用户名: 密码: 验证码:
柔性浮筏系统的磁悬浮主动隔振理论与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舰船声隐身性能的好坏对我国国防安全具有极其重要的意义。隔振技术能够有效的抑制结构振动的能量传递,成为潜艇减振降噪的关键技术。隔振分为主动隔振和被动隔振两种形式。被动隔振由其自身所限,对低频干扰隔振能力差,特别是对系统谐振频率附近的干扰信号还有放大作用。主动隔振可以根据设定的控制规律动态地调整系统的支承特性参数,满足被动隔振无法实现的低频及谐振频率附近的隔振降噪的需要。因此,充分利用主被动隔振技术的优势,研究主被动结合的隔振技术成为当今研究的热点。而采用磁悬浮支承技术的磁悬浮隔振器,具有无接触、寿命长、响应快和电磁力及支承参数(刚度,阻尼等)随控制参数的变化可控可调的特点,是一种较理想的主动隔振器。将磁悬浮隔振器应用于传统的被动隔振系统(如单层、双层及浮筏系统)中,能有效弥补被动隔振系统低频及谐振区隔振性能的不足,具有重要的研究意义。
     首先,采用功率流作为隔振评价指标,从两个自由度和多个自由度隔振系统出发,分别建立了两类隔振系统模型,分析了被动隔振系统参数对隔振性能的影响。研究表明在其它结构参数一定的情况下,隔振器的刚度和阻尼参数是影响隔振性能的主要参数。而磁悬浮隔振器能通过调节电磁力的大小,使其支承刚度和阻尼在线可控可调,因此磁悬浮隔振器在隔振系统应用的优势明显。
     建立了磁悬浮隔振器的数学模型,选择适当的参数,设计了磁悬浮隔振器。根据实际工况,考虑衔铁和E型磁铁的铁磁材料的磁饱和、漏磁、磁场耦合等因素,建立了磁悬浮隔振系统的三维静态电磁场有限元模型,计算了电磁场分布。在此基础上,选择适当的测点,采用三通道高斯计对磁悬浮隔振器的磁场分布进行测量,实验结果与有限元分析结果基本吻合,验证了有限元模型的准确性。对磁悬浮隔振器的静动电磁力进行实际测量,静态电磁力利用最小二乘法进行拟合,进而对理论电磁力公式参数进行修正,得到了实际的磁悬浮隔振器静态电磁力、位移与电流之间的关系;针对动态电磁力非线性及滞后的特征,采用基于改进的遗传算法的BP神经网络对磁悬浮隔振器动态电磁力进行模型辨识,建立了动态电磁力、位移与电流之间的关系,为主动隔振控制提供可靠依据。
     将磁悬浮隔振器应用于被动隔振系统,采用刚体动力学、动态子结构及有限元等方法,建立了磁悬浮单层、双层以及浮筏隔振系统主动系统动力学方程及对应的状态方程,并利用ANSYS软件建立起柔性浮筏有限元模型,进行了仿真分析。
     选用最小输出力作为磁悬浮隔振系统隔振控制指标,建立了控制模型,推导出了性能指标函数表达式,考虑磁悬浮隔振器的实际能力,对此性能指标函数进行修正,得到修正的性能指标函数。在此基础上,推导出最优反馈矩阵,最后对磁悬浮单层系统与浮筏系统分别进行仿真分析,证明了控制策略的有效性。
     针对磁悬浮隔振器非线性的特点,结合提出的控制策略,采用模糊控制方法,建立了磁悬浮主动隔振模糊控制器,进行仿真分析。仿真结果表明,隔振效果优于被动系统和PID控制隔振系统。
     搭建了磁悬浮隔振实验系统,对比研究主被动隔振系统隔振效果,实验结果与仿真结果基本吻合。考虑到筏架柔性因素,为了建立更为准确柔性浮筏的动力学模型,获取柔性筏架的实时动力特性非常重要,、因此本文最后提出了一种基于光纤布喇格光栅分布式传感器柔性筏架测量技术,能准确实时的获取简化的柔性筏架模型的模态及应变特性。
It has the extremely vital significance to the national defense security to improve the performance of the naval vessels acoustic stealthy. Vibration isolation technology widely used to reduce vibration transmission in many different engineering applications has become a key technique of vibration and noise reduction. It is traditionally classified into two types:passive, active. Although the passive systems offer simple and reliable means to protect mechanical systems from their respective environments, they have inherent performance limitations including their limited controllable frequency range and their unchangeable shapes of transmissibility. Active vibration isolation systems, on the other hand, can provide'enhanced vibration isolation performance through a feedback system. However, active vibration isolation systems are not cost-effective. Therefore, passive and active combined technology is regarded as a hotspot in current researches, due to performance improvement and simplicity of implementation. Magnetic Suspension Vibration Isolation(MSVI) technology is an excellent active isolation technology, which has some useful characteristics, such as non-contact, high response frequency, high reliability and long life-span, especially, the damping and stiffness adjusted by changing controller's parameters on-line. Therefore, it is significance that the technology is applied in the passive vibration isolation system in this research to improve the isolation performance.
