用户名: 密码: 验证码:
振动流化床喷雾造粒特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造粒技术广泛应用于国民经济的众多产业部门。振动流化床造粒可有效克服传统流化床或喷动床造粒颗粒粒度分布宽、动力消耗高的缺点,特别适合于中小生产规模的层式造粒过程。因此开展本课题研究,开发实用的造粒新技术以装备生产过程,不仅具有重要的学术价值,而且具有良好的应用前景。
     本文以尿素或油菜籽颗粒为晶种,以不同浓度的尿素溶液为喷雾料浆,对振动流化床喷雾造粒特性进行了实验研究。实验在晶种上喷涂尿素熔融液或不同浓度的尿素溶液,使其以层式机理长大。着重研究了晶种类别、料液流量、料液浓度、流化气速、振动强度、喷嘴高度、雾化气压力等因素对颗粒成长的影响。实验结果表明:在u_f=1.86 u_(mf)操作气速下,油菜籽晶种颗粒生长速率明显高于尿素晶种;增大料液流量、料液浓度,减低喷嘴高度均有利于颗粒长大;本实验条件下,料液流量在u_f=1.5~2 u_(mf)时应小于8.5kg/h;保证颗粒处于正常流态化的前提下,较低的流化气速有利于造粒,流化气速过大或过小均不利于颗粒的生长,实验中一般控制在1.5~2 u_(mf)左右;适度振动有利于颗粒的生长,能够显著降低操作气速,可有效减轻粉尘生成量,克服结块现象,但振动强度过高颗粒生长速率反而减低,一般控制Γ=1~2为宜。
     依据颗粒层式成长机理,根据物质守恒原理建立了颗粒层式生长的数学模型,提出了粒径长大的计算式。将粒径的理论预测值与实验测定值进行了比较,结果表明,两者间的误差在±8.8%以内,从而验证了模型的正确性。
Granulating technique has been applied widely in many industries. The vibrated fluidized bed granulation will effectively overcome these disadvantages of wide distribution of particle size and high dissipation of energy, existing in the traditional fluidized bed and the spout-fluidized bed. The granulation technique in VFB is especially suitable for the medium and small scales process of layering granulation. Accordingly, investigating the granulation characteristics in VFB, developing new practical technique of granulation for the producing process have important scientific value and extensive application prospect.
    In this paper, urea particles and oil-vegetable seeds as initial particles are used to study granulation process in a vibrated fluidized bed, where the initial particles grow in a layered manner by spraying melt Urea solution on them and reached the required granule size. The coating efficiency and the particle's size are measured under various experimental conditions. The effects of particle type, liquid spraying rate, liquid concentration, fluidizing gas velocity, vibrated intensity, nozzle position and atomization air pressure on the growth of particles have been analyzed and discussed. The experimental results show that at fluidizing gas velocity u=1.86umf, the oil-vegetable seeds get higher growth rate than the urea particles. Higher liquid spraying rate and higher urea solution concentration, lower nozzle position are preferred conditions for the growth of particles. However,
    
    
    liquid spraying rate should be limited to less than 8.5kg/h for u= 1.5-2.0 umf. On the premise that the particles were fluidized normally, lower gas velocity is fit for the particles growth. Gas velocity should be ranged from 1.5 to 2.0umf. Appropriate vibrated intensity is a preferred condition for the growth of particles, which can reduce gas velocity greatly, and deal with the crushing and the conglomeration of particles effectively. But the particles growth rate is decreased along with the overage vibrated intensity, should be ranged from 1 to 2.
    A mathematical model for the particles layering growth is developed based on the mechanism of layering growth and law of conservation of mass. A formula for calculating the particle diameter was also deduced. Comparing the predicated values with the experimental values, the results show that the deviation between them is ± 8.8%. Therefore the precision of the model is proved .
