用户名: 密码: 验证码:
等几何分析方法和比例边界等几何分析方法的研究及其工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于等几何分析和比例边界有限元方法,研究开发了高精度、高效率的工程数值计算方法,将其应用于大坝-库水-地基系统的动力分析,并拓展至结构分析、电磁场分析和薄板弯曲和振动分析等工程问题的求解。
     等几何分析是近年来发展的一种新型的数值方法,旨在实现CAD和CAE的无缝统一。该方法将CAD中对几何形状进行精确描述的样条函数作为结构分析的形函数,可大大提高函数梯度场的计算精度,并在保持几何形状不变的前提下,方便地实现自适应的非通讯性细分操作。比例边界有限元方法是一种求解偏微分方程的半数值半解析解法,只需对求解区域的边界进行有限元离散,降低求解规模,但又无需基本解,特别适合于求解含有无限域、线弹性裂尖奇异应力场等工程问题。
     本文将等几何分析方法和比例边界有限元方法相结合,提出了新型的比例边界等几何分析方法,相比于等几何分析或者比例边界有限元,比例边界等几何分析方法的计算精度和计算效率进一步提高。因此将这种方法推广应用于实际工程中,将大大提高求解精度和效率。另外,此方法能和等几何分析方法进行无缝连接,利用等几何分析和比例边界等几何分析的耦合方法,建立了大坝-库水-无限地基时域动力分析的计算模型,全面考虑了大坝-库水、大坝-无限地基动力相互作用对大坝地震响应的影响。本文还将等几何分析、比例边界有限元方法、比例边界等几何分析的应用领域进行拓展,并对这些方法在实际应用中所遇到的若干理论和数值问题进行了深入研究,并提出了有效的解决方法。主要内容如下:
     (1)基于等几何分析和比例边界有限方法,提出了比例边界等几何分析方法。对弹性静、动力学以及电磁场问题分别推导了其离散方程和求解格式,并进行总结和比较。h-细分和p-细分过程仅需针对结构环向表面边界,在该方向上变量在相邻单元交界面处可达到较高的连续阶,而在径向解具有解析特性。相比于其他的数值方法,可达到更高的收敛速度。针对该方法,还研究了各类边界条件的施加策略。
     (2)提出了大坝-库水-地基系统动力分析的等几何分析方法-比例边界等几何分析方法时域耦合计算模型,全面考虑了大坝-库水、大坝-无限地基动力相互作用的影响,并将其应用到高拱坝的地震动力分析中,为大坝的抗震安全评价提供重要参考依据。其中在大坝-库水动力相互作用分析中,考虑了库水可压缩性、库底淤沙对压力波的吸收、无限水域的辐射阻尼效应,并构造了压力-力转换矩阵,提高了流固耦合计算效率。在大坝-无限地基动力相互作用分析中,采用求解加速度脉冲响应函数的高效稳定算法,并构造了高效的加速度脉冲响应函数的离散策略和自适应策略,大大提高了相互作用力的计算精度和效率。利用该模型,分析了大坝-库水-地基动力相互作用对重力坝、拱坝系统地震响应的影响。
     (3)针对比例边界有限元、等几何分析、比例边界等几何分析在新的应用领域拓展过程中遇到的若干理论和数值问题,提出了有效的处理方法。构造了新型的NURBS曲面的裁剪交点搜索算法及单元局部重构方式。相对于传统的以全域单元为搜索对象的搜索策略,新型的搜索策略则沿着裁剪曲线的切线方向逐一搜索,提高了搜索效率。提出了Lagrange乘子法解决重控制点问题和非齐次边值问题。发展了等几何分析在电磁场分析中的应用,对静电场问题和波导本征问题进行求解,显著地提高了计算效率和计算精度,对电容和波导等电子元件的设计具有重要参考意义。发展了等几何分析在薄板弯曲与振动分析中的应用,无需引入转角自由度便可满足C’连续的要求,显著地减少了计算自由度,并对稳定参数的取值进行了讨论。提出了相似中心由固定型扩展为移动型的处理方法,为比例边界有限元的进一步拓展,提供了有利条件。
     通过本论文的研究可看出,等几何分析方法、比例边界等几何分析方法在实际工程中具有广阔的应用前景,相关问题还需做更为广泛和深入的研究。
Based on the Isogeometric Analysis (IGA) and Scaled Boundary Finite Element Method (SBFEM), a new numerical method termed as the Scaled Boundary Isogeometric Analysis Method (SBIGA) is proposed. SBIGA features high precision and high efficiency. Based on in-depth investigation into various related aspects, this method has been applied to the dynamic analysis of dam-reservoir-foundation system, structure mechanics, electromagnetic analysis and bending and vibration analysis of thin plate.
     IGA is a numerical method aiming to seamlessly integral CAD and CAE systems. Spline function employed in CAD geometry is inherited as function of computational analysis, which greatly improves accuracy of the gradient field of variables. And spline function can be very convenient for geometry refinement. SBFEM is a semi-analytical method for solving partial differential equations, in which the problem is reduced by one with only boundary discredited and the fundamental solution is unnecessary. It is superior to solve infinite domain and stress singularity problems containing crack tip.
     The newly proposed method SBIGA combines the advantages of IGA and SBFEM, which further improve the accuracy and efficiency beyond IGA and SBFEM. Thus, it is suitable to be applied to the practical engineering structure, where the accuracy and efficiency will be greatly improved. SBIGA can be seamlessly connected with IGA. Thus, an efficient simulation method is established for dam-reservoir-foundation system by coupling IGA and SBIGA, in which both structure-soil interaction and fluid-structure interaction are taken into consideration. IGA, SBFEM and SBIGA are extended to solve problems in new areas, including structure mechanics, electromagnetism, and elastic thin plate problems.
