用户名: 密码: 验证码:
极化电荷的发展、应用以及生物大分子体系分子动力学模拟的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子动力学模拟可以用来研究生物大分子体系的各种性质,如:预测受体和配体之间的亲和力,模拟蛋白质的折叠过程,研究蛋白质与细胞膜之间的相互作用、离子通道以及酶的催化反应等等,因此逐渐受到科学家的重视。分子动力学模拟理论将每个原子看成一个球,原子与原子之间通过弹簧连接,模拟体系在高维的势能函数面上运动。目前,存在多种不同的势能函数,如:AMBER, CHARMM,OPLS等,所有的势能函数都可划分成两大类:通过共价键相互作用的势能和非共价键作用的势能,共价键作用能包含键的伸缩能,角的弯曲能,二面角的扭转势能,非共价键作用能包含静电作用能和范德华作用能,势能函数中不同的参数形成不同的分子力场。静电作用是一种长程作用力,对动力学模拟的结果具有重大的影响,静电作用力的正确与否直接关系到氢键、盐桥等作用力的合理性,而大量研究证明氢键和盐桥对蛋白质折叠、配体和受体相互作用等都具有非常重要的意义。目前所有的力场都是采用库伦定律来计算静电作用能,分子理论假设每个原子上的电荷都集中在原子的中心,通过拟合分子周围的电势得到每个原子上的电荷。传统分子力场中,每个氨基酸上的原子电荷为一个定值,不受周围环境的影响。而实际上,生物大分子的一切运动都离不开水溶液,水分子为极性分子与生物大分子之间存在明显的极化效应,因此我们在分子动力学模拟的时候必须考虑生物大分子与周围环境之间的极化作用。
     经过长期的努力,目前已发展了多种极化电荷模型,主要有:Drude振子模型,涨落电荷模型和诱导多极模型。但是这些方法仍然存在一些无法避免的缺陷,如:Drude振子模型引入了人为的参数,诱导多极模型的计算量非常大,目前根本无法与分子动力学模拟结合,而且力场的可迁移性也很难实现。我们课题组完全放弃了力场的可迁移性,运用分子碎片共轭帽法,将量化计算的方法引入到生物大分子的电势计算过程中,在计算电势的同时考虑了周围环境与生物大分子之间的极化效应,最后对电势进行拟合得到生物大分子的极化电荷。借助RESP方法拟合的蛋白质内部原子的极化电荷随构象的变化波动幅度较大,非常不利于分子动力学模拟,特别是在QM/MM模拟等过程中,可能存在大构象的变化,因此大幅度的电荷涨落,对模拟非常的不利。基于2011年张等人选择参考电荷将偶极矩进行分割的方法,本文在RESP方法的基础上发展了一套在数值上更稳定的拟合极化电荷的方法:dRESP方法。dRESP方法中,每个原子上的电荷被划分成两部分:参考电荷和需要拟合的电荷。此方法的前提是参考电荷能够近似描述原子的电荷分布,所以参考电荷一般为MBER、CHARM、OPLS等力场中常用的电荷。量化计算的电势与参考电荷在相同格点上产生的电势之间的差量就是我们需要拟合的电荷在这个格点上产生的电势,拟合这个电势就能得到一个差值电荷。在拟合的过程中,我们在每个原子上所加的限制都是不同,与其参考电荷平方的倒数成正比,最后参考电荷与拟合得到的差值电荷之和就是整个原子的电荷。通过这种方式拟合电荷的优势是:拟合的电荷比原子电荷小了几个数量级,因此造成的数值误差比直接拟合原子的电荷要小很多。计算结果证明参考电荷的选取不影响拟合电荷的波动性,这种分步拟合电荷的方法的确很大程度上避免了拟合过程中出现的数值问题。
     Streptavidin与biotin之间的结合自由能高达-18.1kcal/mol,是目前发现的自然界中亲和力最强的化合物,对合理药性物设计具有很高的研究价值。大量研究证明氢键网络对biotin与streptavidin之间的结合非常重要,然后Baugh等人发现streptavidin末端的130号氨基酸由PHE突变成LEU之后,结合自由能减少了4.2kcal/mol,但是结构却没有明显的变化,突变前后A链上Ca原子的RMSD值仅为0.377A。我们同时运用AMBER电荷和dRESP方法拟合的极化电荷对streptavidin突变前后与biotin的复合物进行分子动力学模拟,并借助MM/PBSA方法预测原生态和130氨基酸突变体系的结合自由能。AMBER电荷的计算结果发现biotin与streptavidin之间的亲和力为正值,两者无法自由结合,同时计算的突变引起的能量差与实验值相比也过低。dRESP极化电荷加强了biotin与streptavidin之间的结合能,计算的绝对结合能和原生态与突变态之间的相对能量都与实验值一致。我们的计算证明了Baugh等人的猜测:静电极化效应是引起130号氨基酸突变能量变化的主要原因。
     CYP是一大类单氧酶,涉及到70-80%药物的前期代谢反应,因此对药物-药物相互作用具有重大的影响。CYP2J2是CYP酶家族的一类子族,主要表达在小肠,心血管等肝外器官中,大量研究证明CYP2J2能够催化大部分的药物,是药物前期代谢必不可少的一种酶,也可能会涉及到药物-药物相互作用,但是CYP2J2药物代谢的机理还不明了。分子对接是计算机辅助药物设计的主要手段,结合实验、分子对接、分子动力学模拟等技术,我们从69种已知的药物中筛选到两种CYP2J2有效的抑制剂:telmisartan、flunarizine、telmisartan和flunarizine对CYP2J2的半抑制剂浓度分别为0.42声μM和0.94μM,而对CYP家族其它成员的活性几乎没有影响,同时我们还证明这两种抑制剂不是CYP2J2的底物,是研究CYP2J2药物代谢机理最理想的工具。分子对接和动力学模拟进一步证实了实验的结论,并在原子结构的级别上展示telmisartan是非竞争性抑制剂,flunarizine是竞争性的抑制剂。
Molecular dynamics (MD) simulation is one of the popular tools to study all kinds of properties of biological macromolecules, such as:predicting the binding affinity between proteins and ligands, studying the mechanism of protein folding、the interactions between proteins and membrane、the mechanism of ion channels and the catalytic reactions of enzyme, etc. Then the technology of MD simulations gradually grasp the attention of scientists. The main idea of MD simulation is based on a mathematical model of a molecule as a collection of balls corresponding to the atoms, the springs are used to connect atoms. The movement of molecules is based on the high-dimensional potential energy surface. At present, there are various potential energy functions, such as:AMBER, Charmm, opls and so on. All these potential energy functions are composed of two parts:bonded interactional energy and non-bonded interactional energy. Bonded interactional energy includes:bond stretch, angle bending, dihedral terms, non-bonded interactional energy includes:Electrostatic and Van der waals (VDW) interactions. The different parameters of potential energy contribute to different force fields. Electrostatic interactions is long-range interactional force and play an important role during MD simulations. The fallacious description of hydrogen bond and salt bridge interactions are main due to the incorrect of electrostatic interactions. While there are much results can prove that the hydrogen bond and salt bridge interactions are very important for studying the mechanism of protein folding and interactions between protein and ligand, etc. The molecular mechanics (MM) calculated the electrostatic interactions based on the theory of coulomb and every atom carries point charge centered on the atom. The point charge is fitted the electric potential around molecules. Classic force fields view point charge as an unchanged value which will not affected by surrounding environment. In fact, the biological macromolecules are surrounded by waters. Water molecules are polar molecules that can polarize the macromolecules, the polarized macromolecules also can polarize the water molecules, then cause the redistribution of charge. So we must consider the effect of polarization between macromolecules and solvent.
