用户名: 密码: 验证码:
铋系异质结光催化剂的原位制备及其环境净化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拓宽半导体光催化材料的光响应范围和提高光催化反应效率是目前光催化研究的重点。铋系复合氧化物因其独特的电子结构和优良的可见光吸收性能,近年来受到人们的广泛关注。结合我国铋矿资源优势,设计制备廉价、高效、可用于环境净化领域的铋系光催化剂具有很好的发展前景。本文使用软化学原位合成技术,设计制备一系列分布均匀、能级匹配的铋系异质结型复合半导体光催化剂。并分别将其用于有机污染物的分解、病原微生物的灭杀、重金属离子的减毒以及室内挥发性有机物的去除等环境净化领域。通过不同的实验参数控制材料的复合比例、表面微结构、光吸收性能等,研究了复合光催化剂结构对光催化环境净化性能的影响。本文的主要研究工作如下:
     采用简单易行的低温溶液法,将Ti的聚合阳离子引入到Bi3Nb07颗粒的表面,原位合成了BiOCl/Bi5Nb3O15/TiO2复合光催化剂。分别通过XRD、XPS、 HR-TEM、紫外-可见漫反射、N2-吸附脱附等多种测试手段对复合光催化剂样品进行了分析。BiOCl/Bi5Nb3O15/TiO2复合样品具有高比表面积和双介孔结构。光催化实验结果表明,该复合光催化剂对罗丹明B和气态丙酮都具有很好的光催化降解活性。原位形成的多相异质结界面有效结合匹配,从而促进光生电荷的分离,增强光催化活性。该光催化剂对罗丹明B的降解先以脱乙基作用为主导,后对发色基团进行攻击破坏,活性自由基O2·-在光催化降解罗丹明B中起主要作用。
     采用水热法,探讨了不同铋源化合物和反应体系pH值对合成Bi2O2CO3的形貌结构、表面官能团、光吸收性及光催化活性的影响。以BiCl3为铋源所合成的样品具有更小的粒径尺寸,吸收边带出现了明显的蓝移现象。在紫外光照射下,以BiCl3为铋源所合成的样品对甲基橙具有最高的光催化活性。在pH约为8时所制备的Bi2O2CO3样品由微米/纳米片自组装形成具有分级结构的球状,有利于对光量子的捕集,表现出很好的光催化活性。
     采用水热法原位合成了Bi2O2CO3/Bi3NbO7复合光催化剂,并研究了所制备样品在可见光下对大肠杆菌的光催化灭菌活性。通过多种测试表征手段对合成样品的物相、表面微结构、光吸收性能等进行分析,并对其光催化灭菌机理进行了初探。不同比例的Bi2O2CO3/Bi3NbO7复合物的光吸收波长阙值λg范围从428nm到445nm之间。光催化灭菌结果表明,BiCO/BiNbO-2样品在可见光下对大肠杆菌具有较好的灭活能力。原位制备所形成的Bi2O2CO3/Bi3NbO7异质结结构可以有效延长光生电子空穴的寿命。复合光催化剂具有大的比表面积和多孔径结构,这有利于增加反应活性位点,从而进一步提高光催化反应效率。
     采用水热原位制备技术合成了Bi2S3/Bi202C03复合光催化剂,并考察了所制备的复合光催化剂在模拟太阳光下对溶液中Cr(Ⅵ)的去除效率。通过XRD、 SEM、TEM、UV-vis Diffuse Reflectance等多种测试表征手段对合成样品的物相组成、形貌结构、表面官能团、光吸收性能等进行了分析。复合物中Bi2S3和Bi2O2CO3分别以棒状纤维和片层结构存在,且两种半导体界面紧密结合。Bi2O2CO3复合样品在紫外光区域和可见光区域都具有明显的光吸收性能。光催化实验结果表明,在模拟太阳光照射下,Bi2O2CO3复合光催化剂比N掺杂Bi2O2CO3具有更好的Cr(Ⅵ)吸附性能和光催化还原效果。复合物中Bi2S3和Bi2O2CO3间较高的界面结合度、匹配的能级位置有利于光生电子的转移率,提高光生载流子的寿命,从而增加光催化反应效率。
To broaden the light response range of semiconductor photocatalysts and improve the efficiency of photocatalytic reaction is the focus of the photocatalytic study. Due to its unique layered structure and excellent light absorption properties, the bismuth-based composite oxides have attracted more and more attention in recent years. Based on the rich domestic bismuth mineral resource, to develop low-cost, efficient and applying in environmental purification bismuth-based photocatalysts has good prospects. In this work, a series of bismuth-based composite photocatalysts with tightly interface, evenly distributed and matching energy level, was designed and prepared by soft chemical in-situ synthesis technology. And the prepared bismuth-based composite photocatalysts was used in the field of environmental purification, such as decomposition of organic pollutants, the sterilization of pathogenic contaminants, reduction of heavy metal ions and removal of indoor VOCs, respectively. Different experimental parameters were studied for controlling the proportion of composite materials, surface microstructure, and optical absorption performance. The influence of composite photocatalysts structure on the photocatalytic performance was also studied. The main research work is as follows:
     By a facile solution method at low temperature, introducing the Ti polymeric cationic to the surface of BisNbO7particles, the BiOCl/Bi5Nb3O15/TiO2composite photocatalyst was in-situ synthesized. The as-prepared composites were characterized by XRD, XPS, HR-TEM, UV-vis DRS and N2adsorption-desorption. The BiOCl/Bi5Nb3O15/TiO2composite samples have high specific surface area and dual-mesoporous structure. The multiphase interfaces formed in-situ are matching effective, which could favor for the separation of the light generated electron-hole, and thus increase the photocatalytic efficiency. The photocatalytic degradation results show that the composite photocatalysts have good photocatalytic activity for the degradation of rhodamine B and gaseous acetone. The photocatalyst degradation of rhodamine B was initial deethylation and then attacking and destruction the chromophore. The active radical O2-play an important role in the photocatalytic degradation of Rhodamine B.