引文
1.周波,钱树德,振动流化床造粒研究,化工装备技术,1998,19(2):43-49
    2.C.E.CAPES著,钱树德,顾芳珍译,造粒技术,北京:化学工业出版社,1992
    3.姚礼炳,流化床喷雾造粒的研究,化学世界,1986,(3):119-123
    4.程云鹏,冯殿生,张瑞珠编,粒剂,北京:化学工业出版社,1988
    5.刘广文编著,喷雾干燥实用技术大全,北京:中国轻工业出版社,2001
    6.谢静丽,尿素生产中Hydro流化床造粒工艺及其粉尘处理,化工环保,2000,20(4):32-35
    7.叶世超,振动流化床水平换热管传热特性的研究,四川大学博士论文,2000
    8.单宝峰等,振动流化床喷雾造粒的研究,机械设计与制造,1995,(6):37-39
    9.张振伟,赵艳春,谢麟等,流化振动连续造粒干燥过程分析,化工装备技术,2001,22(1):15-17
    10.于经元,於莉莉等,大颗粒尿素生产工艺,天津化工,1999,(6):1-5
    11.潘永康主编,现代干燥技术,北京:化学工业出版社,1997
    12.吴洪,赵君,流化床造粒影响因素及层式成长模型的研究,化学反应工程与工艺,1998,14(4):357-364
    13.齐涛,于才渊,王喜忠等,底部进料流化床喷雾造粒器内尿素造粒过程,化工冶金,1998,(2):19-24
    14. Ennis B. J. A microlevel-based characterization of granulation phenomena, Powder Technology, 1991, 65: 257-272
    15.康仕芳,白书培,陈松,流化床涂敷造粒生产大颗粒尿素,天津化工,1998(4):2-4
    16.朱宪荣等.多元大颗粒硝铵的试制,化肥设计,2001,39(2):33-34
    17.宾武生,流化床与颗粒剂,化工装备技术,2001,22(5):5-8
    18.骆振福等,振动流化床的形成机理,中国矿业大学学报,2000,29(3):230-234
    19.J.F.戴维斯,D.哈里森,中国科学院化工冶金研究所,化学工业部化工机械研究所等译,流态化,北京:科学出版社,1981
    
    
    20.国井大藏,O.列文斯比尔编著,华东石油学院,上海化工设计院等译,流态化工程,北京:石油工业出版社,1977
    21.童景山编著,流态化干燥工艺与设备,北京:科学出版社,1996
    22.朱家骅,叶世超,夏素兰等编,化工原理,北京:科学出版社(上册,下册),2001
    23. Denes B, Ormos Z., Powder Technology, 1982, 31: 39
    24. Erdesz K and Ormos Z., Experimental Studies on the Vibrofluidization Granulation Process. Proc 4th Conf on Appl Chemistry, Unit Operation and Processes, 1983: 236-240
    25. Armazin V D. Tekhnika iprimenenie vibrirushchevo sloya, Technics and Application of Vibro Fluidized bed, Kiev:Naukova Dumka, 1977: 107
    26. Y.K. Pan, H.Wu and Z.Y. Li, Effect of a Tempering Period on Drying of Carrot in a Vibro-fluidized Bed, Drying Technology, 1997, 15(6-8): 2030-2043
    27. Y.K. Pan, Z.Y. Li, A.S. Mujumdar and T. Kudra, Drying of a Root Crop in Vibro-fluidized Beds, Drying Technology, 1997, 15(1): 215-223
    28. Steven A. Cryer, Modeling Agglomeration Processes in Fluid-bed Granulation, AIChE Journal, 1999, 45(10): 2069-2078
    29. J. Kubie and J. Broughton, a Model of Heat Transfer in Gas Fluidized Beds, Int. J. Heat Mass Transfer, 1975, Vol. 18, pp:289-299
    30.于才渊,李富贵,王喜忠,搅拌流化床喷雾造粒过程实验研究,化学工程,2001,20(6):34-37
    31. Smith P G, Nienow A W. Particle growth mechanisms in fluidized-bed granulation-Ⅱ, Chem. Eng. Sci., 1983, 138(8): 1233
    32.赵艳春,张振伟,谢里阳等,流化振动连续造粒机中成粒规律,辽宁化工,2001,30(9):379-382