     Now there are various models can include polarization, such as:Drude oscillator, fluctuating charge model and induced dipoles model. But there are still some inevitable defects:Drude oscillator introduce a fictitious particle connecting with every atom, induced dipoles model costs too much computation times, so the combination between induced dipoles model and MD simulation is not reality, the transformation of force field also is very hard to be reached. Our group completely discard the transformation of force field and develop a method to consider the polarization of environment. With the help of molecular fragmentation with conjugate caps method, we can divide the protein into based-residue fragment, then the electric potential of each fragment is calculated with quantum mechanics and the effect of environment is include as the background charge, at last the protein-specific polarized charge (PPC) is fitted.
     The PPC of buried atoms fitted with RESP method have large fluctuation along with the change of conformations. The large fluctuation will do harm to MD simulations. Inspired by the idea of charge decomposition in calculation of the dipole preserving and polarization consistent charges, we have proposed a numerically stable restrained electrostatic potential (ESP)-based charge fitting method for protein:dRESP. The atomic charge is composed of two parts. The dominant part is fixed to a predefined value (e.g., AMBER, Charmm, OPLS charge), and the residual part is to be determined by restrained fitting to residual ESP on grid points around the molecule. Nonuniform weighting factors as a function of the dominant charge are assigned to the atoms. Because the residual part is several folds to several orders smaller than the dominant part, the impact of ill-conditioning is alleviated. The results testify that the fluctuation can be decreased regardless of the predefined charge, so the method avoid the numerical problems.
     The binding affinity between streptavidin and biotin is-18.1kcal/mol which is the largest binding affinity found in nature. This complex is invaluable for rational drug design. A large number of research results testify that the network of hydrogen bond between streptavidin and biotin (BTN) is main force driving BTN binding to streptavidin. Recently, Baugh et al. discovered that a distal point mutation (F130L) in streptavidin causes no distinct variation to the structure of the binding pocket but a4.2kcal/mol reduction in biotin binding affinity, the RMSD value calculating through superimposing the A subunits of the wild type (WT) and mutant (F1301) structure using Ca atoms of the subunit cores is0.377A. We carry out molecular dynamics simulations with AMBER and polarized dRESP charge, then apply MM/PBSA method to calculate the binding free energies of biotin to WT and F130L. The absolute binding affinities based on AMBER charge are repulsive, and the mutation induced binding loss is underestimated. When using the polarized protein-specific charge, the absolute binding affinities are significantly enhanced. In particular both the absolute and relative binding affinities are in line with the experimental measurements. This work verifies Baugh's conjecture that electrostatic polarization effect plays an essential role in modulating the binding affinity of biotin to the streptavidin through F130L mutation。
     Cytochrome P450(CYP) is a large group of enzymes that catalyze the oxidation of bound substances. It will involve the phase I metabolism of70-80%drug, so may play a key role between drug and drug interaction. CYP2J2mainly expressed in extrahepatic tissues, including intestine and cardiovascular systems is a subfamily of CYP enzyme. There are a lot of researches can proved that CYPJ22can metabolize a wide range of structurally diverse drugs and play an indispensable role in first-pass metabolism and drug-drug interactions, but the general role of CYP2J2in drug metabolism is not yet fully understood. Molecular docking is main tools for computer-aided drug design, we apply the technology of experiment、molecular docking and MD simulations to screened69know marketed drugs for inhibition of CYP2J2. We discovered two drugs as potent and selective CYP2J2inhibitors:telmisartan and flunarizine. They have CYP2J2inhibition IC50values of0.42mM and0.94mM, respectively, which are at least10-fold more selective against all other major metabolizing CYPs; moreover, they are not substrates of CYP2J2. So telmisartan and flunarizine are ideal tools for study the metabolic mechanism of CYP2J2. Molecular docking and MD simulation consolidate the results of experiments. The detailed structures information of conformations unveil that telmisartan is non-competitive inhibitor, while flunarizine compete with substrate for same binding site.
引文
1. Durrant, J. and J. McCammon, Molecular dynamics simulations and drug discovery. BMC Biology,2011.9(1):p.1-9.
    2. Emil, F., Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der deutschen chemischen Gesellschaft,1894.27(3):p.2985-2993.
    3. Cornell, W.D., et al., A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. Journal of the American Chemical Society,1995.117(19):p.5179-5197.
    4. Wang, J., et al., Development and testing of a general amber force field. Journal of Computational Chemistry,2004.25(9):p.1157-1174.
    5. Brooks, B.R., et al., CHARMM:A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry,1983.4(2):p.187-217.
    6. Christen, M., et al., The GROMOS software for biomolecular simulation: GROMOS05. Journal of Computational Chemistry,2005.26(16):p.1719-1751.
    7. Schames, J.R., et al., Discovery of a Novel Binding Trench in HIV Integrase. Journal of Medicinal Chemistry,2004.47(8):p.1879-1881.
    8. Hazuda, D.J., et al., A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proceedings of the National Academy of Sciences of the United States of America,2004.101(31):p.11233-11238.
    9. Brenke, R., et al., Fragment-based identification of druggable'hot spots'of proteins using Fourier domain correlation techniques. Bioinformatics,2009. 25(5):p.621-627.
