用户名: 密码: 验证码:
粉煤灰-石灰-硫酸盐系统在地基处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用实验室模拟试验与现场试验相结合的方法,系统研究粉煤灰-石灰-硫酸盐混凝土桩用于软土地基处理及其复合地基的主要性能,并从原材料、配合比、工艺等方面深入研究了各种因素的影响规律,通过化学分析和现代测试技术研究了粉煤灰-石灰-硫酸盐混凝土桩用于软土地基处理的加固机理,还针对粉煤灰-石灰-硫酸盐混凝土桩复合地基的特点给出了承载力的计算公式,最后通过实际工程应用展示了粉煤灰-石灰-硫酸盐混凝土桩用于软土地基处理的经济技术优势和社会环境效益。
    为了降低地下孔隙水含量,研究了粉煤灰-石灰-硫酸盐混凝土桩采用干料形态成型后吸水硬化的可行性与关键影响因素。分析了配合比、龄期及密实度对桩体强度的影响。由于粉煤灰-石灰-硫酸盐混凝土桩成型28天以后,其强度仍有较大的增长,因此结合具体工程条件可采用60天或90天龄期的抗压强度作为混凝土的强度判断依据。通过水化产物及长期力学性能的研究,发现粉煤灰-石灰-硫酸盐混凝土桩具有很好的耐久性,适用于软土地基的处理。桩体采用干料形态成型,密实度是影响桩体强度的关键,改善桩体密实度可以有效提高桩体的力学性质。
    现场研究采用了一种操作简单、移动方便、能耗低、体积小的施工设备,并给出了有关工艺参数,现场试验结果表明所采用设备和工艺工效高,特别适合于粉煤灰-石灰-硫酸盐混凝土桩的施工,有很广阔的工程应用前景。通过单桩静载荷原位试验和复合地基静载荷原位试验,显示了粉煤灰-石灰-硫酸盐混凝土桩的技术优势:不仅能有效发挥桩间土的承载力,同时自身强度较高,一般容易达到3MPa左右,而且粉煤灰-石灰-硫酸盐混凝土桩属于半刚性桩,使得桩与土的荷载分担比较均衡。
    桩体对地基除了有明显增强作用外,成型时的振动挤密与干料的吸水作用会使桩间土的物理力学性质得到明显改善,化学和微观分析还揭示桩体会游离出活性物质而对桩间土有化学加固作用,其化学作用随离桩距离的增大而逐渐减弱。
    相比于其他常用地基处理方法,粉煤灰-石灰-硫酸盐混凝土桩在施工过程中不仅对环境产生的污染较小,而且桩体材料可全部采用固体废渣,有非常明显的环境效益。
It is investigated that the main properties of the concrete pile with FA(Fly Ash)-lime-sulfate system and its composite ground through al simulation experiment and site test. The influence of the raw material, mix proportion and technics were researched, and, the reinforce mechanism of FA-lime-sulfate concrete pile composition foundation is studied by chemistry analyzing and modern testing technology, and the calculating formula of bearing capacity of FA-lime-sulfate concrete pile composition foundation is provided. At last, the technological and economical superiority and society environment benefit of the FA-lime-sulfate pile are shown in the practical engineering.
    For reducing the water content of pore, the feasibility of drinking and cementing, and the key influence factors of drinking capability of FA-lime-sulfate system concrete pile molded in dry state are analyzed. Then the influence to the strength of mix proportion, period and density of pile are analyzed. Because the strength of the FA-lime-sulfate system still be developing after 28 days, it's proposed that the 60 day's or 90 day's compressive strength can be used as the strength judgment standard. Based on the researching of hydration products and the long-term mechanics property, it's discovered that the FA-lime-sulfate system has better duration property so as to be used in soft soil foundation treatment. When molding in dry state, it's showed that the density is the main influence factor of the strength, which the mechanics property of pile can be increased by improving the density of pile.