     In the process of research, the innovative achievements are as follows:
     (1) SBIGA was proposed by combining advantages of IGA and SBFEM. The discretized equation and solution procedure were derived for both elastic and dynamic problem for mechanics and electromagnetism, respectively. Both h-refinement and p-refinement can be easy implemented only one boundary and more flexible continuity can be reach in the circumferential direction while analytical property was hold in the radial direction. Faster ratio of convergence can be reached by SBIGA rather than other methods. The applying strategies for various types of boundary conditions in SBIGA were studied in detail.
     (2) An efficient simulation method was established for dam-reservoir-foundation system by coupling IGA and SBIGA, in which both structure-soil interaction and fluid-structure interaction are taken into consideration. In fluid-structure interaction, water compressibility, wave reflection at bottom of reservoir and radiation damping effect of infinite reservoir were efficiently portrayed, and pressure-force transformation matrix was constructed to leave out redundant operations. In soil-structure interaction, a new discretization strategy for acceleration unit-impulse response function was established, and the adaptive strategy was proposed to determine the series of acceleration unit-impulse response function. The coupled method was applied to seismic response analysis of high arch dam aiming to provide an important reference for seismic safety evaluation of dam.
     (3) Effective schemes were put forward for several issues encountered in the application of IGA, SBFEM and SBIGA in new areas. New search scheme of intersection point and local reconstruction for trimmed surface was proposed in IGA. Instead of element-based search scheme, the new scheme was oriented to trimmed curve and the interaction point was determined step by step along the tangent direction of the trimmed curve. Lagrange multiplier schemes were proposed for repeated control points and nonhomogeneous boundary value problems. IGA was expanded in electromagnetic field analysis, including problem of electrostatic field and waveguide eigenvalue. It significantly improved the computational efficiency and accuracy, which was important for design of electronic components, such as capacitors and waveguide. IGA was applied in the analysis of bending and vibration of thin plates by employing Nitsche functional. Degrees of freedom significantly were reduced due to eliminating the rotational degree of freedom, while C1continuity was also satisfied. The optimum stability parameters were discussed for bending and vibration, respectively. The concept of moving scaling center was proposed for eccentric domain, which further extended the scope of the method.
     It's observed from the research work that IGA and SBIGA have good prospect and potential in engineering applications, and more extensive and in-depth study should be done.
引文
[1]杜建国.基于SBFEM的大坝-库水-地基动力相互作用分析[D].大连:大连理工大学,2007.
    [2]钟红.高拱坝地震损伤开裂的大型数值模拟[D].大连:大连理工大学,2008.
    [3]阎俊义.结构-地基相互作用的FE-SBFE时域耦合方法及工程应用[D].北京:清华大学,2004.
    [4]COURANT R. Variational methods for the solution of problems of equilibrium and vibrations[J]. Bulletin of the American Mathematical Society,1943,49(1):1-23.
    [5]TURNER M, CLOUGH R, MARTIN H, et al. Stiffness and deflection analysis of complex structures[J]. Journal of the Aeronautical Sciences,1956,23(9):805-823.
    [6]CLOUGH R. The finite element method in plane stress analysis. Proc.2nd ASME Conference on Electronic Computation. Pittsburgh, Pa.1960.
    [7]COX M. The numerical evaluation of B-splines[J]. Journal of Applied Mathematics,1972,10(2): 134-149.
    [8]DE BOOR C. On calculating with B-splines[J]. Journal of Approximation Theory,1972,6(1):50-62.
    [9]COTTRELL J, HUGHES T, BAZILEVS Y. Isogeometric analysis:toward integration of CAD and FEA[M].United Kingdom:John Wiley & Sons Ltd.2009.
    [10]HUGHES T, COTTRELL J, BAZILEVS Y. Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer methods in applied mechanics and engineering,2005, 194(39-41):4135-4195.
    [11]BAZILEVS Y, CALO V, HUGHES T, et al. Isogeometric fluid-structure interaction:theory, algorithms, and computations[J]. Computational mechanics,2008,3(1):3-37.
    [12]BAZILEVS Y, GOHEAN J, HUGHES T, et al. Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the jarvik 2000 left ventricular assist device[J], Computer Methods in Applied Mechanics and Engineering,2009,198(45)3534-3550.
    [13]COTTRELL J, REALI A, BAZILEVS Y, et al. Isogeometric analysis of structural vibrations[J]. Computer methods in applied mechanics and engineering,2006,195(41-43):5257-5296.
    [14]REALI A. An isogeometric analysis approach for the study of structural vibrations[J]. Journal of earthquake engineering,2006,10(S1):1-30.
    [15]TEMIZER I, WRIGGERS P, HUGHES T. Contact treatment in isogeometric analysis with nurbs[J].Computer Methods in Applied Mechanics and Engineering,2011,200(9):1100-1112.
    [16]DE LORENZIS L, TEMIZER I, WRIGGERS P, et al. A large deformation frictional contact formulation using nurbs-based isogeometric analysis[J]. International Journal for Numerical Methods in Engineering,2011,87(13):1278-1300.
    [17]BENSON D, BAZILEVS Y, HSU M, et al. Isogeometric shell analysis:the reissner-mindlin shell[J].Computer Methods in Applied Mechanics and Engineering,2010,199(5):276-289.
    [18]BENSON D, BAZILEVS Y, HSU M, et al. A large deformation, rotation-free, isogeometric shell[J].Computer Methods in Applied Mechanics and Engineering,2011,200(13):1367-1378.
    [19]KIENDL J, BLETZINGER K, LINHARD J, et al. Isogeometric shell analysis with kirchhoff-love elements[J]. Computer Methods in Applied Mechanics and Engineering,2009,198(49):3902-3914.
    [20]DE LUYCKER E, BENSON D, BELYTSCHKO T, et al. X-fem in isogeometric analysis for linear fracture mechanics[J]. International Journal for Numerical Methods in Engineering,2011, 87(6):541-565.
    [21]BORST R, HUGHES T, SCOTT M, et al. Isogeometric failure analysis[J]. Multiscale and Multiphysics Processes in Geomechanics,2011,113-116.