    10. Ivetac, A. and J. Andrew McCammon, Mapping the Druggable Allosteric Space of G-Protein Coupled Receptors:a Fragment-Based Molecular Dynamics Approach. Chemical Biology& Drug Design,2010.76(3):p.201-217.
    11. Amaro, R., R. Baron, and J. McCammon, An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput Aided Mol Des,2008.22:p.693-705.
    12. Lin, J., et al., Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc,2002.124:p.5632-5633.
    13. Amaro, R., et al., Discovery of drug-like inhibitors of an essential RNA-editing ligase in Trypanosoma brucei. Proc Natl Acad Sci USA,2008.105:p. 17278-17283.
    14. Durrant, J., et al., Novel naphthalene-based inhibitors of Trypanosoma brucei RNA editing ligase 1. PLoS Negl Trop Dis,2010.4:p. e803.
    15. Wang, Y., et al., Novel inhibitors of Mycobacterium tuberculosis dTDP-6- deoxy-L-lyxo-4-hexulose reductase (RmlD) identified by virtual screening. Bioorg Med Chem Lett,2011.
    16. Chodera, J., et al., Alchemical free energy methods for drug discovery: progress and challenges. Curr Opin Struct Biol,2011.21:p.150-160.
    17. Kirkwood, J.G., Statistical Mechanics of Fluid Mixtures. The Journal of Chemical Physics,1935.3(5):p.300-313.
    18. Zwanzig, R. W., High-Temperature Equation of State by a Perturbation Method. II. Polar Gases. The Journal of Chemical Physics,1955.23(10):p. 1915-1922.
    19. Aqvist, J., C. Medina, and J.-E. Samuelsson, A new method for predicting binding affinity in computer-aided drug design. Protein Engineering,1994. 7(3):p.385-391.
    20. Srinivasan, J., et al., Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate-DNA Helices. Journal of the American Chemical Society,1998.120(37):p.9401-9409.
    21. Tembe, B. and J. Mccammon, Ligand receptor interactions. Comput Chem, 1984.8:p.281-283.
    1. Levitt, M., The birth ofcomputational structural biology. Nature structural & molecular biology,2001.8(5):p.392-393.
    2. Cornell, W.D., et al., A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. Journal of the American Chemical Society,1995.117(19):p.5179-5197.
    3. MacKerell, A.D., et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins f. The Journal of Physical Chemistry B, 1998.102(18):p.3586-3616.
    4. Jorgensen, W.L., D.S. Maxwell, and J. Tirado-Rives, Development and Testing of the OP LS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. Journal of the American Chemical Society, 1996.118(45):p.11225-11236.
    5. Oostenbrink, C, et al., A biomolecular force field based on the free enthalpy of hydration and solvation:The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry,2004.25(13):p.1656-1676.
    6. Kitson, D.H. and A.T. Hagler, Theoretical studies of the structure and molecular dynamics of apeptide crystal. Biochemistry,1988.27(14):p.5246-5257.
    7. Nemethy, G., M.S. Pottle, and H.A. Scheraga, Energy parameters in polypeptides.9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids. The Journal of Physical Chemistry,1983.87(11):p.1883-1887.
    8. Nemethy, G., et al., Energy parameters in polypeptides.10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application toproline-containing peptides. The Journal of Physical Chemistry,1992.96(15):p.6472-6484.
    9. Levitt, M., Molecular dynamics of native protein:I. Computer simulation of trajectories. Journal of Molecular Biology,1983.168(3):p.595-617.
    10. Levitt, M., et al., Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Computer Physics Communications,1995.91(1-3):p.215-231.
    11. Allinger, N.L., K. Chen, and J.-H. Lii, An improved force field (MM4) for saturated hydrocarbons. Journal of Computational Chemistry,1996.17(5-6): p.642-668.
    12. Nevins, N., K. Chen, and N.L. Allinger, Molecular mechanics (MM4) calculations on alkenes. Journal of Computational Chemistry,1996.17(5-6): p.669-694.
    13. Nevins, N., J.-H. Lii, and N.L. Allinger, Molecular mechanics (MM4) calculations on conjugated hydrocarbons. Journal of Computational Chemistry,1996.17(5-6):p.695-729.
    14. Nevins, N. and N.L. Allinger, Molecular mechanics (MM4) vibrational frequency calculations for alkenes and conjugated hydrocarbons. Journal of Computational Chemistry,1996.17(5-6):p.730-746.
    15. Allinger, N.L., et al., Hyperconjugative effects on carbon-Carbon bond lengths in molecular mechanics (MM4). Journal of Computational Chemistry, 1996.17(5-6):p.747-755.
    16. Langley, C.H. and N.L. Allinger, Molecular Mechanics (MM4) Calculations on Amides. The Journal of Physical Chemistry A,2002.106(23):p.5638-5652.
    17. Halgren, T.A., Merck molecular force field. Ⅰ. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry,1996.17(5-6):p.490-519.
    18. Halgren, T.A., Merck molecular force field. Ⅱ. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. Journal of Computational Chemistry,1996.17(5-6):p.520-552.
    19. Halgren, T.A., Merck molecular force field. Ⅲ. Molecular geometries and vibrational frequencies for MMFF94. Journal of Computational Chemistry, 1996.17(5-6):p.553-586.
    20. Halgren, T.A. and R.B. Nachbar, Merck molecular force field. IV. conformational energies and geometries for MMFF94. Journal of Computational Chemistry,1996.17(5-6):p.587-615.
    21. Halgren, T.A., Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. Journal of Computational Chemistry,1996.17(5-6):p.616-641.
    22. Halgren, T.A., MMFF Ⅵ. MMFF94s option for energy minimization studies. Journal of Computational Chemistry,1999.20(7):p.720-729.
    23. Halgren, T.A., MMFF Ⅶ. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. Journal of Computational Chemistry,1999.20(7):p.730-748.
    24. Rappe, A.K., et al., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society,1992.114(25):p.10024-10035.
    25. Lopes, P.E.M., et al., Polarizable Force Field for Peptides and Proteins Based on the Classical Drude Oscillator. Journal of Chemical Theory and Computation,2013.9(12):p.5430-5449.
    26. Lamoureux, G. and B.t. Roux, Modeling induced polarization with classical Drude oscillators:Theory and molecular dynamics simulation algorithm. The Journal of Chemical Physics,2003.119(6):p.3025-3039.