    In the site investigation, we adopt a new machine to mold pile, which handling is easy, the moving is convenience, the power cost is low, bulk is small, and provided some relative technics parameter, The site result indicates that the work efficiency of such machine and technics is very high so as to fit to be used in FA-lime-sulfate concrete pile. Based on the single pile static load test and composite foundation static load test, the advantage of mechanics of FA-lime-sulfate concrete pile is shown, the pile is good to exert the mechanics of soil effectively. At the same time, it's own strength is relatively high, commonly reach up to 3MPa, and FA-lime-sulfate pile is a half rigidity pile, so this make the pile-soil load participate be equilibria.
     When the pile possess reinforcment, it can improve the soil's physics and mechanics property by the effect of extrusion-vibration and drinking. By chemistry and microcosmic analyzing, it's recovered that the activity matter would dissociate out and
    
    have chemistry reinforce action to soil, and the effect is changed following the space to the pile.
    Compared with other foundation consolidation technic, the FA-lime-sulfate pile does less environmental pollution during construction, and its material can be composed of solid waste residue, so it has distinct environment benefit.
引文
[1] 肖保怀,常温常压粉煤灰活性激发的基本系统及其适应性研究,硕士学位论文,1996年12月
    [2] 王智,粉煤灰活性激发基本系统中石灰因素的研究,硕士学位论文,1998年6月
    [3] 钟白茜 张少明,粉煤灰的活性与激发措施,粉煤灰综合利用,1995年第4期
    [4] 关键适,粉煤灰为什么具有水硬活性,硅酸盐建筑制品,1981年第3期
    [5] L.E.Barta,G.Vamou, M.A.Toqan,J.D.Teare,J.M.Beer and A.F.Sarofim(1990). A statistical investigation on particle to particle variation of fly ash using SEM-AIA-EDAX technique. In: Materials Research Society Symposia Proceedings, Vol.178,1990,67-82
    [6] R.C.Joshi and V.M.Malhotra(1987). Relationship between pozzolanic activity and chemical and physical characteristics of selected Canadian fly ashes. In: Materials Research Society Symposia Proceedings, Vol.86, Pittsburgh, Pennsylvania, 1987, 113-125
    [7] H.S.Pietersen, A.L.A.Fray and J.M.Bijen(1990). Reactivity of fly ash at high PH. In: Materials Research Society Symposia Proceedings, Vol.178,139-157
    [8] 第七届国际水泥化学会议论文集,中国建筑工业出版社,1985年
    [9] 粉煤灰综合利用应用技术精选,国家计委资源节约和综合利用司,1992年
    [10] 张宏祥,粉煤灰活性的影响因素和测定方法,硅酸盐建筑制品,1981年第5期
    [11] G.J.McCarthy, J.K.Solem,O.Manz, D.J.Hassett(1990). Use of a database of chemical, mineralogical and physical fly ash and its utilization as a mineral admixture in concrete. In: Materials Research Society Symposia Proceedings, 178; 3-31,1990
    [12] K.Wesche(1991). Fly ash in concrete: Properties and performance. Chapman & Hall, London, 1991
