (12): 43-45.
    [53] 张辉杰, 胡先举, 李学海, 刘思君. 三峡二期围堰风化砂砾振冲加固检测成果分析[J]. 长江科学院院报, 2002, (8): 30-32.
    [54] 徐海荣,张志伟,李自勇. 坝基含卵砾中粗砂振冲加密试验与施工[J]. 水利水电 技术社, 2005, 36(12): 38-39.
    [55] 孙云飞. 三峡工程二期围堰预进占段风化砂体振冲加密工程[J]. 水力发电, 1998, (6): 46-49.
    [56] 刘丽娟, 裴俊杰, 吴永根. 振冲加固地基存在的问题探讨[J]. 科技情报开发与经济, 2000, 10(1): 45.
    [57] 吴世明, 徐攸在. 土动力学现状与发展[J]. 岩土工程学报, 1998, 20(3): 125-131.
    [58] 谢定义. 饱和砂土体液化的若干问题[J]. 岩土工程学报. 1992, 14(3): 90-98.
    [59] 汪闻韶. 土的液化机理[J]. 水利学报, 1981, (5): 22-34.
    [60] Yoshimi Y, Oh-oka H. Influence of degree of shear stress reversal on the liquefaction potential of saturated sand [J]. Soil and Foundations, 1975, 15(3): 27-40.
    [61] Lee K L, Focht J A. Cyclic testing of soil for ocean wave loading problems[J]. Marine Geotechnology, 1976, 1(4):302-325.
    [62] 何昌荣. 动模量和阻尼的动三轴试验研究[J]. 岩土工程学报, 1997, 19(3): 39-48.
    [63] 张金来,鲁晓兵. 水平动载下饱和砂土地基液化区扩展[J]. 岩土工程技术, 2004,18(1): 8-10.
    [64] 张建民, 王稳祥. 振动频率对饱和砂土动力特性的影响[J]. 岩土工程学报, 1990, 12(1): 89-97.
    [65] 龚晓南. 土工计算机分析[M]. 北京:中国建筑工业出版社, 2000.
    [66] 冯元桢. 连续介质力学[M]. 北京:科学出版社, 1987.
    [67] Itasca. FLAC-Users’Manual [M]. Minneapolis, Itasca Consulting Group, 2005.
    [68] 国胜兵, 潘越峰, 王明洋, 钱七虎. 爆炸地震波荷载下饱和砂土液化有效应力法分析[J]. 岩石力学与工程学报, 2005, 24(S2):5705-5711.
    [69] 王泳嘉, 邢纪波. 离散单元法同拉格朗日元法及其在岩土力学中的应用[J]. 岩土力学, 1995, 16(2):1-14.
    [70] 国胜兵, 王明洋, 钱七虎. 饱和砂土爆炸液化特性研究[J]. 岩土力学, 2007, 28(3):427-435.
    [71] 吴世明等. 土动力学[M]. 北京:中国建筑工业出版社. 2000.
    [72] 陈国兴,谢君斐,张克绪. 土的剪切模量核阻尼比的经验估计[J]. 地震工程域工程振动,1995,15(1):73-84.
    [73] 陈仲颐, 周景星, 王洪瑾. 土力学[M]. 北京:清华大学出版社, 2001.
    [74] 严人觉, 王贻荪, 韩清宇. 动力基础空间理论概述[M]. 北京:中国建筑工业出版社. 1981.
    [75] 尤立新. 从超孔隙水压力变化评价砂土振冲处理后抗液化效果[J]. 水利学报, 1983, (10):69-72. [76《] 桩基工程手册》编写委员会. 桩基工程手册[M]. 北京:中国建筑工业出版社, 1995.
    [77] 张忠海. 液压式振动桩锤发展现状及选型应用[J]. 建设机械技术与管理, 2001, (1):37-38.
    [78] 刘剑, 陈龙珠, 曹国俊, 樊裕昕. 液压高频振动桩锤开发及应用[C]. 中国土木工程学会第十届土力学及岩土工程学术会议论文集. 重庆:重庆大学出版社, 2007.
    [79] 霍晓强, 周传立, 柯瑾. 振动沉拔桩机振动锤主要参数的选择及计算[J]. 筑路机械与施工机械化, 2001, (1):3-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700