     By hydrothermal method, the different synthesis conditions, bismuth source compounds and the effect of pH values, on the characteristic of the as-prepared Bi2O2CO3samples, such as morphology, surface functional groups, light absorption and photocatalytic activity was studied. The as-prepared samples using BiCl3as bismuth source having a smaller particle size. The absorption edge has a clear blue shift. The as-prepared samples using BiCl3as bismuth source have the highest photocatalytic activity for the degradation of methyl orange under UV irradiation. Under different pH conditions, the Bi2O2CO3sample synthesized at pH8have a hierarchical structure with self-assembled sphere-like morphology, which is favor for trapping light quantum. The sample Bi2O2CO3sample synthesized at pH8shows the best photocatalytic efficiency.
     The Bi2O2CO3/Bi3NbO7composite photocatalyst was synthesized by in-situ hydrothermal method and the photocatalytic bactericidal activity against E. coli was also discussed. The phase structure, surface microstructure and optical absorption performance was analyzed by a variety of characterizations. Light absorption edges of different proportion Bi2O2CO3/Bi3NbO7composites were from428-455nm. The result shows that the BiCO/BiNbO-2composite has good photocatalytic bactericidal activity. The in-situ formed Bi2O2CC3/Bi3NbO7heterojunction structure can effectively extend the life of the light generated electron-hole. And the composite photocatalyst have a large specific surface area and multi-porous structure, which is conducive to increase the reactive sites, thus enhancing the efficiency of the photocatalytic reaction.
     The Bi2S3/Bi2O2CO3composite photocatalyst was synthesized by in-situ hydrothermal technology and photocatalytic reduction of Cr (VI) in aqueous solutions under simulated sunlight irradiation was also studied. The phase composition, morphology, surface functional groups and light absorption property was analyzed by XRD, SEM, TEM, FT-IR and UV-vis Diffuse Reflectance. Bi2S3and Bi2O2CO3existed in the composites as rod-like fibers and plate-like structure, respectively, and the interface of two components closely integrated. The Bi2S3/Bi2O2CO3composite photocatalyst shows better adsorption performance and photocatalytic reduction activity for the Cr (VI) than the N-doped Bi2O2CO3. The tightly interfaces and matching energy level are benefit for the transferring of photo-induced electrons and improving the life of the light generated carriers, thus increasing the efficiency of the photocatalytic reaction.
引文
[1]Fujishima A, Honda K. Electrochemical photocatalysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37-38.
    [2]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension[J]. Bull. Environ. Contam. Toxicol.,1976,16(6):697-701.
    [3]Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chem. Rev.,1995,95(3):735-758.
    [4]Hoffmann M R, Martin S T, Choi W, Bahnemannt D W. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev.1995,95(1):69-96.
    [5]Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline system[J]. Chem. Rev.,1995,95(1):49-68.
    [6]Fujii M, Kawai T, Kawai S. Photocatalytic activity and the energy levels of electrons in a semiconductor particle under irradiation[J]. Chem. Phys. Lett.,1984,106(6):517-522.
    [7]Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline B1VO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J]. J. Am. Chem. Soc.,1999,121(49):11459-11467.
    [8]Frindell K L.; Bartl M H, Robinson M R, Bazan G C., Popitsch A, Stucky G D. Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls[J]. J. Solid State Chem.,2003,172(1):81-88.
    [9]Machado A E H, De Miranda J A, De Freitas R F, Duarte E T F M, Ferreira L F., AlbuquerqueY D T, Ruggiero R, Sattler C, De Oliveira L. Destruction of the organic matter present in effluent from a cellulose and paper industry using photocatalysis[J]. J Photochem.Photobiol A:Chem,2003,155 (1-3):231-241.
    [10]Li Y Z, Huang J C, Peng T, Xu J, Zhao X J. Photothermocatalytic synergetic effect leads to high efficient detoxification of benzene on TiO2 and Pt/TiO2 nanocomposite[J]. ChemCatChem, 2010,2(9),1082-1087.
    [11]李旦振,郑宜,付贤智.微波-光催化耦合效应及其机理研究[J].物理化学学报,2002,18(4):332-335。
    [12]Zheng Y, Li D Z, Fu X Z. Microwave-assisted heterogeneous photocatalytic oxidation of ethylene[J]. Chem J Chin Univ,2001,22(3):443-445.
    [13]Selli E, Bianchi C L, Pirola C, Bertelli M. Degradation of methyl tert-butyl ether in water: effects of the combined use of sonolysis and photocatalysis[J]. Ultrason Sonochem,2005,12(5): 395-400.
    [14]Nakajima A, Tanaka M, Kameshima Y, Okada K. Sonophotocatalytic destruction of 1.4-dioxane in aqueous systems by HF-treated TiO2 powder[J]. J photochem Photobiol A:Chem, 2004,167(2-3):75-79.
    [15]Jiang Z P, Wang H Y, Huang H, Cao C C. Photocatalysis enhancement by electric field:TiO2 thin film for degradation of dye X-3B[J]. Chemosphere,2004,56(5):503-50.
    [16]Sato S, White J M. Photodecomposition of water over Pt/TiO2 catalysts[J]. Chem. Phys. Lett., 1980,72(1):83-86.
    [17]Choi W. The role of metal ion dopanis in quantum sized TiO2 correlation between photoreactivity and charge carrier recombination dynamics[J]. J. Phys. Chem.,1994,98(51): 13669-13679.
    [18]Umebayashi T, Yamaki T, Itoh H, Asai K. Analysis of electronic structure of 3d transition metal-doped TiO2 based on band caculations[J]. J. Phys. Chem. Solids 2002,63 (10):1909-1920.