    [13] C.Tashiro, K.Ikeda and Y.Inous(1994). Evaluation of pozzolanic activity by the electric resistance measurement method. Cement and Concrete Research, Vol.24.1133-1139,1994
    [14]L.L.Sloss, Irene M. Smith and Debborah M.B.Adams(1996). Selected Properties of high volumn fly ash concrete. Concrete International,1990,October,47-50
    [15] F.Sybertz(1989). Comparison of different method for testing the pozzolanic activity of fly ashes. In: Fly Ash, Silica Fume, Slag & Natural Pozzalans in Concrete, Proceedings Third International Conference Trondheim, Norway, June18-23, 1989,477-497
    [16] 钱觉时等,粉煤灰活性激发试验研究,硅酸盐建筑制品,1994年第6期
    [17] 林秀,粉煤灰的矿物组成和常温下粉煤灰活性的研究,硅酸盐学报,1982年,3月
    [18] 孙江安,激发粉煤灰活性的方法和新途径,硅酸盐建筑制品
    [19] 陈翼宇,用化学激发剂提高粉煤灰活性的研究,硅酸盐建筑制品,1995年第6期
    
    
    [20] 沈旦申,粉煤灰混凝土,中国铁道出版社,1989年
    [21] 刘巽伯,上海粉煤灰应用技术手册,同济大学出版社,1995年
    [22] 袁润章 朱安,粉煤灰的组分、结构、及其特性,硅酸盐建筑制品,1982年第6期
    [23] 聂继红等,粉煤灰微观结构及显微成分分析,粉煤灰综合利用,1995年第1期
    [24] 乐美龙,粉煤灰中各物相的定量分析,硅酸盐建筑制品,1982年第6期
    [25] 钱觉时,粉煤灰特性与粉煤灰混凝土,科学出版社,2002年5月
    [26] R.C.Joshi and B.K.Marsh(1986). Some physical, chemical and mineralogical properties of some Canadian ashes. In: Materials Research Society Symposia Proceedings, Vol.65, Pittsburgh, Pennsylvania, 1986, 167-170
    [27] G.J.McCarthy, O.E.Manz, D.M.Johansen, S.J.Steinwand and R.J.Stevenson(1987B). Correlation of chemistry and mineralogy of Western U.S. fly ash. In: Materials Research Society Symposia Proceedings, Vol.86,1987, 109-112
    [28] R.J.Stevenson, J.C.Collier, J.J.Crashell and L.Quandt(1988). Characterization of North American Lignite fly ashes I: chemical variation. In: Materials Research Society Symposia Proceedings, Vol.113, 1988,87-98
    [29] P.K.Rohatgi, P.Huang, R.Guo, B.N.Keshavaaram and D.Golden(1995). Morphology and selected properties of fly ash. In: Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Proceedings Fifth International Conference, Milwaukee, Wisconsin, USA, April 21-25, 1995
    [30] D.L.Biggs and J.J.Bruns(1985). Transmitted and reflected visible light microscopy of two bituminous fly ashes. Materials Research Society Symposia Proceedings, Vol.43,21-30
    [31] V.Sivasundaram, G.G.Carette and V.M.Malhotra(1990). Selected properties of high volume fly ash concrete. Concrete International ,1990, October, 47-50
    [32] G.Couch(1994). Understanding slagging and fouling in pf combustion. IEA Coal Research, London, 1994
    [33] S.Diamond and C.L.Kilgour(1986). A procedure for the interpretation of fly ash particle size data. In: Materials Research Society Symposia Proceedings, Vol.65,1986,105-114
    [34] 霍继文,粉煤灰的特性分析及其应用,内蒙古电力技术,Vol.17,No.4,33-35,1999
    [35] 李海芳,粉煤灰的静力学性质初步分析,华北水利水电学院学报,Vol.18,No.1,26-30,1997
    [36] 湖南大学,天津大学等,建筑材料,中国建筑出版社,1989年7月
    [37] 严吴南,彭小芹等,建筑材料性能学,重庆大学出版社,1996年12月
    [38] 袁润章,胶凝材料学,武汉工业大学出版社,1989年2月,第1版
    [39] 叶书麟,叶观宝,地基处理,中国建筑工业出版社,1997年12月