     A two degree of freedom system and an multiple degree of freedom system models are established to analyze effect of system parameters on vibration isolation performance using power flow as evaluation criterion. Results show that with all other parameters definition, the stiffness and damping are the key parameters of influencing the performance of vibration isolation. And the MSVI technology has obvious advantages to be applied to change stiffness and damping parameter.
     The principle of magnetic suspension isolation technology is introduced. The math modeling of the Magnetic Suspension Isolator(MSI) is established. The MSI is designed according to practical parameters. For the work status of the MSI, static electromagnetic field distribution is calculated through 3D FEM with consideration of nonlinearities of armature and E-shape magnet magnetic, including material's nonlinear, magnetic saturation and leakage, magnetic coupling, and etc. On the basis of the theoretical analysis, the electromagnetic field distribution is measure using a three channel Guass meter to ascertain the accuracy of the FEM model at some specific spots. Then, the static and dynamic electromagnetic force of the MSI are measured by experiment. Through the experimental measurements and fitting a mathematical expression by least square method, the actual relation expression of static electromagnetic force-current-gap is obtained for accuracy control. In view of highly non-linear and hysteresis behavior of dynamic electromagnetic force, Artificial Neural Networks(ANN) is applied to identify the relationship of dynamic electromagnetic force. To achieve higher accuracy for ANN, an modified genetic algorithm is applied to train the neural networks. Results clearly show the MGA based neural networks is found better performance and higher accurate for MSI model comparing with conventional BP algorithm.
     The designed MSI is applied to the passive vibration isolation system. The dynamical equations and state equations of the single-layer, double-layer and (flexible) floating raft system are built, using the methods of rigid body dynamics, dynamic sub-structure, Finite Element methods.
     A control mechanism and a cost function of active vibration isolation based on the minimization of the weighted sum of squared output forces are proposed. Considering the practical capacity of the MSI, the value function is revised. The revised function and the optimal feedback matrix are deduced. A control model based on the control mechanism is established. The results of simulation show validity of the strategy. For the nonlinear of the MSI, according to the control strategy of the former, an output feedback fuzzy control algorithm is proposed to the active isolation system. The fuzzy control model are simulated using Matlab fuzzy logical toolbox. The results of simulation show that the fuzzy controller possesses better isolation performance than passive system and PID control system.
     In order to test the performance of the active system and control algorithm, an experimental platform is carried out. The experiment results show that the active isolation performance improve highly at around the resonant frequencies compared to the passive system. The experimental results are found to be in good agreement with the simulated results.
     At last, to solve the strain multi-position measurement of raft frame, the Fiber Bragg Grating(FBG) is introduced. According to the simplicity principles of raft, a platform is built to measure the stress and modal of simple raft using FBG sensors. The experimental results are found to be in good agreement with the FEA results.
引文
[1]巫影.浮筏减振降噪理论研究及仿真[D].武汉理工大学,2002.
    [2]李维嘉,曹青松.船舶振动主动控制的研究进展与评述[J].中国造船,2007,48(2):68-76.
    [3]温华兵,王国治,童宗鹏.船舶浮筏系统的振动及抗冲击特性分析[J].华东船舶工业学院学报(自然科学版),2002,16(5):14-18.