    [19]Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science,2001,293(5528)::269-271.
    [20]Zhao W, Ma W H, Chen C.C., Zhao J.C., Shuai Z.G. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2,rB.x under visible light irradiation[J]. J. Am. Chem. Soc.2004,126(15): 4782-4783.
    [21]Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E. Hidaka H. Explore the interparticles electron transfer process in the photocatalysed oxidation of phenol,2-chlorophenol and pentachlorophenol:chemical evidence for electron and hole transfer between coupled semiconducters[J]. Journal of Photochemistry and Photobilogy A:Chemistry 1995,85(3), 247-255.
    [22]Bessekhouad Y, Robert D, Weber J.V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant[J]. J. Photochem. Photobiol. A:Chem.,2004,163(3):569-580.
    [23]Boris L, Wang L, Gilbert S E. Directed Photocurrents in Nanostructured TiO2/SnO2 Heterojunction Diodes[J]. J. Phys. Chem. B.1997,101(10),1810-1816.
    [24]Jum S J, Suk J H, Jae Y K, Jae S L. Heterojunction photocatalyst TiO2/AgGaS2 for hydrogen production from water under visible light[J]. Chemical Physics Letters,2009,475(1-3):78-81.
    [25]Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K. All-solid-state Z-schem in CdS/Au/TiO2 three-component nanojunction system[J]. Nature Materials 2006,5(10):782-786.
    [26]Kim H, Kim J, Kim W, Choi W. Enhanced photocatalytic and photoelectrochemical activity in the ternary hybrid of CdS/TiO2/WO3 through the cascadal electron transfer[J]. J. Phys. Chem. C, 2011,115(19):9797-9806.
    [27]Shibata T, Irie H, Ohmori M, Nakajima A, Watanabe T, Hashimoto K. Comparison of photochemical properties of brookite and anatase TiO2 films[J]. Phys. Chem. Chem. Phys.,2004, 6(6):1359-1362.
    [28]Sclafani A, Palmisano L, Schiavello M. Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion[J]. J. Phys. Chem., 1990,94(2):829-832.
    [29]Rao M V, Rajeshwar K, Pai Verneker V R, Du Bow J. Photosynthetic production of hydrogen and hydrogen peroxide on semiconducting oxide grains in aqueous solutions[J]. J. Phys. Chem., 1980,84(15):1987-1991.
    [30]王文中,尚萌,尹文宗,任佳,周林.含铋复合氧化物可见光催化材料研究进展[J],无机材料学报,2007,27(1):11-18。
    [31]Zhang L S, Wang W Z, Yang J, Chen Z G, Zhang W Q, Zhou L, Liua S W. Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst[J]. Appl. Catal. A,2006, 308:105-110.
    [32]Zhou L, Wang W Z, Xu H L, Sun S, Shang M. Bi2O3 Hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis[J]. Chem. Eur. J.,2009,15(7):1776-1782.
    [33]邹文,郝维昌,信心,王天民.不同晶型Bi203可见光光催化降解罗丹明B的研究[J].无机化学学报,2009,25(11):1971-1976.
    [34]古国华,王巍,吕伟丽,胡正水.玫瑰花状Bi2S3纳米棒的制备与表征[J].稀有金属材料与工程,2007,36(1):108-111.
    [35]王艳,黄剑锋,曹丽云,吴建鹏,贺海燕.Bi2S3纳米材料研究进展[J].陶瓷,2010,8:19-22.
    [36]Zhao Y, Zhu X, Huang Y Y, Wang S X, Yang J L, Xie Y. Synthesis, growth mechanism, and work function at highly oriented{001} surfaces of bismuth sulfide microbelts[J]. J. Phys. Chem. C,2007,111 (33):12145-12148.
    [37]Song L M, Chen C, Zhang S J. Preparation and photocatalytic activity of visible light-sensitive selenium-doped bismuth sulfide[J]. Powder Technology,2011,207 (1-3):170-174.
    [38]肖信.碘氧化铋分级微纳结构的合成、表征和可见光光催化活性研究[D],广州:华南理工大学应用化学系,2011.
    [39]Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst[J]. Appl. Catal., B,2006,68(3-4):125-129.
    [40]Zhang X, Ai Z H, Jia F L, Zhang L Z. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[J]. J. Phys. Chem. C,2008,112 (3):747-753.
    [41]Zhang X, Zhang L Z. Electronic and band structure tuning of ternary semiconductor photocatalysts by self doping:the case of BiOI[J]. J. Phys. Chem. C,2010,114(42):18198-18206.
    [42]Zhang J, Shi F J, Lin J, Chen D F, Gao J M, Huang Z X, Ding X X, Tang C C. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst[J]. Chem. Mater.,2008,20 (9):2937-2941.
    [43]Jia Z F, Wang F M, Xin F, Zhang B Q. Simple solvothermal routes to synthesize 3D BiOBrxI1-x microspheres and their visible-light-induced photocatalytic properties[J]. Ind. Eng. Chem. Res.,2011,50(11):6688-6694.
    [44]Kudo A, Hijii S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3- with 6s2 configuration and d0 transition metal ions[J]. Chem. Lett.,1999, 10(0366-7022):1103-1104.
    [45]Tang J W, Zou Z G, Ye J H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation[J]. Catal.Lett.,2004,92(1-2):53-56.
    [46]Fu H B, Zhang L W, Yao W Q, et al. Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process[J]. Appl. Catal., B,2006,66(1-2):100-110.
    [47]Huang Y, Ai Z H, Ho W K, et al. Ultrasonic spray pyrolysis synthesis of porous Bi2WO6 microspheres and their visible-light-induced photocatalytic removal of NO[J]. J. Phys. Chem. C, 2010,114(14):6342-6349.