    33.赵珺,康仕芳,张磊,喷动流化床尿素造粒过程的模拟计算,天津大学学报,1998,31(3):272-278
    34.姚光前,流化床造粒工艺及特点,大氮肥,1997,20(5):348-350
    35.茅启昌,周寅仪,肖世同等,与海德鲁公司就流化床造粒技术交流情况综述,大氮肥,1985,(5):390-393
    36.李天文,费维扬,戴志谦等,流化造粒生产非均质尿基复合肥,化肥工业,2001,
    
    28(6):19-22
    37.姚礼炳,硫酸钾流化床造粒,无机盐工业,1992,(2):27-28
    38.刘传政,大颗粒尿素造粒技术综述,大氮肥,2001,24(5):302-306
    39.单宝峰,因素的交互作用对振动流化床造粒性能的影响,机械设计与制造,2002,(5):102-103
    40.骆振福,陈清如,邢洪波,振动流化床技术研究的现状及发展,化工机械,1997,24(3):176-178
    41.葛毅强,倪元颖,蔡同一,微胶囊型天然V_E的研究,食品科技,2001,(4):8-10
    42.涂云,牛亚斌,刘璞等,微胶囊缓释破胶剂的室内研制,油田化学,1997,14(3):213-217
    43.贺芬,徐瑛,侯惠民,挤出造粒、气流包衣法制备包衣微粒剂Ⅰ,中国医药工业杂志,2000,31(1):19-21
    44.裴兴社,张金阳,毛运秋,海德鲁公司流化床大颗粒尿素生产工艺,中氮肥,2000,(5):12-14
    45.王国伟,景云杰,赵世杰,尿素造粒技术及其比较,大氮肥,1998,21(2):92-95
    46.陈勤,尿素造粒工艺的改进,中氮肥,1997(1):60-64
    47.蔡宁,振动流化床中浸没水平管束的传热特性研究,四川大学硕士论文,2002
    48.程峰,叶世超,李天友等,振动流化床造粒特性的实验研究,四川大学学报(工程科学版),2003,35(2):56-59
    49.潘永亮,刘玉良编,化工设备机械设计基础,北京:科学出版社,1999
    50.《化学工程手册》编辑委员会编,化学工程手册(第23篇)——粉碎、分级及团聚,北京:化学工业出版社,1985
    51.温瑞媛,严世强,江洪等编著,化学工程基础,北京:北京大学出版社,2002
    52. R. Gupta and A.S. Mujumdar, Aerodynamics of a Vibrated Fluid Bed, Can. J. Chem. Eng., 1980, 58: 332-338
    53.李建平,李承政,王天勇等,我国粉体造粒技术的现状与展望,化工机械,2001,28(5):295-300
    54.刘玉良,陈文梅,雷明光,转鼓闭式造粒技术研究,化工装备技术,2002,23(3):9-11
    
    
    55.白书培,康仕芳,大颗粒流化床停留时间分布的研究,化肥工业,2002,29(2):33-36
    56.齐涛,于才渊,王喜忠等,流化床喷雾造粒器内‘两相-三区域“传热传质模型的建立,南京林业大学学报,1997,21(add.):99-106
    57.金国淼主编,(化工设备设计全书)干燥设备设计,上海:上海科学技术出版社,1986
    58.(日)持田隆等著,张佑国等编译,喷雾干燥,南京:江苏科学技术出版社,1982
    59. C.R. Adler, W.R. Marshall, Chem. Eng. Progr., 1951, 47(10): 515
    60. Pakowski Z, Mujumdar A S, Stumillo C. Theory and Application of Vibrated Beds and Vibrated Fluid Beds for Drying Processes, Mujumdar A S, ed. Advances in Drying, 1984, 3: 254-306
    61.罗俊国,刘钟海,梁斌,尿基高浓度复肥及大颗粒尿素生产工艺,中氮肥,2002(3):5-7
    62. J. Gretzinger, W.R. Marshall, AichE. J., 1961(2): 312
    63.A.C.金兹布尔格著,高奎元译,食品干燥原理与技术基础,北京:轻工业出版社,1986
    64. W. Kroll, Forschung auf der Gebiets des Ingenieurwesan, 1954, 20, EdA (1): 2
    65. V. Chlenov and N. Mikhailov, Vibrofluidized Beds, Izdate'stvo, Mosco, 1972
    66. R. G. Gutman, Vibrated Beds of Powders: Part 1-A Theoretical Model for the Vibrated Bed, Trans. Instn. Chem. Engrs, 1976, 54: 174-183
    67.陶民强,食品造粒,食品工业,1996(2):31-33
    68.张少明,翟旭东,刘亚云,粉体工程,北京:中国建材工业出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700