    [4]钱网生,祝华.SU型隔振器的设计和研究[J].噪声与振动控制,2000,(5):11-15.
    [5]翁长俭.我国船舶振动冲击与噪声研究近年进展[J].中国造船,2001,42(3):68-84.
    [6]胡家雄,伏同先.21世纪常规潜艇声隐身技术发展动态[J].舰船科学与技术,2001(4):1-5.
    [7]孙雪荣,朱锡.船舶水下结构噪声的研究概况与趋势[J].振动与冲击,2005,24(1):110-111.
    [8]边金尧,丁宁,胡松伟,王然伟.当代外军常规潜艇技术及发展[J].舰船科学与技术,2003,25(5):16-17.
    [9]崔维成,刘水庚,顾继红,刘志宇,廖又明.国外潜艇设计和性能研究的一些新动态[J].船舶力学,2000,4(2):67-71.
    [10]卫天.水中王牌神秘的“宋”级常规潜艇[J].中国海军[J].2004(9):18-19.
    [11]祝华.浮筏装置的理论建模和分析方法[J].船舶科学技术,1994(2):14-19.
    [12]严济宽,沈密群,尚国清.浮筏装置结构动力参数的选定[J].噪声与振动控制,1995(1):2-9.
    [13]尚国清,林立.浮筏装置系统的动力学特性分析[J].舰船科学技术,2000(5):11-15.
    [14]童宗鹏,章艺,尚国清,华宏星.舱筏隔振系统水下振动特性的理论分析与试验研究[J].振动与冲击,2005,24(6):71-74.
    [15]陈明,陈秀珍,孙新占.大型组合式浮筏减振装置试验研究[J].舰船科学技术,2002,24(6):56-60.
    [16]杜奎,伍先俊,程广利,朱石坚.浮筏隔振系统隔振器最佳布置方案研究[J].海军工程大学学报,2005,17(2):92-99.
    [17]张华良,傅志方,瞿祖清.浮筏隔振系统各主要参数对系统隔振性能的影响[J].振动与冲击,2000,19(2):4-8.
    [18]张关根,郭乃林,李江翔.浮筏减振降噪技术在某型海洋测量船上的应用[J].船舶,2000,(3):29-34,38.
    [19]林立,胡剑凌.减振浮筏振动响应研究[J].噪声与振动控制,1996,(5):2-6.
    [20]赵兴锐,徐筱欣,王言正.两种浮筏隔振方案的比较分析[J].噪声与振动控制,2005,(3):18-21.
    [21]徐张明,沈荣瀛,华宏星.潜艇动力舱浮筏隔振参数对振动与声辐射的影响[D].船舶工程,2002,(6):22-26.
    [22]张国良.浮筏技术在舰船抑振降噪中的应用[J].舰船工程研究,1994(4):16-18
    [23]高立冬,喻浩,王暖.减振降噪技术的应用设计[J].中国造船,2002,43(2):44-49
    [24]Swinbanks M A, Datey S. Advanced submarine technology-project M control theory report.phase 1 [R].1993(9):1-65.
    [25]Johnson F.A. Advanced submarine technology-project M Control experiments and simulations.phase 2 [R].1994(3),:1-94.
    [26]Qu Z.Q. Hybrid expansion method for frequency responses and their sensitivities, Part I: undamped systems [J]. Journal of Sound and Vibration,2000,231(1):175-193.
    [27]Qu Z.Q., Selvam R P. Hybrid expansion method for frequency responses and their sensitivities, Part II:viscously damped systems [J]. Journal of Sound and Vibration,2000, 238(3):369-388.
    [28]Dimarogonas A.D, Vibration of cracked structures:A state of the art review[J], Engineering Fracture Mechanics.1996,55 (5):831-857.
    [29]俞孟萨,黄国荣,伏同先.潜艇机械噪声控制技术的现状与发展概述[J].船舶力学,2003,7(4):110-120.
    [30]姜荣俊,何琳.有源振动噪声控制技术在潜艇中的应用研究[J].噪声与振动控制,2005(2):1-6.
    [31]Hamblen. W. Next generation stealth submarines [J]. Sea Technology,1998,39(11):59-62.