    27. Lamoureux, G., A.D. MacKerell, and B.t. Roux, A simple polarizable model of water based on classical Drude oscillators. The Journal of Chemical Physics, 2003.119(10):p.5185-5197.
    28. Brodersen, S., et al., A study of different approaches to the electrostatic interaction in force field methods for organic crystals. Physical Chemistry Chemical Physics,2003.5(21):p.4923-4931.
    29. Stone, A.J. and M. Alderton, Distributed multipole analysis. Molecular Physics,1985.56(5):p.1047-1064.
    30. Williams, D.E., Representation of the molecular electrostatic potential by atomic multipole and bond dipole models. Journal of Computational Chemistry,1988.9(7):p.745-763.
    31. Krishnan, M., A. Verrna, and S. Balasubrarnanian, Computer simulation study of water using a fluctuating charge model. Journal of Chemical Sciences, 2001.113(5-6):p.579-590.
    32. Weiner, S.J., et al., A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society,1984. 106(3):p.765-784.
    33. Weiner, S.J., et al., An all atom force field for simulations of proteins and nucleic acids. Journal of Computational Chemistry,1986.7(2):p.230-252.
    34. Wang, J., P. Cieplak, and P.A. Kollman, How well does a restrained electrostatic potential (RESP) model perform in calculating conformalional energies of organic and biological molecules? Journal of Computational Chemistry,2000.21(12):p.1049-1074.
    35. Cieplak, P., J. Caldwell, and P. Kollman, Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation:aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases. Journal of Computational Chemistry,2001.22(10):p.1048-1057.
    36. Hornak, V, et al., Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins:Structure, Function, and Bioinformatics,2006.65(3):p.712-725.
    37. Duan, Y, et al., A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry,2003.24(16):p.1999-2012.
    38. Lindorff-Larsen, K., et al., Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins:Structure, Function, and Bioinformatics,2010.78(8):p.1950-1958.
    39. Li, D.-W. and R. Bruschweiler, NMR-Based Protein Potentials. Angewandte Chemie,2010.122(38):p.6930-6932.
    40. Jorgensen, W.L., et al., Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics,1983.79(2):p.926-935.
    41. Jorgensen, W.L. and J.D. Madura, Temperature and size dependence for Monte Carlo simulations of TIP 4P water. Molecular Physics,1985.56(6):p.1381-1392.
    42. Mahoney, M.W. and W.L. Jorgensen, A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. The Journal of Chemical Physics,2000.112(20):p.8910-8922.
    43. Caldwell, J.W. and P.. Kollman, Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics:Water, Methanol, and N-Methylacetamide. The Journal of Physical Chemistry,1995.99(16):p.6208-6219.
    44. Berendsen, H.J.C., J.R. Grigera, and T.P. Straatsma, The missing term in effective pair potentials. The Journal of Physieal Chemistry,1987.91(24):p. 6269-6271.
    45. Cramer, C.J. and D.G. Truhlar, Implicit Solv at ion Models:Equilibria, Structure, Spectra, and Dynamics. Chemical Reviews,1999.99(8):p.2161-2200.
    46. Gilson, M.K., Theory of electrostatic interactions in macromolecules. Current Opinion in Structural Biology,1995.5(2):p.216-223.
    47. Scarsi, M., J. Apostolakis, and A. Caflisch, Continuum Electrostatic Energies of Macromolecules in Aqueous Solutions. The Journal of Physieal Chemistry A,1997.101(43):p.8098-8106.
    48. Mobley, D.L., et al., Charge Asymmetries in Hydration of Polar Solutes. The Journal of Physical Chemistry B,2008.112(8):p.2405-2414.
    49. Grochowski, P. and J. Trylska, Continuum molecular electrostatics, salt effects, and counterion binding-Areview of the Poisson-Boltzmann theory and its modifications. Biopolymers,2008.89(2):p.93-113.
    50. Baker, N.A., et al., Electrostatics of nanosystems:Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences,2001. 98(18):p.10037-10041.
    51. Rocchia, W., E. Alexov, and B. Honig, Extending the Applicability of the Nonlinear Poisson-Boltzmann Equation:Multiple Dielectric Constants and Multivalent Ionsf. The Journal of Physical Chemistry B,2001.105(28):p. 6507-6514.
    52. Nicholls, A. and B. Honig, A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann equation. Journal of Computational Chemistry,1991.12(4):p.435-445.
    53. Dominy, B.N. and C.L. Brooks, Development of a Generalized Born Model Parametrization for Proteins and Nucleic Acids. The Journal of Physical Chemistry B,1999.103(18):p.3765-3773.
    54. Bashford, D. and D.A. Case, GENERALIZED BORN MODELS OF MACROMOLECULAR SOLVATION EFFECTS. Annual Review of Physical Chemistry,2000.51(1):p.129-152.
    55. Calimet, N.,M. Schaefer, and T. Simonson, Protein molecular dynamics with the generalized born/ACE solvent model. Proteins:Structure, Function, and Bioinformatics,2001.45(2):p.144-158.
    56. Tsui, V. and D.A. Case, Molecular Dynamics Simulations of Nucleic Acids with a Generalized Born Solvation Model. Journal of the American Chemical Society,2000.122(11):p.2489-2498.
    57. Wang,T. and RC.Wade,Implicit solvent models for flexible protein-proteindocking by molecular dynamics simulation. Proteins:Structure,Function,andBioinformatics,2003.50(1):p.158-169.
    58.Gallicchio,E. and R.M.Levy,AGBNP:An analytic implicit solvent modelsuitable for mole cular dynamics simulations and high-resolution modeling.Journal of Computational Chemistry,2004.25(4):p.479-499.
    59. Fenley,A.T.,J.C.Gordon,and A.Onufriev,An analytical approach tocomputing biomolecular electrostatic potential.I.Derivation and analysis.The Journal of Chemical Physics,2008.129(7):p.-.
    60. Sigalov G.,P Scheffel,and A.Onufriev,Incoporating variable dielectricenvironments into the generalized Born model. The Journal of ChemicalPhysics,2005.122(9):p.-.
    61. Grycuk,T.,Deficiency of the Coulomb-field approximation in the generalizedBorn model:An improved formula for Born radii evaluation.The Journal ofChemical Physics,2003.119(9):p.4817-4826.
    1. Dwyer, R., A faster divide-and-conquer algorithm for constructing delaunay triangulations. Algorithmica,1987.2(1-4):p.137-151.