    [22]WALL W, FRENZEL M, CYRON C. Isogeometric structural shape optimization[J]. Computer Methods in Applied Mechanics and Engineering,2008,197(33):2976-2988.
    [23]CHO S, HA S. Isogeometric shape design optimization:exact geometry and enhanced sensitivity[J].Structural and Multidisciplinary Optimization,2009,38(1):53-70.
    [24]QIAN X. Full analytical sensitivities in nurbs based isogeometric shape optimization[J]. Computer Methods in Applied Mechanics and Engineering,2010,199(29):2059-2071.
    [25]SEO Y, KIM H, YOUN S. Isogeometric topology optimization using trimmed spline surfaces[J]. Computer Methods in Applied Mechanics and Engineering,2010,199(49-52):3270-3296.
    [26]MANH N, EVGRAFOV A, GERSBORG A, et al. Isogeometric shape optimization of vibrating membranes[J]. Computer Methods in Applied Mechanics and Engineering,2011,200(13):1343-1353.
    [27]BAZILEVS Y, DA VEIGA L, COTTRELL J, et al. Isogeometric analysis:approximation, stability and error estimates for h-refined meshes[J]. Mathematical Models and Methods in Applied Sciences, 2006,16(7):1031.
    [28]COTTRELL J, HUGHES T, REALI A. Studies of refinement and continuity in isogeometric structural analysis[J]. Computer methods in applied mechanics and engineering,2007, 196(41-44):4160-4183.
    [29]COHEN E, MARTIN T, KIRBY R, et al. Analysis-aware modeling:Understanding quality considerations in modeling for isogeometric analysis[J]. Computer Methods in Applied Mechanics and Engineering,2010,199(5):334-356.
    [30]BAZILEVS Y, CALO V, COTTRELL J, et al. Isogeometric analysis using t-splines[J]. Computer Methods in Applied Mechanics and Engineering,2010,199(5):229-263.
    [31]WANG W, ZHANG Y, SCOTT M, et al. Converting an unstructured quadrilateral mesh to a standard t-spline surface[J]. Computational Mechanics,2011,48(4):477-498.
    [32]ZHANG Y, WANG W, HUGHES T. Solid t-spline construction from boundary representations for genus-zero geometry[J]. Computer Methods in Applied Mechanics and Engineering,2012.
    [33]祝雪峰,马正东,胡平.几何精确非协调等几何NURBS有限元[J].固体力学学报,2012,33(05):487-492.
    [34]祝雪峰.复杂曲面非协调等几何分析及其相关造型方法[D].大连:大连理工大学,2013.
    [35]李新.T样条和T网格上的样条[D].合肥:中国科学技术大学,2008.
    [36]陈涛,莫蓉,张欣.固体介质瞬态传热问题的等几何分析[J].计算机集成制造系统,2011,17(9):1988-1996.
    [37]陈涛,莫蓉,万能.等几何分析中Dirichlet边界条件的配点施加方法[J].机械工程学报,2012,48(5):157-164.
    [38]陈涛,莫蓉,万能,et a1.等几何分析中采用Nitsche法施加位移边界条件[J].力学学报,2012,44(2):369-381.
    [39]张勤,万能,莫蓉,et a1.二维线性对流扩散问题的NURBS等几何分析[J].计算机辅助设计与图形学学报,2012,24(4):520-527.
    [40]徐岗,王毅刚,胡维华.等几何分析中的r-p型细化方法[J].计算机辅助设计与图形学学报,2011,23(12):2019-2024.
    [41]WANG D, XUAN J. An improved nurbs-based isogeometric analysis with enhanced treatment of essential boundary conditions[J]. Computer Methods in Applied Mechanics and Engineering,2010, 199(37):2425-2436.
    [42]WANG D, ZHANG H, XUAN J. A strain smoothing formulation for nurbs-based isogeometric finite element analysis[J]. SCIENCE CHINA Physics, Mechanics & Astronomy,2011,55(1):132-140.
    [43]张汉杰,王东东,轩军厂.薄梁板结构nurbs几何精确有限元分析[J].力学季刊,2011,31(4):469-477.
    [44]ZHANG Y, LIN G, HU Z, et al. Isogeometric analysis for elliptical waveguide eigenvalue problems[J]. Journal of Central South University of Technology.2012,20(1):105-113.
    [45]张勇,林皋,刘俊,et a1.等几何分析方法及其应用于偏心柱面静电场问题[J].电波科学学报,2012,27(1):178-183.
    [46]张勇,林皋,胡志强,et a1.基于等几何分析方法求解任意截面波导本征问题[J].计算物理,2012,29(4):534-542.
    [47]张勇,林皋,胡志强,et a1.等几何分析方法求解静电场非齐次边值问题[J].电波科学学报,2012,27(5):997-1005.
    [48]张勇,林皋,胡志强,et al.静电场分析的等几何分析方法[J].大连理工大学学报,2012,52(6):870-877.
    [49]张勇,林皋,刘俊,et a1.波导本征问题的等几何分析方法[J].应用力学学报,2012,29(2):113-120.
    [50]张勇,林皋,胡志强.等几何分析方法中重控制点的处理及应用[J].工程力学,2013,30(2):1-7.
    [51]DASGUPTA G. A finite element formulation for unbounded homogeneous continua[J]. Journal of Applied Mechanics-Transactions of the ASME,1982,49(1):136-140.
    [52]WOLF J, SONG C. Dynamic-stiffness matrix of unbounded medium by finite-element multi-cell cloning[J]. Earthquake Engineering & Structural Dynamics,1994,23(3):233-250.
    [53]SONG C, WOLF J. Unit-impulse response matrix of unbounded medium by finite-element based forecasting[J]. International Journal for Numerical Methods in Engineering,1995,38(7):1073-1086.
    [54]WOLF J, SONG C. Dynamic-stiffness matrix in time domain of unbounded medium by infinitesimal finite element cell method[J]. Earthquake Engineering & Structural Dynamics,1994,23(11): 1181-1198.