    [32]Watters B.G.,Coleman R.B,Duckworth G.L, et al. A Perspective on Active Machine Isolation [C]. Proceeding of the 27th conference on decision and control. Austin, Texas, 1988(12):2033-3038.
    [33]Ahn K.G.,Pahk H.J., Jung M.Y., et al. A hybrid-type active vibration isolation system using neural networks [J]. Journal of Sound and Vibration,1996,192(4):793-805.
    [34]Gardonio P, Elliott S.J., Pinnington R.J. Active isolation of structural vibration on a multiple-degree of-freedom system, Part Ⅰ:The dynamics of the system[J]. Journal of Sound and Vibration,1997,207 (1):61-93.
    [35]Gardonio P, Elliott S.J., Pinnington R.J. Active isolation of structural vibration on a multiple-degree-of-freedom system, Part Ⅱ:Effectiveness of active control strategies[J]. J. of Sound and Vibration,1997,207 (1):95-121.
    [36]张俊红,付鲁华,张殿昌.内燃机振动的主动控制[J].小型内燃机,2002(2):4446.
    [37]Daley, S. Johnson, F.A. Pearson, J.B, et al. Active vibration control for marine applications[J]. Control Engineering Practice,2004,12(4):465-474.
    [38]Norman D. Wideband passive mechanical mounting systems for disk drives on boats in rough seas [C]. Oceans Conference Record(IEEE) 1997,2:1488-1495.
    [39]Daley, S. Johnson, F.A., Pearson,J.B.,et al. Active control of vibration in marine systems[C]. IET seminar Digest (11576) 2006:191-200.
    [40]Daley, S. Hatonen, J., Owens, D.H. Active vibration isolation in a "Smart Spring" mount using a repetitive control approach[J]. Control Engineering Practice,2006,14(9):991-997.
    [41]Shaw J. Active vibration isolation by adaptive control[J]. Journal of Vibration and Control. 2001,7(1):19-31.
    [42]Zhang Y, Alleyne, A G. Active vibration isolation of multiple DOF systems using a position-tracking approach[C]. Proceedings of the American Control Conference,2003,1: 809-814.
    [43]Anderson, E H., How, J P., Palo Alto C A. Active vibration isolation using adaptive feed forward control[C]. Proceedings of the American Control Conference.1997,3:1783-1788.
    [44]Gavin H.P, Hanson R.D., Filisko F.E. Electrorheological dampers—part Ⅰ analysis and design[J], Journal of Applied Mechanics.1996,63(3):669-675.
    [45]Gavin H.P., Hanson R.D., Filisko F.E., Electrorheological dampers—part Ⅱ: testing and modeling[J]. Journal of Applied Mechanics.1996,63(3):676-682.
    [46]Darbysh Ire E P, Kerry C J. A multiprocessor computer architecture for active control [J]. Control Eng. Practice,1997,5(10):1429-1434.
    [47]牛军川,霍睿,刘玉友等.柔性耦合系统主动隔振策略研究[J].机械工程学报2001,37(12):28-33.
    [48]牛军川,宋孔杰,LEUNGAYT等.一种基于SMR主动隔振模型的功率流控制方法[J].应用力学学报,2002,19(3):153-156.
    [49]牛军川,宋孔杰.船载柴油机浮筏隔振系统的主动控制策略研究[J].内燃机学报,2004,22(3):252-256.
    [50]牛军川,宋孔杰,赵国群.平置板式主动浮筏系统的隔振研究[J].机械工程学报,2004,40(5):67-71.
    [51]Niu J, Song K, Lim C. On active vibration isolation of floating raft system [J]. Journal of Sound and Vibration.2005,285(1-2):391-406.
    [52]杨铁军,靳国永,李玩幽,刘志刚,文平,芝秋.舰船动力装置振动主动控制技术研究[J].舰船科学技术,2006,(2):46-52.
    [53]赵成,陈大跃.潜艇浮筏隔振系统的控制研究[J].中国机械工程,2008,19(3):253-257
    [54]赵成,陈大跃.潜艇浮筏隔振系统的半主动模糊滑模控制[J].机械工程学报,2008,44(2):163-169.