    2. Fedorov, D.G. and K. Kitaura, The importance of three-body terms in the fragment molecular orbital method. The Journal of Chemical Physics,2004. 120(15):p.6832-6840.
    3. Kitaura, K., et aL, Fragment molecular orbital method:an approximate computational method for large molecules. Chemical Physics Letters,1999. 313(3-4):p.701-706.
    4. Nakano, T., et aL, Fragment molecular orbital method:application to polypeptides. Chemical Physics Letters,2000.318(6):p.614-618.
    5. Kitaura, K., et aL, Fragment molecular orbital method:analytical energy gradients. Chemical Physics Letters,2001.336(1-2):p.163-170.
    6. Nakano, T., et aL, Fragment molecular orbital method:use of approximate electrostatic potential. Chemical Physics Letters,2002.351(5-6):p.475-480.
    7. Zhang, D.W. and J.Z.H. Zhang, Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy. The Journal of Chemical Physics,2003.119(7):p.3599-3605.
    8. Jiang, N., J. Ma, and Y. Jiang, Electrostatic field-adapted molecular fractionation with conjugated caps for energy calculations of charged biomolecules. The Journal of Chemical Physics,2006.124(11):p.
    9. He, X. and J.Z.H. Zhang, The generalized molecular fractionation with conjugate caps/molecular mechanics method for direct calculation of protein energy. The Journal of Chemical Physics,2006.124(18):p.
    10. Zhang, D.W., X.H. Chen, and J.Z.H. Zhang, Molecular caps for full quantum mechanical computation of peptide-water interaction energy. Journal of Computational Chemistry,2003.24(15):p.1846-1852.
    11. Chen, X.H. and J.Z.H. Zhang, Molecular fractionation with conjugated caps density matrix with pairwise interaction correction for protein energy calculation. The Journal of Chemical Physics,2006.125(4):p.
    12. Gao, A.M., et al., An efficient linear scaling method for ab initio calculation of electron density of proteins. Chemical Physics Letters,2004.394(4-6):p.293-297.
    13. Mei, Y, D.W. Zhang, and J.Z.H. Zhang, New Method for Direct Linear-Scaling Calculation of Electron Density of Proteins. The Journal of Physical Chemistry A,2004.109(1):p.2-5.
    14. Chen, X., Y Zhang, and J.Z.H. Zhang, An efficient approach for ab initio energy calculation of biopolymers. The Journal of Chemical Physics,2005.122(18):p.
    15. He, X. and J.Z.H. Zhang, A new method for direct calculation of total energy of protein. The Journal of Chemical Physics,2005.122(3):p.
    16. Zhang, D.W., et al., Quantum mechanical map for protein-ligand binding with application to β-trypsin/benzamidine complex. The Journal of Chemical Physics, 2004.120(3):p.1145-1148.
    17. Zhang, D.W., Y. Xiang, and J.Z.H. Zhang, New Advance in Computational Chemistry:Full Quantum Mechanical ab Initio Computation of Streptavidin-Biotin Interaction Energy. The Journal of Physical Chemistry B, 2003.107(44):p.12039-12041.
    18. Zhang, D.W. and J.Z.H. Zhang, Full quantum mechanical study of binding of HIV-1 protease drugs. International Journal of Quantum Chemistry,2005. 103(3):p.246-257.
    19. He, X., et al., Quantum computational analysis for drug resistance of HIV-1 reverse transcriptase to nevirapine through point mutations. Proteins:Structure, Function, and Bioinformatics,2005.61(2):p.423-432.
    20. Mei, Y, et al., Quantum study of mutational effect in binding of efavirenz to HW-1 RT. Proteins:Structure, Function, and Bioinformatics,2005.59(3):p. 489-495.
    21. Chen, X.H. and J.Z.H. Zhang, Theoretical method for full ab initio calculation of DNA/RNA-ligand interaction energy. The Journal of Chemical Physics,2004. 120(24):p.11386-11391.
    22. Duan, L.L., et al., Quantum study of HIV-1 protease-bridge water interaction. The Journal of Chemical Physics,2007.127(14):p.
    23. ZHANG, J.Z.H. and X.H. CHEN, MFCC-DOWNHILL SIMPLEX METHOD FOR MOLECULAR STRUCTURE OPTIMIZATION. Journal of Theoretical and Computational Chemistry,2004.03(03):p.277-289.
    24. Xiang, Y, D.W. Zhang, and J.Z.H. Zhang, Fully quantum mechanical energy optimization for protein-ligand structure. Journal of Computational Chemistry, 2004.25(12):p.1431-1437.
    25. Rappe, A.K. and W.A. Goddard, Charge equilibration for molecular dynamics simulations. The Journal of Physical Chemistry,1991.95(8):p.3358-3363.
    26. Mulliken, R.S., Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. The Journal of Chemical Physics,1955.23(10):p.1833-1840.
    27. Mulliken, R.S., Criteria for the Construction of Good Self-Consistent-Field Molecular Orbital Wave Functions, and the Significance of LCAO-MO Population Analysis. The Journal of Chemical Physics,1962.36(12):p.3428-3439.
    28. Foster, J.P. and F. Weinhold, Natural hybrid orbitals. Journal of the American Chemical Society,1980.102(24):p.7211-7218.
    29. Reed, A.E., R.B. Weinstock, and F. Weinhold, Natural population analysis. The Journal of Chemical Physics,1985.83(2):p.735-746.
    30. Reed, A.E. and F. Weinhold, Natural bond orbital analysis of near-Hartree-Fock water dimer. The Journal of Chemical Physics,1983.78(6):p.4066-4073.
    31. Reed, A.E. and F. Weinhold, Natural localized molecular orbitals. The Journal of Chemical Physics,1985.83(4):p.1736-1740.
    32. Baker, J., Classical chemical concepts from ab initio SCF calculations. Theoretica chimica acta,1985.68(3):p.221-229.
    33. Hirshfeld, F.L., Bonded-atom fragments for describing molecular charge densities. Theoretica chimica acta,1977.44(2):p.129-138.
    34. Bultinck, P., et al., Critical analysis and extension of the Hirshfeld atoms in molecules. The Journal of Chemical Physics,2007.126(14):p.
    35. Bayly, C.I., et al., A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges:the RESP model. The Journal of Physical Chemistry,1993.97(40):p.10269-10280.
    36. Momany, F.A., Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid. The Journal of Physical Chemistry,1978.82(5):p.592-601.