    [55]WOLF J, SONG C. Consistent infinitesimal finite-element cell method:Three-dimensional vector wave equation[J]. International Journal for Numerical Methods in Engineering,1996,39(13): 2189-2208.
    [56]SONG C, WOLF J. The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics[J]. Computer Methods in Applied Mechanics and Engineering,1997,147(3-4):329-355.
    [57]WOLF J, SONG C. Finite-element modeling of unbounded media[M]. Chichester:John Wiley and Sons,1996.
    [58]WOLF J, SONG C. The scaled boundary finite-element method-a primer:derivations [J]. Computers and Structures,2000,78 (1-3):191-210.
    [59]WOLF J, SONG C. The scaled boundary finite-element method-a primer:solution procedures[J]. Computers and Structures,2000,78(1-3):211-225.
    [60]WOLF J. The scaled boundary finite element method[M]. Chichester:John Wiley and Sons,2003.
    [61]DEEKS A, WOLF J. A virtual work derivation of the scaled boundary finite-element method for elastostatics [J]. Computational Mechanics,2002,28(6):489-504.
    [62]DOHERTY J, DEEKS A. Scaled boundary finite-element analysis of a non-homogeneous axisymmetric domain subjected to general loading [J]. International Journal for Numerical Methods in Engineering,2003,27(10):813-835.
    [63]DOHERTY J, DEEKS A. Semi-analytical far field model for three-dimensional finite-element analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2004,28(11): 1121-1140.
    [64]HU Z, LIN G, WANG Y, et al. A Hamiltonian-based Derivation of Scaled Boundary Finite Element Method for Elasticity Problems [J]. IOP Conf. Series:Materials Science and Engineering,2010, 10:012213.
    [65]胡志强,林皋,王毅,et al.基于Hamilton体系的弹性力学问题的比例边界有限元方法[J].计算力学学报,2011,28(4):510-516.
    [66]SONG C, WOLF J. Body loads in scaled boundary finite-element method [J]. Computer Methods in Applied Mechanics and Engineering,1999,180(1):117-135.
    [67]DEEKS A. Prescribed side-face displacements in the scaled boundary finite-element method[J]. Computers and Structures,2004,82(15-16):1153-1165.
    [68]DEEKS A, WOLF J. Stress recovery and error estimation for the scaled boundary finite-element method[J]. International Journal for Numerical Methods in Engineering,2002,54(4):557-583.
    [69]DEEKS A, WOLF J. An h-hierarchical adaptive procedure for the scaled boundary finite-element method[J]. International Journal for Numerical Methods in Engineering,2002,54(4):585-605.
    [70]VU T, DEEKS A. A p-adaptive scaled boundary finite element method based on maximization of the error decrease rate[J]. Computational Mechanics,2008,41(3):441-455.
    [71]VU T, DEEKS A. A p-hierarchical adaptive procedure for the scaled boundary finite element method[J]. International Journal for Numerical Methods in Engineering,2008,73(1):47-70.
    [72]CHIONG I, SONG C. Development of polygon elements based on the scaled boundary finite element method[J]. IOP Conf. Series:Materials Science and Engineering,2010,10:012226.
    [73]ZHANG Z, YANG Z, LIU G, et al. An adaptive scaled boundary finite element method by subdividing subdomains for elastodynamic problems[J]. SCIENCE CHINA Technological Sciences, 2011,54 (SI):101-110.
    [74]VU T, DEEKS A. Use of higher-order shape functions in the scaled boundary finite element method[J]. International Journal for Numerical Methods in Engineering,2006,65(10):1714-1733.
    [75]DEEKS A, WOLF J. Semi-analytical elastostatic analysis of unbounded two-dimensional domains[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(11): 1031-1057.
    [76]SONG C. A matrix function solution for the scaled boundary finite-element equation in statics[J]. Computer Methods in Applied Mechanics and Engineering,2004,193(23-26):2325-2356.
    [77]SONG C. Weighted block-orthogonal base functions for static analysis of unbounded domains [A], In:Proceedings of the 6th World Congress on Computational Methanics[C], Beijing, China,2004, 615-620.
    [78]SONG C. Dynamic analysis of unbounded domains by a reduced set of base functions [J]. Computer Methods in Applied Mechanics and Engineering,2006,195(33-36):4075-4094.
    [79]LI M, SONG H, GUAN H, et al. Schur decomposition in the scaled boundary finite element method in elastostatics[J]. IOP Conf. Series:Materials Science and Engineering,2010,10:012243.
    [80]SONG C, WOLF J. The scaled boundary finite-element method:analytical solution in frequency domain [J]. Computer methods in applied mechanics and engineering,1998,164(1-2):249-264.
    [81]SONG C, MOHAMMAD H. A boundary condition in Pade series for frequency-domain solution of wave propagation in unbounded domains[J]. International Journal for Numerical Methods in Engineering,2007,69(11):2330-2358.
    [82]YANG Z, DEEKS A, HONG H. A Frequency-Domain Approach for transient dynamic analysis using scaled boundary finite element method (Ⅰ):approach and validation [C]. The 10th Int. Conf. Comp. Meth. in Engng. & Sci. (EPMESC X). Computational methods in engineering and science, Sanya, China,2006.
    [83]YANG Z, DEEKS A, HONG H. A Frequency-Domain Approach for Transient Dynamic Analysis Using Scaled Boundary Finite Element Method (Ⅱ):Application to Fracture Problems[C]. The 10th Int. Conf. Comp. Meth. in Engng. & Sci (EPMESC X), Computational methods in engineering and science, Sanya, China,2006:765-773.
    [84]YANG Z, DEEKS A. A Frobenius solution to the scaled boundary finite element equations in frequency domain for bounded media [J]. International Journal for Numerical Methods in Engineering, 2007,70(12):1387-1408.
    [85]MOHAMMAD H, SONG C. A continued-fraction-based high-order transmitting boundary for wave propagation in unbounded domains of arbitrary geometry [J]. International Journal for Numerical Methods in Engineering,2008,74(2):209-237.