    [55]周卓亮.可变刚度隔振器研究[D].哈尔滨工程大学,2006.
    [56]张洪田.电动式主动吸振技术研究[J].振动工程学报,2001,14(1):113-117.
    [57]张洪田.船舶柴油机动力装置振动主动控制技术研究[D].哈尔滨:哈尔滨工程大学,1998.
    [58]Chen W. Mei, D.Q., He W, et al. A research on isolated vibrations control system of micro-manufacturing platform[C]. Proceedings of the American Control Conference.2002,5: 3570-3575.
    [59]Zhou S.,Li Y., Meng, G., et al. Adaptive switching control method for active vibration isolation[C].9th IEEE International Workshop on Advanced Motion Control, art.no.1631703, 2006:462-467.
    [60]Sun T, Huang Z, Chen D.Signal frequency-based semi-active fuzzy control for two-stage vibration isolation system [J]. Journal of Sound and Vibration.2005,280(3-5):p 965-981.
    [61]孔建益,公法,侯宇,杨金堂,蒋国璋,熊禾根,潜艇振动噪声的控制研究[J].噪声与振动控制,2006(5):1-4,17.
    [62]Technology for the United States Navy and Marine Corps,2000-2035;Becoming a 21st Century Force;Volume 6;Platforms [EB]. http://www.nap.edu/html/tech-21st/plindex.htm, 2003-11-2.
    [63]严济宽,柴敏,陈小琳.振动隔离效果的评定[J].噪声与振动控制,1997,(6):22-30.
    [64]邵汉林,姚心国,朱显明.浮筏隔振装置隔振效果评定[J].噪声与振动控制,2002,(4):21-23.
    [65]Gan W S., Underwater Active Vibration Control[C]. Oceans'89 IEEE Conference Proceedings.1989,9:1252-1254.
    [66]华宏星,石银明,瞿祖清等.浮筏系统频率响应灵敏度分析[J].中国造船,1999,40(3):92-97.
    [67]汪玉,陈国钧,华宏星等.船舶动力装置双层隔振系统的优化设计[J].中国造船,2001,42(1):45-49.
    [68]高艳蕾,李琳.大载荷主动隔振平台技术综述及其性能评定的探讨[J].航天器环境工程,2008,25(1):44-51
    [69]朱石坚,楼京俊等.振动理论与隔振技术[M].国防工业出版社.2006.6269-287
    [70]张鲲,孙红灵,陈海波,张培强.带有动力吸振器的浮筏隔振系统的功率流传递特性分析[J].国科学技术大学学报,2007,37(1):13-19
    [71]马丰伟,孙玲玲等.浮筏隔振系统的功率流研究[J].现代控制控制工程.2005增.
    [72]行晓亮.简支板导纳特征研究[J].振动与噪声控制,2005.12
    [73]马丰伟.复杂隔振系统振动传递特性研究[D].山东大学,2006.
    [74]刘保国.复杂隔振系统振动传递特性及实验研究[D].山东大学,2007.
    [75]Wang M Q, Sheng M P, Sun J C. The direct and indirect power flows of three non-conser-vatively series coupled oscillators [J]. Journal of Sound and Vibration,1998,212(2): 231-251.
    [76]Xie S, Or S W, Laiwa Chan, et al. Analysis of vibration power flow from a vibrating machinery to a floating elastic panel[J]. Mechanical Systems and Signal Processing,2007, 21(1):389-404.
    [77]Li T.Y., Zhang X.M., Zuo Y.T.,et al. Structural power flow analysis for a floating raft isolation system consisting of constrained damped beams [J]. Journal of Sound and Vibration, 1997,202(1):47-54.
    [78]Qu Z.Q, Chang W., Dynamic condensation method for viscously damped vibration systems in engineering[J]. Engineering Structures,2000,22 (11):1426-1432.
    [79]Lee. H J, Kim, K J. Multi-dimensional vibration power flow analysis of compressor system mounted in outdoor unit of an air conditioner[J]. Journal of Sound and Vibration,2004,272 (3-5):607-625
    [80]W. L. LI,P. LAVRICH, Prediction of power flows through machine vibration isolators[J]. Journal of Sound and Vibration,1999,224:757-774.