    37. Cox, S.R. and D.E. Williams, Representation of the molecular electrostatic potential by a net atomic charge model. Journal of Computational Chemistry, 1981.2(3):p.304-323.
    38. Stouch, T.R. and D.E. Williams, Conformational dependence of electrostatic potential-derived charges:Studies of the fitting procedure. Journal of Computational Chemistry,1993.14(7):p.858-866.
    39. Stouch, T.R. and D.E. Williams, Conformational dependence of electrostatic potential derived charges of a lipid headgroup:Glycerylphosphorylcholine. Journal of Computational Chemistry,1992.13(5):p.622-632.
    40. ZHANG, J.Z.H. and Y. MEI, NUMERICAL STABILITIES IN FITTING ATOMIC CHARGES TO ELECTRIC FIELD AND ELECTROSTATIC POTENTIAL. Journal of Theoretical and Computational Chemistry,2009. 08(05):p.925-942.
    41. Reynolds, C.A., J.W. Essex, and W.G. Richards, Atomic charges for variable molecular conformations. Journal of the American Chemical Society,1992. 114(23):p.9075-9079.
    42. Lopes, P.E.M., et al., Polarizable Force Field for Peptides and Proteins Based on the Classical Drude Oscillator. Journal of Chemical Theory and Computation,2013.9(12):p.5430-5449.
    43. Lamoureux, G. and B.t. Roux, Modeling induced polarization with classical Drude oscillators:Theory and molecular dynamics simulation algorithm. The Journal of Chemical Physics,2003.119(6):p.3025-3039.
    44. Lamoureux, G., A.D. MacKerell, and B.t. Roux, A simple polarizable model of water based on classical Drude oscillators. The Journal of Chemical Physics, 2003.119(10):p.5185-5197.
    45. Krishnan, M., A. Verma, and S. Balasubramanian, Computer simulation study of water using a fluctuating charge model. Journal of Chemical Sciences,2001. 113(5-6):p.579-590.
    46. Nymand, T.M. and P. Linse, Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities. The Journal of Chemical Physics,2000.112(14):p.6152-6160.
    47. Lee, F.S. and A. Warshel, A local reaction field method for fast evaluation of long-range electrostatic interactions in molecular simulations. The Journal of Chemical Physics,1992.97(5):p.3100-3107.
    48. Ji, C., Y. Mei, and J.Z.H. Zhang, Developing Polarized Protein-Specific Charges for Protein Dynamics:MD Free Energy Calculation of pKa Shifts for Asp26/Asp20 in Thioredoxin. Biophysical Journal,2008.95(3):p.1080-1088.
    49. Duan, L.L., et al., Folding of a Helix Is Critically Stabilized by Polarization of Backbone Hydrogen Bonds:Study in Explicit Water. The Journal of Physical Chemistry B,2012.116(10):p.3430-3435.
    50. Zeng, J., et al., The F130L mutation in streptavidin reduces its binding affinity to biotin through electronic polarization effect. Journal of Computational Chemistry,2013.34(31):p.2677-2686.
    51. Ji, C.G. and J.Z.H. Zhang, Effect of interprotein polarization on protein-protein binding energy. Journal of Computational Chemistry,2012.33(16):p.1416-1420.
    52. Ji, C.G. and J.Z.H. Zhang, Protein Polarization Is Critical to Stabilizing AF-2 and Helix-2'Domains in Ligand Binding to PPAR-y. Journal of the American Chemical Society,2008.130(50):p.17129-17133.
    53. Ji, C.G. and J.Z.H. Zhang, Understanding the Molecular Mechanism of Enzyme Dynamics of Ribonuclease A through Protonation/Deprotonation of HIS48. Journal of the American Chemical Society,2011.133(44):p.17727-11737.
    54. Yao, X.X., et al., Molecular dynamics study of DNA binding by INT-DBD under a polarized force field. Journal of Computational Chemistry,2013.34(13):p. 1136-1142.
    55. Donald, J.E., D.W. Kulp, and W.F. DeGrado, Salt bridges:Geometrically specific, designable interactions. Proteins:Structure, Function, and Bioinformatics,2011.79(3):p.898-915.
    56. Barril, X., et al., Salt bridge interactions:Stability of the ionic and neutral complexes in the gas phase, in solution, and in proteins. Proteins:Structure, Function, and Bioinformatics,1998.32(1):p.67-79.
    57. Muegge, I., T. Schweins, and A. Warshel, Electrostatic contributions to protein-protein binding affinities:Application to Rap/Raf interaction. Proteins: Structure, Function, and Bioinformatics,1998.30(4):p.407-423.
    58. Urakubo, Y, T. Ikura, and N. Ito, Crystal structural analysis of protein-protein interactions drastically destabilized by a single mutation. Protein Science,2008. 17(6):p.1055-1065.
    1. Homer, L.D., The receptor occupation theory of drug responses. Journal of Theoretical Biology,1967.17(3):p.399-409.
    2. Silke, B., et al., Is the intrinsic sympathomimetic activity (ISA) of beta-blocking compounds relevant in acute myocardial infarction? European Journal of Clinical Pharmacology,1984.27(5):p.509-515.
    3. Man In'T Veld, A.J. and M.A.D.H. Schalekamp, Haemodynamic consequences of intrinsic sympathomimetic activity and cardioselectivity in beta-blocker therapy for hypertension. European Heart Journal,1983.4(suppl D):p.31-41.
    4. Raeder, E.A., R.L. Verrier, and B. Lown, Intrinsic sympathomimetic activity and the effects of beta-adrenergic blocking drugs on vulnerability to ventricular fibrillation. Journal of the American College of Cardiology,1983. 1(6):p.1442-1446.
    5. Leff, P., The two-state model of receptor activation. Trends in Pharmacological Sciences,1995.16(3):p.89-97.
    6. Nall, B.T., J.-R. Garel, and R.L. Baldwin, Test of the extended two-state model for the kinetic intermediates observed in the folding transition of ribonuclease A. Journal of Molecular Biology,1978.118(3):p.317-330.
    7. Lee, B. and G. Graziano, A Two-State Model of Hydrophobic Hydration That Produces Compensating Enthalpy and Entropy Changes. Journal of the American Chemical Society,1996.118(22):p.5163-5168.
    8. Koshland, D.E., The Key-Lock Theory and the Induced Fit Theory. Angewandte Chemie International Edition in English,1995.33(23-24):p. 2375-2378.