    [86]SONG C. The scaled boundary finite element method in structural dynamics [J]. International Journal for Numerical Methods in Engineering,2009,77(8):1139-1171.
    [87]BIRK C, SONG C. A continued-fraction approach for transient diffusion in unbounded medium [J]. Computer Methods in Applied Mechanics and Engineering,2009,198(33-36):2576-2590.
    [88]PREMPRAMOTE S, SONG C, TIN-LOI F, et al. High-order doubly asymptotic open boundaries for scalar wave equation[J]. International Journal for Numerical Methods in Engineering,2009,79(3): 340-374.
    [89]BIRK C, PREMPRAMOTE S, SONG C. An improved continued-fraction-based high-order transmitting boundary for time-domain analyses in unbounded domains [J]. International Journal for Numerical Methods in Engineering,2012,89(3):269-298.
    [90]LI B, CHENG L, DEEKS A, et al. A modified scaled boundary finite-element method for problems with parallel side-faces. Part I. Theoretical developments [J]. Applied Ocean Research,2005,27(4-5): 216-223.
    [91]LI B, CHENG L, DEEKS A, et al. A modified scaled boundary finite-element method for problems with parallel side-faces. Part II. Application and evaluation [J], Applied Ocean Research,2005. 27(4-5):224-234.
    [92]BIRK C, BEHNKE R. A modified scaled boundary finite element method for three-dimensional dynamic soil-structure interaction in layered soil[J]. International Journal for Numerical Methods in Engineering,2012,89(3):371-402.
    [93]DOHERTY J, DEEKS A. Scaled boundary finite-element analysis of a non-homogeneous elastic half-space[J]. International Journal for Numerical Methods in Engineering,2003,57(7):955-973.
    [94]阎俊义,金峰,张楚汉.基于线性系统理论的FE-SBFE时域耦合方法.清华大学学报(自然科学版),2003,43(11):1554-1566.
    [95]BIRD G, TREVELYAN J, AUGARDE C. A coupled BEM/scaled boundary FEM formulation for accurate computations in linear elastic fracture mechanics [J]. Engineering Analysis with Boundary Elements,2010,34(6):599-610.
    [96]GENES M, KOCAK S. Dynamic soil-structure interaction analysis of layered unbounded media via a coupled finite element/boundary element/scaled boundary finite element model [J]. International Journal for Numerical Methods in Engineering,2005,62(6):798-823.
    [97]DOHERTY J, DEEKS A. Adaptive coupling of the finite-element and scaled boundary finite-element methods for non-linear analysis of unbounded media[J]. Computers and Geotechnics, 2005,32(6):436-444.
    [98]SONG C, WOLF J. The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for diffusion [J]. International Journal for Numerical Methods in Engineering,1999,45(10):1403-1430.
    [99]LI B, CHENG L, DEEKS A, et al. A semi-analytical solution method for two-dimensional Helmholtz equation[J]. Applied Ocean Research 2006,28(3):193-207.
    [100]TAO L, SONG H, CHAKRABARTI S. Scaled boundary FEM solution of short-crested wave diffraction by a vertical cylinder [J]. Computer Methods in Applied Mechanics and Engineering,2007, 197(1-4):232-242.
    [101]林志良.比例边界有限元法及快速多极子边界元法的研究与应用[D].上海:上海交通大学,2010.
    [102]刘俊.比例边界有限元方法在波浪与开孔结构相互作用及电磁场问题中的研究[D].大连:大连理工大学,2012.
    [103]LIU J, LIN G. A scaled boundary finite element method applied to electrostatic problems[J]. Engineering Analysis with Boundary ElementsfJ].2012,36(12):1721-1732.
    [104]LIU J, LIN G, LI J, et al. Analysis of quadruple corner-cut ridged square waveguide using a scaled boundary finite element method[J]. APPLIED MATHEMATICAL MODELLING,2012,36(10): 4797-4809.
    [105]LIU J, LIN G. Analysis of quadruple corner-cut ridged elliptical waveguide by scaled boundary finite element method[J]. International Journal of Numerical Modelling-Electronic Networks Devices and Fields,2012,25(4):303-316.
    [106]DEEKS A, AUGARDE C. A meshless local Petrov-Galerkin scaled boundary method[J]. Computational Mechanics,2005,36(3):159-170.
    [107]LIN Z, LIAO S. The scaled boundary FEM for nonlinear problems[J]. Communications in Nonlinear Science and Numerical Simulation,2011,16(1):63-75.
    [108]ZHANG Y, LIN G, HU Z. Isogeometric analysis based on scaled boundary finite element method. [J]. IOP Conf. Series:Materials Science and Engineering,2010,10:012237.
    [109]张勇,林皋,胡志强,钟红.基于等几何分析的比例边界有限元方法[J].计算力学学报,2012,29(3):433-438.
    [110]张勇,林皋,胡志强.比例边界等几何分析方法Ⅰ:波导本征问题[J].力学学报,2012,44(2):382-392.
    [111]张勇,林皋,胡志强,徐喜荣.基于移动相似中心的比例边界有限元方法[J].计算力学学报,2012,29(6):726-733.
    [112]WESTERGAARD H. Water pressures on dams during earthquakes[J]. Transactions of ASCE,1933, 98:418-433.
    [113]杜修力,王进廷.动水压力及其对坝体地震反应影响的研究进展[J].水利学报,2001,32(7):13-21.
    [114]CHOPRA A. Hydrodynamic pressers on dams during earthquakes[J]. Journal of the Engineering Mechanics Division, ASCE,1967,93(EM6):205-223.
    [115]CHOPRA A. Earthquake behavior of reservoir-dam systems[J]. Journal of the Engineering Mechanics Division, ASCE,1968,94(6):1475-1500.
    [116]CHAKRABARTI P, CHOPRA A. Earthquake analysis of gravity dams including hydrodynamic interaction[J]. Earthquake Engineering & Structural Dynamics,1973,2(2):143-160.