    [48]Wu J, Duan F, Zheng Y, Xie Y. Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity[J]. J. Phys. Chem. C,2007,111(34): 12866-12871.
    [49]Zhang L S, Wang W Z, Zhou L, Xu H. Bi2WO6 nano-and microstructures:Shape control and associated visible-light-driven photocatalytic activities[J]. Small,2007,3(9):1618-1625.
    [50]Cao X F, Zhang L, Chen X T, Xue Z L. Microwave-assisted solution-phase preparation of flower-like Bi2WO6 and its visible-light-driven photocatalytic properties[J]. CrystEngComm, 2011,13(1):306-311.
    [51]Dai X J. Luo Y S, Zhang W D, Fu S Y. Facile hydrothermal synthesis and photocatalyticactivity of bismuth tungstate hierarchical hollow spheres with an ultrahigh surface area[J]. Dalton. Trans.,2010,39(14):3426-3432.
    [52]Chen Z, Qian L W, Zhu J, Yuan Y P, Qian X F. Controlled synthesis of hierarchical Bi2WO6 microspheres with improved visible-light-driven photocatalytic activity[J]. CrystEngComm,2010, 12(7):2100-2106.
    [53]Shang M, Wang W Z, Zhang L, Xu H L. Bi2WO6 with significantly enhanced photocatalytic activities by nitrogen doping[J]. Mater. Chem. Phys.,2009,120(1):155-159.
    [54]Ren J, Wang W Z, Sun S M, Zhang L, Chang J. Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation[J]. Appl. Catal., B,2009,92(1-2): 50-55.
    [55]Xu J H, Wang W Z, Gao, E P. Bi2WO6/Cu-0:A novel coupled system with enhanced photocatalytic activity by Fenton-like synergistic effect[J]. Catal. Commun.,2011,12(9): 834-838.
    [56]Sun S M, Wang W Z, Zhang L. Bi2WO6/SiO2 photonic crystal film with high photocatalytic activity under visible light irradiation[J]. Appl. Catal., B,2012,125(0926-3373):144-148.
    [57]Zhu S B, Xu T G, Fu H B, Zhao J C, Zhu Y F. Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation[J]. Environ. Sci. Technol.,2007, 41(17):6234-6239.
    [58]Fu H B, Zhang S C, Xu T G, Zhu Y F, Chen J M. Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products[J]. Environ. Sci. Technol.,2008, 42(6):2085-2091.
    [59]贾志方.新型可见光催化剂的制备及其光催化性能的研究[D],天津:天津大学化工系,2011.
    [60]Xie H D, Shen D Z, Wang X Q, Shen G Q. Microwave hydrothermal synthesis and visible-light photocatalytic activity of γ-Bi2MoO6 nanoplates[J]. Mater. Chem. Phys.,2008, 110(2-3):332-336.
    [61]Shimodaira Y, Kato H, Kobayashi H, Kudo A. Photophysical properties and photocatalyticactivities of bismuth molybdates under visible light irradiation[J]. J. Phys. Chem. B, 2006,110(36):17790-17797.
    [62]Yu J Q, Kudo A. Hydrothermal Synthesis and photocatalytic property of 2-dimensional bismuth molybdate nanoplates[J]. Chem. Lett.,2005,34(11):1528-1529.
    [63]Yin W Z, Wang W Z, Sun S M. Photocatalytic degradation of phenol over cage-like Bi2MoO6 hollow spheres under visible-light irradiation[J]. Catal. Commun.,2010,11(7):647-650.
    [64]Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4with scheelite structure and their photocatalytic properties[J]. Chem. Mater.,2001,13(12):4624-4628.
    [65]Kohtani S, Koshiko M, Kudo A.Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator[J]. Appl. Catal., B,2003, 46(3):573-586.
    [66]Kohtani S, Hiro J, Yamamoto N, Kudo A, Tokumura K, Nakagaki R. Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation[J]. Catal. Commun.,2005,6(3):185-189.
    [67]Kohtani S, Tomohiro M, Tokumura K, Nakagaki R. Photooxidation reac-tions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalysts[J]. Appl. Catal., B,2005, 58(3-4):265-272.
    [68]Xu H, Li H M, Wu C D, Chu J Y, Yan Y S, Shu H M. Preparation, characterization and photocatalytic activity of transition metal-loaded BiVO4[J]. Mater. Sci. Eng., B,2008,147(1): 52-56.
    [69]Yin W Z, Wang W Z, Shang M, Zhou L, Sun S M, Wang L. BiVO4 Hollow nanospheres: anchoring synthesis, growth mechanism, and their application in photocatalysis[J]. Eur. J. Inorg. Chem.,2009, (29-30):4379-4384.
    [70]Zhou L, Wang W Z, Xu H L. Controllable synthesis of three-dimensional well-defined BiVO4 mesocrystals via a facile additive-free aqueous strategy[J]. Cryst. Growth Des.,2008,8(2): 728-733.
    [71]Sun S M, Wang W Z, Zhou L, Xu H L. Efficient Methylene Blue Removal over Hydrothermally Synthesized Starlike BiVO4[J]. Ind. Eng. Chem. Res.2009.48(4):1735-1739.
    [72]Nelson B P, Candal R. Corn R M, Anderson M A. Effects of pH and applied potential on photocurrent and oxidation rate of saline solutions of formic acid in a photoelectrocatalytic reactor[J]. Langmuir,2000,16(15):6094-6101.
    [73]潘成思.BiPO4含氧酸盐新型光催化剂的可控合成及构效关系研究[D],北京:清华大学化学系,2011.
    [74]Pan C G, Zhu Y F. New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye[J]. Environ. Sci. Technol,2010,44(14):5570-5574.
    [75]Pan C S, Xu J, Chen Y, Zhu Y F. Influence of OH-related defects on the performances of BiPO4 photocatalyst for the degradation of rhodamine B[J]. Appl. Catal., B,2012,115:314-319.