    9. Shapiro, A.M. and A.H. Porter, The Lock-and-Key Hypothesis:Evolutionary and Biosystematic Interpretation of Insect Genitalia. Annual Review of Entomology,1989.34(1):p.231-245.
    10. Bender, M.L., et al., A Pictorial Description of the "Lock and Key" Theory I. Journal of the American Chemical Society,1966.88(10):p.2318-2319.
    11. Thoma, J. A. and D.E. Koshland, Competitive Inhibition by Substrate during Enzyme Action. Evidence for the Induced-fit Theory 1,2. Journal of the American Chemical Society,1960.82(13):p.3329-3333.
    12. Pape, T, W. Wintermeyer, and M. Rodnina, Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. The EMBO Journal,1999. 18(13):p.3800-3807.
    13. Wang, C.-X., et al., Progress in the Scoring Functions of Protein-Protein Docking. Acta Physico-Chimica Sinica,2012.28(4):p.751-758.
    14. Muegge, I. and Y.C. Martin, A General and Fast Scoring Function for Protein-Ligand Interactions:A Simplified Potential Approach. Journal of Medicinal Chemistry,1999.42(5):p.791-804.
    15. Gohlke, H. and G. Klebe, Statistical potentials and scoring functions applied to protein-ligand binding. Current Opinion in Structural Biology,2001.11(2): p.231-235.
    16. Leach, A.R., B.K. Shoichet, and C.E. Peishoff, Prediction of Protein-Ligand Interactions. Docking and Scoring:Successes and Gaps. Journal of Medicinal Chemistry,2006.49(20):p.5851-5855.
    17. Kirkwood, J.G., Statistical Mechanics of Fluid Mixtures. The Journal of Chemical Physics,1935.3(5):p.300-313.
    18. Zwanzig, R.W., High-Temperature Equation of State by a Perturbation Method. II. Polar Gases. The Journal of Chemical Physics,1955.23(10):p. 1915-1922.
    19. Aqvist, J., C. Medina, and J.-E. Samuelsson, A new method for predicting binding affinity in computer-aided drug design. Protein Engineering,1994. 7(3):p.385-391.
    20. Srinivasan, J., et al., Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate—DNA Helices. Journal of the American Chemical Society,1998.120(37):p.9401-9409.
    21. Beveridge, D.L. and F.M. DiCapua, Free Energy Via Molecular Simulation: Applications to Chemical and Biomolecular Systems. Annual Review of Biophysics and Biophysical Chemistry,1989.18(1):p.431-492.
    22. Straatsma, T.P. and J.A. McCammon, Computational Alchemy. Annual Review of Physical Chemistry,1992.43(1):p.407-435.
    23. Kollman, P., Free energy calculations:Applications to chemical and biochemical phenomena. Chemical Reviews,1993.93(7):p.2395-2417.
    24. Lamb, M.L. and W.L. Jorgensen, Computational approaches to molecular recognition. Current Opinion in Chemical Biology,1997.1(4):p.449-457.
    25. Zwanzig, R.W., High-Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases. The Journal of Chemical Physics,1954.22(8):p. 1420-1426.
    26. Mitchell, M.J. and J.A. McCammon, Free energy difference calculations by thermodynamic integration:Difficulties in obtaining a precise value. Journal of Computational Chemistry,1991.12(2):p.271-275.
    27. Jorge, M., et aL, Effect of the Integration Method on the Accuracy and Computational Efficiency of Free Energy Calculations Using Thermodynamic Integration. Journal of Chemical Theory and Computation,2010.6(4):p. 1018-1027.
    28. Resat, H. and M. Mezei, Studies on free energy calculations. I. Thermodynamic integration using a polynomial path. The Journal of Chemical Physics,1993.99(8):p.6052-6061.
    29. Eerden, J.v., et al., Potential of mean force by thermodynamic integration: molecular-dynamics simulation of decomplexation. Chemical Physics Letters, 1989.164(4):p.370-376.
    30. Aaqvist, J., Comment on " Transferabilily of Ion Models". The Journal of Physical Chemistry,1994.98(33):p.8253-8255.
    31. Aqvist, J. and J. Marelius, The Linear Interaction Energy Method for Predicting Ligand Binding Free Energies. Combinatorial Chemistry & High Throughput Screening,2001.4(8):p.613-626.
    32. Gutierrez-de-Teran, H. and J. Aqvist, Linear Interaction Energy:Method and Applications in Drug Design, in Computational Drug Discovery and Design, R. Baron, Editor.2012, Springer New York. p.305-323.
    33. Aqvist, J. and T. Hansson, On the Validity of Electrostatic Linear Response in Polar Solvents. The Journal of Physical Chemistry,1996.100(22):p.9512-9521.
    34. Hansson, T, J. Marelius, and J. Aqvist, Ligand binding affinity prediction by linear interaction energy methods. Journal of Computer-Aided Molecular Design,1998.12(1):p.27-35.
    35. Ljungberg, K.B., et al., Computational modelling of inhibitor binding to human thrombin. European Journal of Pharmaceutical Sciences,2001.12(4): p.441-446.
    36. Weis, A., et al., Ligand Affinities Predicted with the MM/PBSA Method: Dependence on the Simulation Method and the Force Field. Journal of Medicinal Chemistry,2006.49(22):p.6596-6606.
    37. Hou, T, et al., Assessing the Performance of the MM/PBSA and MM/GBSA Methods.1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations. Journal of Chemical Information and Modeling,2010.51(1):p.69-82.
    38. Kuhn, B. and P.A. Kollman, Binding of a Diverse Set ofLigands to Avidin and Streptavidin: An Accurate Quantitative Prediction of Their Relative Affinities by a Combination of Molecular Mechanics and Continuum Solvent Models. Journal of Medicinal Chemistry,2000.43(20):p.3786-3791.
    39. DeChancie, J. and K.N. Houk, The Origins of Femtomolar Protein-Ligand Binding:Hydrogen-Bond Cooperativity and Desolvation Energetics in the Biotin-(Strept)Avidin Binding Site. Journal of the American Chemical Society, 2007.129(17):p.5419-5429.
    40. Kuhn, B. and P.A. Kollman, A Ligand That Is Predicted to Bind Better to Avidin than Bio tin:Insights from Computational Fluorine Scanning. Journal of the American Chemical Society,2000.122(16):p.3909-3916.
    41. Klumb, L.A., V. Chu, and P.S. Stayton, Energetic Roles of Hydrogen Bonds at the Ureido Oxygen Binding Pocket in the Streptavidin-Biotin Complex (?). Biochemistry,1998.37(21):p.7657-7663.