    [117]CHAKRABARTI P, CHOPRA A. Hydrodynamic effect in earthquake response of gravity dams[J]. Journal of the Engineering Mechanics Division, ASCE,1974,100:1211-1224.
    [118]PORTER C, CHOPRA A. Hydrodynamic effect in dynamic response of simple arch dams[J]. Earthquake Engineering & Structural Dynamics,1982,10(3):417-431.
    [119]Hall J, CHOPRA A. Dynamic analysis of arch dams including hydrodynamic effects[J]. Journal of the Engineering Mechanics Division, ASCE,1983,109(1):149-167.
    [121]SELBY A, SEVERN R. An experimental assessment of add mass of some plates vibration in water[J]. Earthquake Engineering & Structural Dynamics,1972,1(2):189-200.
    [122]HALL J, CHOPRA A. Dynamic response of embankment, concrete gravity and arch dams including hydrodynamic interaction. Report No. UCB/EERC-80/39, University of California, Berkeley, CA, 1980.
    [123]FENVES G, CHOPRA A. Effects of reservoir bottom absorption on earthquake response of gravity dams[J]. Earthquake Engineering & Structural Dynamics,1983,11(6):809-829.
    [124]FENVES G, CHOPRA A. Effects of reservoir bottom absorption and dam-water-foundation rock interaction on frequency response functions for concrete gravity dams[J]. Earthquake Engineering & Structural Dynamics,1985,13(1):13-31.
    [125]FOK K, CHOPRA A. Earthquake analysis of arch dams including dam water interaction, reservoir boundary absorption and foundation flexibility [J]. Earthquake Engineering & Structural Dynamics, 1986,14(2):155-184.
    [126]FOK K, CHOPRA A. Hydrodynamic and foundation flexibility effects in earthquake response of arch dams[J]. Journal of Structural Engineering, ASCE,1986,112(8):1810-1828.
    [127]MEDINA F, DOMINGUEZ J and Tassoulas J L. Response of arch dams to earthquakes including effects of sediments[J]. Journal of Structural Engineering, ASCE,1990,116(11):3108-3121.
    [128]MAESO O, DOMINGUEZ J. Earthquake analysis of arch dam I. Dam-foundation interaction[J]. Journal of Engineering Mechanics, ASCE,1993,119(3):496-512.
    [129]TAN H, CHOPRA A. Earthquake Analysis of arch dams including dam-water-foundation rock interaction[J]. Earthquake Engineering & Structural Dynamics,1995,24(11):1453-1474.
    [130]TAN H, CHOPRA A. Dam foundation rock interaction effects in frequency response function of arch dams[J]. Earthquake Engineering & Structural Dynamics,1995,24(11):1475-1489.
    [131]傅作新,陆瑞明.水库的库底条件和挡水结构的动水压力[J].水利学报,1987,18(5):28-34.
    [132]CHENG A. Effect of sediment on earthquake induced reservoir hydrodynamic response[J]. Journal of Engineering Mechanics, ASCE,1986,111(7):654-665.
    [133]BOUGACHA S, Tassoulas J. Seimic reponse of gravity dams Ⅰ:Modeling of sediments[J]. Journal of Engineering Mechanics, ASCE,1991,117(8):1826-1837.
    [134]BOUGACHA S, Tassoulas J.Seismic response of gravity dams Ⅱ:Effects of sediments[J]. Journal of Engineering Mechanics, ASCE,1991,117(8):1839-1850.
    [135]CHEN B, HUNG T. Hydrodynamic pressure of water and sediment on rigid dam[J]. Journal of Engineering Mechanics, ASCE,1993,119(7):1411-1433.
    [136]DOMINGUEZ J, GALLEGO R, Japon B. Effects of porous sediments on seismic response of concrete gravity dams[J]. Journal of Engineering Mechanics, ASCE,1997,123(4):302-311.
    [137]DU X, WANG J, HUNG T. Effects of sediment on the dynamic pressure of water and sediment on dams[J]. Chinese Science Bulletin,2001,46(7):521-524.
    [138]LYSMER J, KUHLEMEYER R. Finite dynamic model for infinite media[J]. Journal of Engineering Mechanics, ASCE.1969,95(1):759-877.
    [139]SMITH W. A nonreflecting plane boundary for wave propagation problems[J]. Journal of Computational Physics,1974,15(3):492-503.
    [140]CLAYTON R, ENGQUIST B. Absorbing boundary conditions for acoustic and elastic wavee quations[J]. Bulletin of the Seismological Society of America,1977,67(6):1529-1540.
    [141]ENGQUIST B, MAJDA A. Absorbing boundary conditions for the numerical solution of waves[J]. Mathematics of Computations,1977,31(3):629-651.
    [142]廖振鹏,杨柏坡,袁一凡.暂态弹性波分析中人工边界的研究[J].地震工程与工程振动,1982,2(1):1-11.
    [143]廖振鹏,黄孔亮,杨柏坡,et a1.暂态波分析的透射边界条件[J].中国科学(A辑),1984,26(6):556-564.
    [144]KAUSEL E. Local transmitting boundaries. Journal of Engineering Mechanics[J], ASCE,1988, 114(6):1011-1027.
    [145]UNGLESS R. An Infinite element [D]. Columbia:University of British Columbia,1973.
    [146]BETTESS P, ZIENKIEWICZ O. Diffraction and reflection of surface waves using finite and infinite elements[J]. International Journal for Numerical Methods in Engineering,1977,11(8):1271-1290.
    [147]ZHANG C, SONG C. Boundary element technique in infinite and semi-infinite plane domain[A]. Proceedings of the International Conference on Boundary element[C], Beijing, China,1986.
    [148]赵崇斌,张楚汉,张光斗.用无穷元模拟半无限平面弹性地基[J].清华大学学报,1986,26(3):51-63.
    [149]ZHANG C, SONG C, WANG G, et al.3-D infinite boundary elements and simulation of monolithic dam foundations[J]. Communications in Applied Numerical Methods,1989, (5):389-400.