    [76]Chen R, Bi J, Wu L, Wang W, Li Z, Fu X. Template-free hydrothermal synthesis and photocatalytic performances of novel Bi2SiO5 nanosheets[J]. Inorg. Chem.,2009,48 (19): 9072-9076.
    [77]Yu S J, Zhang G K, Gao Y Y, Huang B B. Single-crystalline Bi5O7NO3 nanofibers: Hydrothermal synthesis, characterization, growth mechanism, and photocatalytic properties [J]. J. Colloid Interface Sci.,2011,354(1):322-330.
    [78]Zheng Y, Duan F, Chen M, Xie Y. Synthetic Bi2O2CO3 nanostructures:novel photocatalyst with controlled special surface exposed[J]. Mol. Catal. A,2010,317(1-2):34-40.
    [79]Dong F, Sun Y J, Fu M, Ho W K, Lee S C, Wu Z B. Novel in situ N-doped (BiO)2CO3 hierarchical microspheres self-assembled by nanosheets as efficient and durable visible light driven photocatalyst[J]. Langmuir,2012,28(1),766-773.
    [80]Long M C, Cai W M, Kisch H. Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-CO3O4[J]. J. Phys. Chem. C,2008,112(2):548-554.
    [81]Shang M, Wang W Z, Zhang L, Sun S M, Wang L, Zhou L.3D Bi2WO6/TiO2 hierarchical heterostructure:controllable synthesis and enhanced visible photocatalytic degradation performances[J]. J. Phys. Chem. C,2009,113(33):14727-14731.
    [82]Xu J H, Wang W Z, Sun S G. Enhancing visible-light-induced photocatalytic activity by coupling with wide-band-gap semiconductor:A case study on Bi2WO6/TiO2[J]. Appl. Catal., B, 2012,111-112:126-132.
    [83]Zhang Z J, Wang W Z, Wang L. and Sun S M. Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor:a case study on Bi2S3/Bi2WO6[J]. ACS Appl. Mater. Interfaces,2012,4(2):593-597.
    [84]Zhang X, Zhang L Z, Xie T F, Wang D J. Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures[J]. J. Phys. Chem. C 2009,113(17):7371-7378.
    [85]Jiang J, Zhang X, Sun P B, Zhang L Z. ZnO/BiOl heterostructures:photoinduced charge-transfer property and enhanced visible-light photocatalytic activity[J]. J. Phys. Chem. C 2011,115(42):20555-20564.
    [86]Li X N, Huang R K, Hu Y H, Chen Y J, Liu W J, Yuan R H, and Li Z H. A templated method to Bi2WO6 hollow microspheres and their conversion to double-shell Bi2O3/Bi2WO6 hollow microspheres with improved photocatalytic performance[J]. Inorg. Chem.2012,51(11): 6245-6250.
    [87]Li L Z, Yan B. BiVO4/Bi2O3 submicrometer sphere composite:microstructure and photocatalytic activity under visible-light irradiation[J]. J. Alloy. Compd.,2009,476(1-2): 624-628.
    [88]Carey J H, Lawrence J, Tosine H M. Environ. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bull Contain. Toxicol.,1976,16 (6):697-701.
    [89]Mattews R W, Photooxidative degradation of coloured organics in water using supported catalysts. TiO2 on sand[J]. Water Research,1991,25(10):1169-1176.
    [90]Goswami D Y. A review of engineering development of aqueous phase solar photocatalytic detoxification and disnfection processes[J]. J. Sol. Energy Eng.,1997,119(2):101-107.
    [91]Nakashima T, Ohko Y, Kubota Y, Fujishima A. Photocatalytic decomposition of estrogens in aquatic environment by reciprocating immersion of TiO2 modified polytetrafluoroethylene mesh sheets [J]. J. Photochem. Photobiol., A,2003,160(1-2):115-120.
    [92]刘春艳.纳米光催化剂光催化环境净化材料[M].北京:化学工业出版社,2008.
    [93]Matsunaga T, Tomoda R, Nakajima T, Wake H. Photoelectrochemical sterilization of microbial cells by semiconductor powders[J]. FEMS Microbiol. Lett.,1985,29(1-2):211-214.
    [94]Wang R, Hashimonto K, Fijishima A. Light-induced amphiphilic surfaces[J]. Nature,1997, 388(6641):431-432. [95] Kudo A, Kato H. Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting [J]. Chem Phys Lett,2000,331(5-6):373-377.
    [96]Zhang J, Yu J G, Zhang Y M, Li Q, Gong J R. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer[J]. Nano Lett.2011,11 (11):4774-4779.
    [97]Halmann M, Ulman M, Aurian-Blajeni B. Photoelectrochemical reduction of carbon oxides[J]. Solar Energy,1983,31(4):429-431.
    [98]Yamashita H, Ikeue K, Takewaki T, Anpo M. In situ XAFS studies on the effects of the hydrophobic-hydrophilic properties of Ti-beta zeolites in the photocatalytic reduction of CO2 with H2O[J]. Top Catal.,2002,18(1-2):95-100.
    [99]Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes[J]. J. Am. Chem. Soc.,2008,130:1124-1125.
    [100]Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture[J]. J. Am. Chem. Soc., 2008,130(12):4007-4015.
    [101]Brahimi R, Bessekhouad Y, Bouguelia A. Trari M. Improvement of eosin visible light degradation using PbS-sensititized TiO2[J]. J. Photochem. Photobiol. A,2008,194(2-3):173-180.
    [102]Liu Y, Xie C S, Li H Y. Chen H, Zou T. Zeng D W. Improvement of gaseous pollutant photocatalysis with WO3/TiO2 heterojunctional-electrical layered system [J]. J. Hazard. Mater., 2011,196:52-58.