    [81]Sun, L. Leung, A.Y.T., Lee,Y.Y, et al. Vibrational power-flow analysis of a MIMO system using the transmission matrix approach[J]. Mechanical Systems and Signal Processing,2007, 21(1):365-388
    [82]Du Y, Burdisso R.A., Nikolaidis E., et al. Effects of isolators internal resonances on force transmissibility and radiated noise[J]. Journal of Sound and Vibration,2003,268(4): 751-778.
    [83]张春红,汤炳新.主动隔振技术的回顾与展望[J].河海大学常州分校学报,2002(2):1-16.
    [84]顾仲权,马扣根,陈卫东.振动主动控制[M].北京:国防工业出版社,1997.
    [85]吕鑫.振动主动控制技术的研究及发展[J].振动测试与诊断,1996(3):1-7.
    [86]张毅,张书练.光电振动传感技术新进展[J].激光技术,2001(3):161-165.
    [87]朱言彬.传感器技术的最新进展和市场机遇[J].传感器技术,2000(3):1-4.
    [88]杨学志.低频绝对振动测量研究及工程应用[D].清华大学,1995:1-10.
    [89]陈大雄.光纤Bragg光栅加速度传感器动态特性的研究[D].武汉理工大学,2004.
    [90]曾楠.光纤Bragg光栅加速度传感器动态特性的研究[D].清华大学,2005
    [91]赵彦涛.低频光纤光栅空间加速度传感器的设计与研究[D].燕山大学,2004
    [92]Berkoff T. A., Kersey A. D. Experimental Demonstration of a Fiber Bragg Grating Accelerometer[J]. IEEE photonics technology letters,1996,8(12):1677-1679.
    [93]Zhu Y, Shum P, Lu C, Lacquet B M., et al. Fiber Bragg grating accelerometer with temperature insensitivity[J]. Microwave and optical technology letters,2003,37(2):151-153.
    [94]Lopez-Higueq J.M, Cobo A., Eclrevarria J, et al. Simultaneous temperature and acceleration optical fiber sensor system for large structures monitoring[C]. LEOS 2000-IEEE annual meeting conference proceedings,2000(2):462-463.
    [95]Cazo, R.M., De Siqueira Ferreira, J.L., De Barros Caldas, T., et al. Improvement of fiber bragg grating interrogator sensitivity for triaxial accelerometer[C]. SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings,2009,art. no. 5427499:660-663
    [96]Zeng N, Shi C Z, Zhang M,et al. A 3-component fiber-optic accelerometer for well logging[J]. Optics Communications,2004,234(1-6):153-162.
    [97]胡业发,周祖德,江征风等.磁力轴承的基础理论与应用[M].机械工业出版社,2006.4:103-115.
    [98]龙志强,郝阿明,陈革,常文森.磁悬浮控制的主动式隔振平台研究[J].宇航学报,2003,24(5):510-514.
    [99]Geng,Z.J, pan G G, Haynes, L.S.,et al Six degree-of-freedom active vibration control using the Stewart platforms[C] IEEE Transactions on Control Systems Technology,1994,2(1): 45-53.
    [100]Yu, J H, Postrekhin, E, Ma, KB et al. Vibration isolation for space structures using HTS-magnet interaction[C] IEEE Transactions on Applied Superconductivity,1999,9(2 part 1):908-910.
    [101]Ma, K.B. McMichael, C.K., Lamb, M.A., et al. Application of high temperature superconductors on levitation bearings, torque transmissions and vibration dampers[J]. IEEE Transactions on Applied Superconductivity,1993,3(1):388-391.
    [102]Hoque Md. E, Takasaki M, Ishino Y, et al. Development of a Three-Axis Active Vibration Isolator Using Zero-Power Control[J]. IEEE/ASME Transactions on mechatronics,2006, 11 (4):462-469.
    [103]Kyihwan P., Sangyoo K., Dongyoub C., etc. An active vibration isolation system using a loop shaping control technique[C],2008 IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications, MESA 2008,art. no.4735703:586-590.