    [150]ZHANG C, SONG C, PEKAO O. Infinite boundary element for dynamic problems of 3-D half space[J]. International Journal for Numerical Methods in Engineering,1991,31(3):447-462.
    [151]水利部国际合作与科技司编著,当代水利科技前沿[M].北京:中国水利水电出版社,2005.
    [152]WOLF J, SOMAINI D. Approximate dynamic model of embedded foundation in time domain[J]. Earthquake Engineering & Structural Dynaimcs,1986,14(5):683-703.
    [153]DE BARROS F, LUCO J. Discrete models for vertical vibrations of surface and embedded foundation[J]. Earthquake Engineering and Structural Dynaimcs,1990,19(2):289-303.
    [154]JEAN W, LING T, PENZIEN J. System parameter of soil foundations for time domain dynamic analysis[J]. Earthquake Engineering & Structural Dynaimcs,1990,19(4):541-553.
    [155]栾茂田,林皋.地基动力阻抗的双自由度集总参数模型[J].大连理工大学学报,1996,36(4):477-481.
    [156]金峰,张楚汉,王光纶.结构地基相互作用的FE-BE-IBE耦合模型[J].清华大学学报.1993,33(2):17-24.
    [157]YAN J, JIN F, ZHANG C. A coupling procedure of FE and SBFE for Soil-structure interaction in time domain[J]. International Journal for Numerical Methods in Engineering,2004,59(11):1453-1471.
    [158]LEHMANN L. An effective finite element approach for soil-structure analysis in the time-domain[J]. Structural Engineering and Mechanics,2005,21(4):437-450.
    [159]GENES M, KOCAK S. Dynamic soil-structure interaction analysis of layered unbounded media via a coupled finite element/boundary element/scaled boundary finite element model[J]. International Journal for Numerical Methods in Engineering,2005,62(6):798-823.
    [160]李敬.级数法求解轴对称的静电场[J].云南师范大学学报,1997,17(3):43-45.
    [161]马西奎.最小二乘边界配点法在电磁场边值问题数值分析中的应用[J].微波学报,1994,37(2):17-22.
    [162]BALLISTI R, HAFNER C. The multiple multipole method in electro-and magnetostatic problems[J]. IEEE Transactions on Magnetics,1983,19(6):2367-2370.
    [163]盛剑霓.电磁场与波分析中半解析法的理论方法与应用[M].北京:科学出版社,2006:1-35.
    [164]周勤,茅乃丰.旋转对称静电场的一种新的数值解法[J].电波科学学报,1990,5(4):26-34.
    [165]SONG B, FU J. Modified indirect boundary element technique and its application to electromagnetic potential problems[J]. IEE proceeding-h of Microwaves Antennas and Propagation,1992,139(3): 292-296.
    [166]金建铭.电磁场有限元方法[M].西安电子科技大学出版社,1998:51-70.
    [167]BAMJI S S, BULINSKI A T. Electric field calculations with the boundary element method [J]. IEEE Transactions on Electrical Insulation,1993,28(3):420-424.
    [168]甄蜀春,曹蕾,张继龙.波动方程差分解法对波导螺钉调配器的分析[J].电波科学学报,2005,20(1):125-127.
    [169]汪朝晖,廖振方,陈德淑.有限元法分析尖板电极结构的空间静电场分布[J].重庆大学学报,2010,33(5):41-47.
    [170]梁志伟,赵国伟,徐杰,等.柱形等离子体天线辐射特性的矩量法分析[J].电波科学学报,2008,23(4):749-753
    [171]张淮清.电磁场计算中的径向基函数无网格法研究[D].重庆大学,2008.
    [172]王仁宏,李崇君,朱春钢.计算几何教程[M].北京:科学出版社,2006.
    [173]PIEGL L, TILLER W. The NURBS Book[M]. Berlin:Springer Verlag,1997.
    [174]KIM H, SEO Y, YOUN S. Isogeometric analysis with trimming technique for problems of arbitrary complex topology [J]. Computer Methods in Applied Mechanics and Engineering,2010, 199(45):2796-2812.
    [175]SCHMIDT R, WUCHNER R, BLETZINGER K. Isogeometric analysis of trimmed nurbs geometries[J]. Computer Methods in Applied Mechanics and Engineering,2012,241-244(1):93-111.
    [176]TIMOSHENKO S, GOODIER J. Theory of Elasticity,3rd ed[M]. New York:McGraw-Hill,1970.
    [177]HUGHES T. The finite element method, linear static and dynamic finite element analysis[M]. New York:Dover,2000.
    [178]Tecplot user's manual[M]. Washington:Amtec Engineering, Inc.,2001.
    [179]GONLD P. Introduction to Linear Elasticity,2nd edition [M]. Berlin:Springer Verlag,1999.
    [180]金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社,1998.
    [181]张淮清.电磁场计算中的径向基函数无网格法研究[D].重庆:重庆大学,2008.
    [182]FERNANDEZ-MENDEZ S, HUERTA A. Imposing essential boundary conditions in mesh-free methods[J]. Computer Methods in Applied Mechanics and Engineering,2004,193(12-14):1257-1275.
    [183]HARRINGTON R. Time-harmonic electromagnetic fields[M]. New York:Wiley,2001.
    [184]BALANIS C. Advanced Engineering Electromagnetics[M]. New York:Wiley,1989.
    [185]ZHANG S, SHEN Y. Eigenmode sequence for an elliptical waveguide with arbitrary elIipticity[J]. IEEE Transactions on Microwave Theory and Techniques,1995,43(1):227-230.
    [186]TSOGKAS G, ROUMELIOTIS J, SAVAIDIS S. Cutoff wavelengths of elliptical metallic waveguides[J]. IEEE Transactions on Microwave Theory and Techniques,2009,57(10):2406-2415.
    [187]TIMOSHENKO S. Theory of plates and shells[M]. New York:McGraw-Hill,1959.