    [103]Huang H J, Li D Z, Lin Q, Zhang W J, Shao Y, Chen Y B, Sun M, Fu X Z. Efficient degradation of benzene over LaVO4/TiO2 nanocrystalline heterojunction photocatalyst under visible light irradiation[J]. Environ. Sci. Technol.,2009,43(11):4164-4168.
    [104]Antoniadou M, Daskalaki V M, Balis N, Kondarides D I, Kordulis C, Lianos P. Photocatalysis and photoelectrocatalysis using (CdS-ZnS)/TiO2 combined photocatalysts[J]. Appl. Catal. B,2011,107(1-2):188-196.
    [105]Chang S Y, Chen S F, Huang Y C. Synthesis, structural correlations, and photocatalytic properties of TiO2 nanotube/SnO2-Pd nanoparticle heterostructures[J]. J. Phys. Chem. C,2011, 115(5):1600-1607.
    [106]Lin X P, Xing J C, Wang W D, Shan Z C, Xu F F, Huang F Q. Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3:A strategy for the design of efficient combined photocatalysts[J]. J. Phys. Chem. C,2007,111:18288-18293.
    [107]Xu Q C, Wellia D V, Ng Y H, Amal R, Tan T.T.Y. Synthesis of porous and visible-light absorbing Bi2WO6/TiO2 heterojunction films with improved photoelectrochemical and photocatalytic performances[J]. J. Phys. Chem. C,2011.115(15):7419-7428.
    [108]Xu J H, Wang W Z, Sun S M, Wang L. Enhancing visible-light-induced photocatalytic activity by coupling with wide-band-gap semiconductor:A case study on Bi2WO6/TiO2[J]. Appl. Catal., B,2012,111-112:126-132.
    [109]Zhang G K, Yang J L, Zhang S M, Xiong Q, Huang B B. Wang.J T. Gong W Q. Preparation of nanosized Bi3NbO7 and its visible-light photocatalytic property[J]. J. Hazard. Mater.2009,172 (2-3):986-992.
    [110]张林生.水的深度处理与回用技术(第二版)[M].北京:化学工业出版社,2004.
    [111]Jain R, Mathur M, Sikarwar S, Mittal A. Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments [J]. J. Environ. Manage.,2007,85(4):956-964.
    [112]Shimada T, Yamazaki H, Mimura M, Inui Y, Gueng-erich F P. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcino-gens. toxic chemicals:studies with liver microsomes of 30 Japanese,30 Caucasians [J]. J. Pharmacol. Exp. Ther.,1994,270(1):414-423.
    [113]Kornbrust D, Barfknecht T. Testing of 24 food, drug, cos-metic, and fabric dyes in the in vitro and the in vivo/in vitrorat hepatocyte primary culture/DNA repair assays [J]. Environ. Mutagen.,1985,7(1):101-120.
    [114]Borgmann D, Hums E, Hopfengartner G, Wedler G, Spitznagel G W, Rademacher I. J. Electron. XPS studies of oxide model catalysts-internal stands and oxidation numbers[J]. Spectrosc. Relat. Phenom.,1993,63(2):91-116.
    [115]Moulder J E, Stickle W F, Sobol P E, Bomben K D. Handbook of X-ray Photoelectron Spectroscopy[M]. Physical Electronics Inc., Eden Prairie, MN,1995.
    [116]Guillot J, Fabreguette F, Imhoff L, Heintz O, Marco de Lucas M C, Sacilotti M, Domenichini B, Bourgeois S. Amorphous TiO2 in LP-OMCVD TiNxOy thin films revealed by XPS[J]. Appl. Surf. Sci.,2001,177(4):268-272.
    [117]Kruse N, Chenakin S. XPS characterization of Au/TiO2 catalysts:Binding energy assessment and irradiation effects[J]. Appl. Catal., A,2011,391:367-376.
    [118]Guo Y N, Chen L, Ma F Y, Zhang S Q, Yang Y X, Yuan X, Guo Y H. Efficient degradation of tetrabromobisphenol A by heterostructured Ag/Bi5Nb3O15 material under the simulated sunlight irradiation[J]. J. Hazard. Mater.,2011(1-2),189:614-618.
    [119]Butler M A. Photoelectrolysis and physical of the semiconducting electrode WO2[J]. J. Appl. Phys.,1977,48(5):1914-1920.
    [120]Zhang S M, Zhang G K, Yu S J, Chen X G, Zhang X Y. Efficient photocatalytic removal of contaminant by Bi3NbxTa1-xO7 nanoparticles under visible light irradiation[J]. J. Phys. Chem. C, 2009,113(46):20029-20035.
    [121]Shi R, Huang G L, Lin J, Zhu Y F. Photocatalytic activity enhancing for Bi2WO6 by fluorine substitution[J]. J. Phys. Chem. C,2009,113(45):19633-19638.
    [122]Sclafani A, Palmisano L, Schiavello M. Influence of the preparation methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion[J]. J. Phys. Chem.,1990,94(3): 829-834.
    [123]Yu J G, Xiang Q J, Zhou M H. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures[J]. Appl. Catal., B,2009,90:595-602.
    [124]Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J], Pure Appl. Chem.,1985,57(4):603-619.
    [125]Cao Y, Zhang X T, Yang W S, Du H, Bai Y B, Li T J, Yao J N. A bicomponent TiO2/SnO2 particulate film for photocatalysis[J]. Chem. Mater.,2000,12(11):3445-3448.
    [126]Watanabe T, Takirawa T, Honda K. Photocatalysis through excitation of adsorbates.1. Highly efficient N-deethylation of rhodamine B adsorbed to CdS[J]. J. Phys. Chem.,1977,81(19): 1845-1851.
    [127]Wu T X, Liu G M, Zhao J C. Photoassisted degradation of dye pollutants. Ⅴ. self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions[J]. J. Phys. Chem. B,1998,102:5845 5851.