    [40] 刘景政,杨素春等,地基处理与实例分析,中国建筑出版社,1998年5月
    [41] 李立新,段月明等,复合地基理论研究进展,沈阳建筑工程学院学报(自然科学版)2001
    
    年7月
    [42] 林孔锱,碎石桩地基的承载力与沉降计算探讨,岩土工程学报,1984年2期
    [43] Goughnour R R, Bayuk A A, Analysis of stone column-soil matrix interaction under vertical, load, Proc. NPC LCPC C.R.Coll, Int, Reinforcement dessols, Paris, 1979: 271-277
    [44] Goughnour R R, Settlement of vertical loaded stone columns in soft ground , Proc. of 8 ECSMFE, 1983(1): 235-240
    [45] 段继明,龚晓南等,水泥搅拌桩的荷载传递规律,岩土工程学报,1994年,第4期
    [46] 王盛源,关锦荷等,大粒径碎石桩现场大型综合试验,岩土工程学报,1997年第6期
    [47] 李立新,地基处理方法的模糊选,勘察科学技术,1997年第2期
    [48] Ingles, O. G. and Metcalf, J.B. Soil stabilization principles and practice. Wiley, New York,1973
    [49] 龚晓南等编, 地基处理手册,中国建筑工业出版社,2000年8月
    [50] Zalihe Nalbantoglu and Erdil Riza Tuncer, Compressibility and hydraulic conductivity of a chemically treated expansive clay, Can.Geotech.J.Vol.38.2001, 154-160
    [51] Tarun R.Naik, Shiw Singh, and Bruce Ramme, Mechanical Properties and Durability of Concrete Made with Blended Fly Ash, ACI Materials Journal, July-August 1998, 454-462
    [52] 顾强生 张小平等,粉煤灰桩加固软基特性的室内试验研究,岩土工程技术,1999年1期;
    [53] 王志亮 禹峰,粉煤灰桩模型试验和工程实例,土工基础,2001年3月1期
    [54] 雷学义 刘利民,再论双灰砂桩在地基处理中的应用,粉煤灰,2002年2月;
    [55] 徐洋 谢康和等,二灰桩复合地基三维固结有限元分析,岩土工程学报,2002年3月2期;
    [56] 张鑫景,二灰桩处理软土地基的再认识,岩土工程技术,1998年2期;
    [57] 尹翔,二灰碎石力学性能研究,国外建材科技,2001年1期;
    [58] 阎明礼、张东刚,CFG桩复合地基技术及工程实践,中国水利水电出版社 2001年1月
    [59] 唐益群、叶为民,土木工程测试技术手册,同济大学出版社1999年5月出版
    [60] 王梅、白晓红等,生石灰与粉煤灰桩加固软土地基的微观分析,岩土力学,2001年3月第22卷第1期
    [61] 冶金工业部建筑研究总院,地基处理技术4--排水固结法与挤密法,冶金工业出版社,1989年2月
    [62] D.I.Boadman, S.Glendinning and C.D.F.Rogers, (2001)Development of stabilisation and solidification in lime-clay mixes, Geotechnique 50, No.6. 533-543
    [63] 何金辉等,软土地基测试指标的实际应用,地质出版社,1997年
    [64] 洪毓康主编,土质学与土力学,人民交通出版社,1999年1月,第2版
    [65] 雍景荣等主编,土力学与基础工程,成都科技大学出版社,1995年8月
    
    
    [66] 赵明华,土力学与基础工程,武汉工业大学出版社,2000年7月
    [67] 李作勤,复合地基中桩土应力比和优化设计,岩土力学1995年第4期
    [68] 地基处理技术规范(JGJ79-91)
    [69] 折学森,软土地基沉降计算,人民交通出版社,1998年5月
    [70] 化建新,复合地基技术及应用,岩土工程技术,2001年第2期
    [71] 化建新等,CLSC桩加固技术,第四届全国地基处理学术讨论会论文集,浙江大学出版社,1995年
    [72] Bell. F. G.(1988), Stabilisation and treatment of clay soils with lime, Ground Engng 21. No. 1, 10-15
    [73] British Standards Institution(1990a), Stabilized materials for civil engineering purpose, Methods of test for cement-stabilized and lime-stabilized materials. BS1924,Part.2,
    [74] Masashi Kamon. Recent development of soil improvement. International symposium on soil improvement and pile foundation. Nanjing, China:1992
    [75] Rowe, R. K. Reinforced embankment behaviour: recent advances. International symposium on soil improvement and pile foundation. Nanjing, China: 1992.3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700