    [188]CASH J, KARP A. A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides[J]. ACM Transactions on Mathematical Software,1990,16(3):201-222.
    [189]GUAN J, SU C. Analysis of metallic waveguides with rectangular boundaries by using the finite-difference method and the simultaneous iteration with the Chebyshev acceleration[J]. IEEE Transactions on Microwave theory and Techniques,1995,43(2):374-382.
    [190]SWAMINATHAN M, ARVAS E, SARKA T, et al. Computation of cut-off wave number of TE and TM modes in waveguides of arbitrary cross sections using a surface integral formulation[J]. IEEE Transactions on Microwave Theory and Techniques,1990,38(2):154-159.
    [191]SCHIFF B, YOSIBASH Z. Eigenvalues for waveguides containing re-entrant corners by a finite-element method with super-elements[J]. IEEE Transactions on Microwave Theory and Techniques,2000,48(2):214-220.
    [192]陈云林,李旭,兰明建.偏心圆柱面静电场电势分布和电场强度分布的求解[J].渝西学院学报,2002,1(4):28-31.
    [193]DOLBOW J AND BELYTSCHKO T. An Introduction to Programming the Meshless Element Free Galerkin Method[J]. Archives of Computational Methods in Engineering,1998,5(3):207-241.
    [194]PHUA N, RABCZUK T, BORDAS S. Meshless methods:A review and computer implementation aspects[J]. Mathematics and Computers in Simulation,2008,79(3):763-813.
    [195]DEEKS A, CHENG L. Potential flow around obstacles using the scaled boundary finite-element method[J]. International Journal for Numerical Methods in Fluids,2003,41(7):721-741.
    [196]林皋,杜建国.基于SBFEM的坝-库水相互作用分析[J].大连理工大学学报,2005,45(5):723-729.
    [197]LIN G, DU J, HU Z. Dynamic dam-reservoir interaction analysis including effect of reservoir boundary absorption[J]. Science in China Series E Technological Sciences,2007,50(S1):1-10.
    [198]LIN G, WANG Y, HU Z. An efficient approach for frequency-domain and time-domain hydrodynamic analysis of dam-reservoir systems[J]. Earthquake Engineering & Structural Dynamics, 41(13):1725-1749.
    [199]杜建国,林皋,钟红.基于锥体理论的三维拱坝无限地基SBFEM模型[J].水电能源科学,2006,24(1):25-29.
    [200]杜建国,林皋.地基刚度和不均匀性对混凝土大坝地震响应的影响[J].岩土工程学报,2005,27(7):819-823.
    [201]杜建国,林皋,胡志强.非均质无限地基上高拱坝的动力响应分析[J].岩石力学与工程学报,2006,25(S2):4104-4111.
    [202]LIN G, DU J, HU Z. Earthquake Analysis of Arch and Gravity Dams Including the Effects of Foundation Inhomogeneity[J]. Frontiers of Architecture and Civil Engineering in China,2007,1(1): 41-50.
    [203]RADMANOVIC B, KATZ C. A High Performance Scaled Boundary Finite Element Method [J]. IOP Conf. Series:Materials Science and Engineering,2010,10:012214.
    [204]刘钧玉.裂纹内水压对重力坝断裂特性影响的研究[D].大连理工大学,2008.
    [205]LIU J, LIN G. Evaluation of Stress Intensity Factors Subjected to Arbitrarily Distributed Tractions on Crack Surfaces[J]. China Ocean Engineering,2007, (2):293-303.
    [206]刘钧玉,林皋,杜建国.基于SBFEM的多裂纹问题断裂分析[J].大连理工大学学报,2008,(3):392-397.
    [207]刘钧玉,林皋,范书立,et a1.裂纹面受荷载作用的应力强度因子的计算[J].计算力学学报,2008,(5):621-626.
    [208]刘钧玉,林皋,胡志强,et a1.裂纹内水压分布对重力坝断裂特性的影响[J].土木工程学报,2009,(3):132-141.
    [209]刘钧玉,林皋,李建波,et a1.重力坝动态断裂分析[J].水利学报,2009,(9):1096-1102.
    [210]刘钧玉,林皋,胡志强.重力坝-地基-库水系统动态断裂分析[J].工程力学,2009,(11):114-120.
    [211]刘钧玉,林皋,胡志强.裂纹面荷载作用下多裂纹应力强度因子计算[J].工程力学,2011,(4):7-12.
    [212]刘钧玉,林皋,胡志强,et a1.结构-地基相互作用的频域计算模型[J].大连理工大学学报,2012,(6):850-854.
    [213]LIU J, LIN G, LI J. Short-crested waves interaction with a concentric cylindrical structure with double-layered perforated walls[J]. Ocean Engineering,2012,40:76-90.
    [214]LIU J, LIN G, LI J. Short-crested waves interaction with a concentric porous cylinder system with partially porous outer cylinder[J]. China Ocean Engineering,2012,26(2):217-234.
    [215]LIN G, LIU J. Hydrodynamic performance of combined cylinders structure with dual arc-shaped porous outer walls[J]. SCIENCE CHINA Physics, Mechanics & Astronomy,55(11):1963-1977.
    [216]LIU J, LIN G. Numerical modeling of wave interaction with a concentric Cylindrical System with an Arc-shaped Porous Outer Cylinder[J]. European Journal of Mechanics-B/Fluids,2013,37:59-71.
    [217]YAN J, JIN F, XU Y, et al. A seismic free field input model for FE-SBFE coupling in time domain[J]. Earthquake Engineering and Engineering Vibration,2003,2(1):51-58.
    [218]NAVIER C. Extrait des recherches sur la flexion des plans elastiques [J]. Bulletin des Sciences parla Societe Philomathique de Paris,1823.
    [219]KIRCHHOFF G. Uber das gleichgewicht und die bewegung einer elastischen scheibe [J]. Journal fiirdie Reine und Angewandte Mathematik,1850,40:S.51-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700