    [128]Lei P, Chen C, Yang J, Ma W, Zhao J, Zang L. Degradation of dye Pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation[J]. Environ. Sci. Technol., 2005,39(21):8466-8474.
    [129]Watanabe T, Takirawa T, Honda K. Photocatalysis through excitation of adsorbates. Highly efficient N-deethylation of rhodamine B adsorbedto cadmiumsulfide[J]. J. Phys. Chem.,1977, 81(19):1845-1851.
    [130]张晓辉,李双石,曹奇光,陈红梅.室内空气污染的危害及其防治措施研究[J].环境科学与管理,2009,34(7):22-25.
    [131]Takirawa T, Watanabe T, Honda K. Photocatalysis through excitation of adsorbates.2. A comparative study of rhodamine B and methylene blue on cadmium sulfide[J]. J. Phys. Chem., 1978,82(12):1391-1396.
    [132]Jiang F. Zheng Z, Xu Z Y, Zheng S R. Preparation and characterization of SiO2-pillared H2Ti4O9 and its photocatalytic activity for methylene blue degradation[J]. J. Hazard. Mater.,2009, 164():1250.
    [133]Deng Y H, Cai Y, Sun Z K, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D Y. Multifunctional mesoporous composite microspheres with well-designed nanostructure:a highly integratedcatalyst system[J]. J. Am. Chem. Soc.,2010,132(24):8466-8473.
    [134]Rabani J, Yamashita K, Ushida K, Stark J. Kira A. Fundamental reactions in illuminated titanium dioxide nanocrystallite layers studied by pulsed laser[J]. J. Phys. Chem. B,1998,102(10): 1689-1695.
    [135]Yang Y Q, Zhang G K, Yu S J, Shen X. Efficient removal of organic contaminants by a visible light driven photocatalyst Sr6Bi2O9[J]. Chem. Eng. J.2010,162(1):171-177.
    [136]Li G T, Qu J H, Zhang X W, Liu J H, Liu H N. Electrochemically assisted photocatalytic degradation of Orange Ⅱ:Influence of initial pH values[J]. J. Mol. Catal. A:Chem.,259 (2006) 238-244.
    [137]Bandara J, Kiwi J. Fast kinetic spectroscopy, decoloration and production of H2O2 induced by visible light in oxygenated solutions of the azo dye Orange Ⅱ[J]. New J. Chem.1999,23(7): 717-724.
    [138]Chen R, So M H, Yang J, Deng F, Che C M, Sun H Z. Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate[J]. Chem. Commun.,2006, (21):2265-2267.
    [139]Cheng H F, Huang B B. Yang K S, Wang Z Y, Qin X Y, Zhang X Y, Dai Y. Facile template-free synthesis of Bi2O2CO3 hierarchical microflowers and their associated photocatalytic activity, ChemPhysChem,2010,11(10):2167-2173.
    [140]Dong F, Sun Y J, Fu M, Ho W K, Lee S C, Wu Z B. Novel in situ N-doped (BiO)2CO3 hierarchical microspheres self-assembled by nanosheets as efficient and durable visible light driven photocatalyst[J]. Langmuir,2012,28(1):766-773.
    [141]Miao S D, Liu Z M, Han B X, et al. Synthesis and characterization of TiO2-montmorillonite nanocomposites and their application for removal of methylene blue[J]. J. Mater. Chem.,2006, 16(6):579-584.
    [142]Zhang Y L, Guo Y D, Zhang G K, et al. Stable TiO2/rectorite:preparation, characterization and photocatalytic activity [J]. Appl. Clay Sci.,2011,51 (3):335-340.
    [143]Di Paola A, Cufalo G, Addamo M, et al. Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions[J]. Colloids Surf., A,2008,317(1-3):366-376.
    [144]Tang J W, Zou Z G, Ye J H. Efficient photocatalysis on BaBiO3 driven by visible light[J]. J. Phys. Chem. C,2007,111(34):12779-12785.
    [145]蔡伟民,龙明策.环境光催化材料与光催化净化技术[M],上海:上海交通大学出版社,2011。
    [146]Jeevanandam P, Koltypin Y, Palchik O, Gedanken A. Synthesis of controlled morphological lanthanum carbonate particles using ultrasound irradiation[J]. J. Mater. Chem.,2001,11(3): 869-873.
    [147]Shang X F, Lu W C, Yue B H, Zhang L M, Ni J P, Lv Y, Feng Y L. Synthesis of three-dimensional hierarchical dendrites of NdOHCO3 via a Facile hydrothermal method[J]. Cryst. Growth Des.2009,9(3):1415-1420.
    [148]Zhang D Q, Li G S, Yu J C. Inorganic materials for photocatalytic water disinfection[J]. J. Mater. Chem.,2010,20:4529-4536.
    [149]Hou J G, Cao R, Wang Z, Jiao S Q, Zhu H M. Hierarchical nitrogen doped bismuth niobate architectures:controllable synthesis and excellent photocatalytic activity[J]. J. Hazard. Mater., 2012,217-218:177-186.
    [150]Wang W J, Yu Y, An T C, Li G Y, Yip H Y, Yu J C, Wong P K. Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes:bactericidal performance and mechanism[J]. Environ. Sci. Technol.,2012,46(8):4599-4606.
    [151]Chang W K, Sun D S, Chan H, Huang P T, Wu W S, Lin C H, Tseng Y H, Cheng Y H, Tseng C C, Chang H H. Visible light-responsive core-shell structured In2O3/CaIn2O4 photocatalyst with superior bactericidal properties and biocompatibility[J]. Nanomed. Nanotechnol.,2012,8(5):609-617.
    [152]Gao P, Liu J C, Zhang T, Sun D D, Ng W J. Hierarchical TiO2/CdS "spindle-like" composite with high photodegradation and antibacterial capability under visible light irradiation[J]. J. Hazard. Mater.,2012,229-230:209-216.