    [104]Hong J., Park K., Design and control of six degree-of-freedom active vibration isolation table[J], Review of Scientific Instruments,2010,81:035106.
    [105]Park K., Choi D., Ozer A., et al. A voice coil actuator driven active vibration isolation system with the consideration of flexible modes[J], Review of Scientific Instruments 2008,79(6):065106.
    [106]Lee B.H., Lee C.W. Model based feed-forward control of electromagnetic type active control engine-mount system[J], Journal of Sound and Vibration,2009,323 (3-5):574-593.
    [107]Hoque Md.E., Takasaki M., Ishino Y., et al, An active micro vibration isolator with zero-power controlled magnetic suspension technology[J]. JSME International Journal, Series C:Mechanical Systems, Machine Elements and Manufacturing,2006,49 (3):719-726.
    [108]Mizuno T., Takasaki M., Kishita D., et al, Vibration isolation system combining zero-power magnetic suspension with springs[J],Control Engineering Practice 2007,15(2):187-196.
    [109]Kim Y., Kim S., Park K., Magnetic force driven six degree-of-freedom active vibration isolation system using a phase compensated velocity sensor, Review Of Scientific Instruments 2009,80(4):045108.
    [110]Chen K.T., Chou C.H., Chang S.H., et al. Intelligent active vibration control in an isolation platform. Applied Acoustics 2008,69:1063-1084.
    [111]宋春生,胡业发,周祖德.磁悬浮支承双层隔振系统的半主动模糊隔振控制[J].振动与冲击,2009,28(9):30-32,38.
    [112]宋春生,胡业发,周祖德.差动式磁悬浮隔振系统主动控制机理研究[J].振动与冲击,2010,29(7):24-27,104.
    [113]SONG C, ZHOU Z, HU Y. Semi-active Fuzzy Control for Multi-Dof Floating Raft Isolation System with Magnetic Suspension Isolators[C].2009 Asia-Pacific Power and Energy Engineering Conference Proceedings.2009,3:1458-1462.
    [114]SONG C, ZHOU Z HU YSemi-active Fuzzy Control for Vibration Isolation System with Magnetic Suspension Isolator[C].2009 International Conference on Measuring Technology and Mechatronics Automation.2009,4:590-593.
    [115]赵勇.光纤光栅及其传感技术[M].国防工业出版社,2006.8:196-215
    [116]李川,张以谟,赵永贵等.光纤光栅:原理、技术与传感应用[M].科学出版社,2005.10:200-205.
    [117]徐志云,吴崇健,付爱华.浮筏隔振效果估算方法研究[J].舰船科学技术,2006,28(增2):65-68.
    [118]Liu Y, Matsuhisa H, Utsuno H, et al. Semi-active vibration isolation system with variable stiffness and damping control [J]. Journal of sound and vibration,2008.2(313):16-28.
    [119]易太连,欧大生,欧阳光耀.刚性隔振装置设计和隔振效果试验研究[J].振动与冲击,2008.271(1):69-173.
    [120]吴伟光,马履中,朱伟,陈修祥.新型混合磁悬浮主动隔振的研究[J].机械设计,2008,25(5):49-51
    [121]赵冉,王永.基于自适应滑模控制的主动磁悬浮隔振系统[J].自动化与仪表,2008,(10).
    [122]吴伟光,马履中.永磁电磁混合悬浮隔振主动控制装置[J].农业机械学报,2007,38(7)
    [123]王福强,马履中,沈春根.磁悬浮式隔振技术的特性分析与研究[J].机械设计与研究,2003,(1).
    [124]孔丽,王秩泉.磁悬浮隔振装置的计算机仿真[J].现代电子技术,2003,(10).
    [125]崔瑞意,申仲翰,刘玉标,徐友钜.磁悬浮隔振装置的研制及基本机理研究[J].力学与实践,1999,(4).
    [126]顿月芹,徐衍亮,孔宇.转子磁体永磁偏置混合磁轴承的三维有限元分析.山东大学学报(工学版),2005,35(1):47-50
    [127]尚国清,邱柏华.关于浮筏系统的动力学建模分析[J].舰船科学技术,1999,(4):24-28
    [128]汪玉,冯奇.舰船设备抗冲隔振系统建模理论及其应用[M].国防工业出版社.2006.5:146-192
    [129]屈维德,唐恒龄.机械振动手册[M].机械工业出版社.2000.5:451-453
    [130]孙涛,陈大跃,黄震宇等.一种新型浮筏的模糊控制[J].控制理论与应用.2005.5(22):733-738
    [131]Sun J, Yang Q. Design of Adaptive Fuzzy Controller for Active Suspension System[C].2004IEEE International Conference on Industrial Technology(ICIT).2004(2):1096-1099
    [132]Wang Z G,Feng Q, Wang Y. Dynamic Modeling and Response Analysis to Impact of Elastic Floating Raft System[J].Journal of Ship Mechanics.2005,9(6):113-125
    [133]牛军川.基于多模型柔性隔振系统的振动机理与主动控制研究[D].山东大学,2003
    [134]杨建刚.人工神经网络实用教程[M].浙江大学出版社.2001.1:1-10
    [135]雷英杰,张善文,李续武等MATLAB遗传算法工具箱及应用[M].西安电子科技大学出版社.2005.4:1-8,22-25
    [136]丛爽.面向matlab工具箱的神经网络理论与应用[M].中国科技大学出版社.2003.5:1-3,55-60
    [137]Leavitt J., Jabbari F., Bobrow J.E., Optimal Performance of Variable Stiffness Devices for Structural Control[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 2007,129 (2):171-177.
    [138]Liu Y, Waters T.P., Brennan M.J., Comparison of semi-active damping control strategies for vibration isolation of harmonic disturbances[J], Journal of Sound and Vibration 2005,280: 21-39.
    [139]Zhou N., Liu K., A tunable high-static-low-dynamic stiffness vibration isolator[J], Journal of Sound and Vibration.2010,329:1254-1273.
    [140]Tandon I., Mallik A.K., Gupta Bhaya P., Performance characteristics of a vibration isolator with electro-rheological fluids[J], Journal of Sound and Vibration 1999,219(3):395-404.
    [141]Shih M.C., Wang T.Y., Active control of electro-rheological fluid embedded pneumatic vibration isolator[J], Integrated Computer-Aided Engineering.2008,15(3):267-276
    [142]Truong T.D., Semercigil S.E., A variable damping tuned absorber with electro-rheological fluid for transient resonance of light structures[J], Journal of Sound and Vibration 2001,239 (5):891-905.
    [143]Prabakar R.S., Sujatha C., Narayanan S., Optimal semi-active preview control response of a half car vehicle model with magnetorheological damper[J], Journal of Sound and Vibration 2009,326 (3-5):400-420.
    [144]Zhou Q., Nielsen S.R.K., Qu W.L., Semi-active control of shallow cables with magnetorheological dampers under harmonic axial support motion[J], Journal of Sound and Vibration,2008,311 (3-5):683-706.
    [145]Arzanpour S., Golnaraghi M.F., A Novel Semi-active Magnetorheological Bushing Design for Variable Displacement Engines[J], Journal of Intelligent Material Systems and Structures 2008,19(9):989-1003.
    [146]Madkour A.A., Hossain M.A., Dahal K.P., et al. Intelligent Learning Algorithms for Active Vibration Control[J],IEEE Transactions On Systems, Man, And Cybernetics—Part C: Applications And Reviews,2007,37:1022-1033
    [147]S. N. Sivanandam, S. Sumathi and S. N. Deepa. Introduction to Fuzzy Logic using Matlab[M]. Springer,2007,16-23
    [148]宋春生,胡业发,周祖德等.变刚度浮筏隔振系统功率流传递特性分析[J].武汉理工大学学报(信息版).2009.31(3):417-420,424
    [149]Couzon, P.Y., Der Hagopian, J., Neuro-fuzzy Active Control of Rotor Suspended on Active Magnetic Bearing[J], Journal of Vibration and Control.2007,13 (4),365-384
    [150]SONG C, HU Y. Active vibration isolation of multiple degree-of-freedom system based on the minimization of the output force control strategy[C].12th International Symposium on Magnetic Bearings,2010,8:602-614

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700