    [153]Talebian N, Nilforoushan M R, Zargar E B. Enhanced antibacterial performance of hybrid semiconductor nanomaterials:ZnO/SnO2 nanocomposite thin films[J]. Appl. Surf. Sci.,2011, 258(1):547-555.
    [154]Kim H G, Borse P H, Jang J S, Jeong E D, Jung O S, Suh Y.J, Lee J S. Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis[J]. Chem. Commun..2009, (39):5889-5891.
    [155]Jiang J, Zhang X. Sun P B, Zhang L Z. ZnO/BiOI heterostructures:photoinduced charge-transfer property and enhanced visible-light photocatalytic activity[J]. J. Phys. Chem. C. 2011,115(42):20555-20564.
    [156]Gan H H, Zhang G K, Guo Y D. Facile in situ synthesis of the bismuth oxychloride/bismuth niobate/TiO2 composite as a high efficient and stable visible light driven photocatalyst[J]. J. Colloid Interface Sci.,2012,386(1):373-380.
    [157]Sunada K, Kikuchi Y, Hashimoto K, Fujishima A. Bactericidal and detoxification effects of TiO2 thin film photocatalysts[J]. Environ. Sci. Technol.,1998,32(5):726-728.
    [158]Hu C, Guo J, Qu J H, Hu X X. Photocatalytic degradation of pathogenic bacteria with Agl/TiO2 under visible light irradiation[J]. Langmuir,2007,23(9):4982-4987.
    [159]Chen Y M, Lu A H, Li Y, Zhang L S, Yip H Y. Zhao H J, An T C, Wong P K. Naturally occurring sphalerite as a novel cost-effective photocatalyst for bacterial disinfection under visible light[J]. Environ. Sci. Technol.,2011,45(13):5689-5695.
    [160]Lejeune D, Hasanuzzaman M, Pitcock A, Francis J, Sehgal 1. The superoxide scavenger TEMPOL induces urokinase receptor (uPAR) expression in human prostate cancer cells[J]. Mol. Cancer,2006,5(8):21-26.
    [161]Castro C A, Osoriob P, Sienkiewicz A, Pulgarin C, Centeno A, Giraldo S A. Photocatalytic production of 1O2 and ·OH mediated by silver oxidation during the photoinactivation of Escherichia coli with TiO2[J]. J. Hazard. Mater.,2012,211-212:172-181.
    [162]Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals [J]. Nature 1988,333:134-139.
    [163]Wu N, Wei H H, Zhang L Z. Efficient removal of heavy metal ions with biopolymer template synthesized mesoporous titania beads of hundreds of micrometers size[J]. Environ. Sci. Technol..2012,46(1):419-425.
    [164]Kieber R J, Willey J D, Zvalaren S D. Chromium Speciation in Rainwater:Temporal Variability and Atmospheric Deposition[J]. Environ. Sci. Technol.,2002,36(24):5321-5327.
    [165]Testa J J, Grela M A, Litter M I. Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate:involvement of Cr(V) species[J]. Environ. Sci. Technol.,2004,38(5):1589-1594.
    [166]Mohapatra P, Samantaray S, Parida K M. Photocatalytic reduction of hexavalent chromium in aqueous solution over sulphate modified titania[J]. J. Photochem. Photobiol. A Chem.,2005, 170(2):189-194.
    [167]Yu H B, Chen S, Quan X, Zhao H M, Zhang Y B. Fabrication of a TiO2-BDD heterojunction and its application as a photocatalyst for the simultaneous oxidation of an azo dye and reduction of Cr(VI)[J]. Environ. Sci. Technol.,2008,42(10):3791-3796.
    [168]Rengaraj S, Venkataraj S, Yeon J W, Kim Y, Li X Z, Pang G K H. Preparation, characterization and application of Nd-TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination[J]. Appl. Catal. B,2007,77 (1-2):157-165.
    [169]Sun B, Reddy E P, Smirniotis P G. Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis[J]. Environ. Sci. Technol.,2005,39(16):6251-6259.
    [170]GB7467-87水质六价铬的测定二苯碳酰二肼分光光度法[S].北京:中国标准出版社,1987.
    [171]Zhang Y L, Guo Y D, Zhang G K, Gao Y Y. Stable TiO2/rectorite:preparation, characterization and photocatalytic activity[J]. Appl. Clay Sci.,2011,51 (3):335-340.
    [172]Zhang Y C, Li J, Zhang M, Dionysiou D D. Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocat-alytic reduction of aqueous Cr(Ⅵ)[J]. Environ. Sci. Technol.,2010,45(21):9324-9331.
    [173]Liu X J, Pan L K, Lv T, Zhu G, Sun Z, Sun C Q. Microwave-assisted synthesis of ZnO-graphene composite for photocatalytic reduction of Cr(VI)[J]. Catal. Sci. Technol.,2011,1: 1189-1193.
    [174]Jiang G D, Lin Z F, Chen Chao, Zhu L H, Chang Q, Wang N, Wei W, Tang H Q. TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants[J]. Carbon,2011,49(8):2693-2701.
    [175]Zheng Z K, Huang B B, Qin X Y, Zhang X Y, Dai Y. Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity [J]. J. Colloid Interface Sci.,2011,358(1):68-72.
    [176]Wang L, Li X Y, Teng Wei, Zhao Q D, Shi Y, Yue R, Chen Y F. Efficient photocatalytic reduction of aqueous Cr(VI) over flower-like SnIn4S8 microspheres under visible light illumination[J]. J. Hazard. Mater.,2013,244-245:681-688.
    [177]Zhang Y C, Li J, Xu H Y. One-step in-situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI)[J]. Appl. Catal. B,2012,123-124:18-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700