    42. Hyre, D.E., et al., Ser45 plays an important role in managing both the equilibrium and transition state energetics of the streptavidin—biotin system. Protein Science,2000.9(5):p.878-885.
    43. Freitag, S., et aL, A structural snapshot of an intermediate on the streptavidin-biotin dissociation pathway. Proceedings of the National Academy of Sciences,1999.96(15):p.8384-8389.
    44. Hyre, D.E., et al., Cooperative hydrogen bond interactions in the streptavidin- biotin system. Protein Science,2006.15(3):p.459-467.
    45. Baugh, L., et al., A Distal Point Mutation in the Streptavidin-Biotin Complex Preserves Structure but Diminishes Binding Affinity:Experimental Evidence of Electronic Polarization Effects? Biochemistry,2010.49(22):p.4568-4570.
    46. Ryckaert, J.-P., G. Ciccotti, and H.J.C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes. Journal of Computational Physics,1977.23(3):p.327-341.
    1. Guengerich, F.P., Cytochrome P450 and Chemical Toxicology. Chemical Research in Toxicology,2007.21(1):p.70-83.
    2. Ingehnan-Sundberg, M., Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn-Schmiedeberg's Archives of Pharmacology,2004.369(1):p.89-104.
    3. Bertz, R. and G.R. Granneman, Use of In Vitro and In Vivo Data to Estimate the Likelihood of Metabolic Pharmacokinetic Interactions. Clinical Pharmacokinetics,1997.32(3):p.210-258.
    4. Evans, W.E. and M.V. Relling, Pharmacogenomics:Translating Functional Genomics into Rational Therapeutics. Science,1999.286(5439):p.487-491.
    5. Matsumoto, S., et al, Involvement of CYP2J2 on the Intestinal First-Pass Metabolism of Antihistamine Drug, Astemizole. Drug Metabolism and Disposition,2002.30(11):p.1240-1245.
    6. Matsumoto, S. and Y. Yamazoe, Involvement of multiple human cytochromes P450 in the liver microsomal metabolism of astemizole and a comparison with terfenadine. British Journal of Clinical Pharmacology,2001.51(2):p.133-142.
    7. Liu, K.-H., et al., Characterization of Ebastine, Hydroxyebastine, and Carebastine Metabolism by Human Liver Microsomes and Expressed Cytochrome P450 Enzymes:Major Roles for CYP2J2 and CYP3A. Drug Metabolism and Disposition,2006.34(11):p.1793-1797.
    8. Lee, C.A., et al., Identifying a Selective Substrate and Inhibitor Pair for the Evaluation of CYP2J2 Activity. Drug Metabolism and Disposition,2012.40(5): p.943-951.
    9. Hashizume, T., et al., Involvement of CYP2J2 and CYP4F12 in the Metabolism of Ebastine in Human Intestinal Microsomes. Journal of Pharmacology and Experimental Therapeutics,2002.300(1):p.298-304.
    10. Lee, C.A., et al., Identification of Novel Substrates for Human Cytochrome P450 2J2. Drug Metabolism and Disposition,2010.38(2):p.347-356.
    11. Taylor, R.D., P.J. Jewsbury, and J.W. Essex, A review of protein-small molecule docking methods. Journal of Computer-Aided Molecular Design,2002.16(3): p.151-166.
    12. Kuntz, I.D., et al., A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology,1982.161(2):p.269-288.
    13. Shoichet, B.K. and I.D. Kuntz, Predicting the structure of protein complexes:a step in the right direction. Chemistry & Biology,1996.3(3):p.151-156.
    14. Bohm, H.-J., The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. Journal of Computer-Aided Molecular Design,1994. 8(3):p.243-256.
    15. Trott, O. and A.J. Olson, AutoDock Vina:Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry,2010.31(2):p.455-461.
    16. Ewing, T.A., et al., DOCK 4.0:Search strategies for automated molecular docking of flexible molecule databases. Journal of Computer-Aided Molecular Design,2001.15(5):p.411-428.
    17. Katchalski-Katzir, E., et al., Molecular surface recognition:determination of geometric fit between proteins and their ligands by correlation techniques. Proceedings of the National Academy of Sciences,1992.89(6):p.2195-2199.
    18. Ritchie, D.W. and G.J.L. Kemp, Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces. Journal of Computational Chemistry,1999.20(4):p.383-395.
    19. Zavodszky, M.I., et al., Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening. J Comput Aided Mol Des,2002.16(12):p.883-902.
    20. Rarey, M., et al., A Fast Flexible Docking Method using an Incremental Construction Algorithm. Journal of Molecular Biology,1996.261(3):p.470-489.
    21. Friesner, R.A., et al., Glide:a new approach for rapid, accurate docking and scoring.1. Method and assessment of docking accuracy. J Med Chem,2004. 47(7):p.1739-49.
    22. Verdonk, M.L., et al., Improved protein-ligand docking using GOLD. Proteins, 2003.52(4):p.609-23.
    23. Neves, M.A., M. Totrov, and R. Abagyan, Docking and scoring with ICM:the benchmarking results and strategies for improvement. J Comput Aided MolDes, 2012.26(6):p.675-86.
    24. Molegro, A., MVD 5.0 Molegro Virtual Docker. DK-8000 Aarhus C, Denmark, 2011.
    25. McMartin, C. and R. Bohacek, QXP:Powerful, rapid computer algorithms for structure-based drug design. Journal of Computer-Aided Molecular Design, 1997.11(4):p.333-344.
    26. Spitzer, R. and A. Jain, Surflex-Dock:Docking benchmarks and real-world application. Journal of Computer-Aided Molecular Design,2012.26(6):p.687-699.
    27. Kellenberger, E., et al., Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins:Structure, Function, and Bioinformatics,2004.57(2):p.225-242.
    28. Jones, G., et al., Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology,1997.267(3):p.727-748.
    29. Paul, N. and D. Rognan, ConsDock:A new program for the consensus analysis of protein-ligand interactions. Proteins:Structure, Function, and Bioinformatics,2002.47(4):p.521-533.
    30. Verdonk, M.L., et al., Improved protein-ligand docking using GOLD. Proteins: Structure, Function, and Bioinformatics,2003.52(4):p.609-623.
    31. Jain, AN., Surflex:Fully Automatic Flexible Molecular Docking Using a Molecular Similarity-Based Search Engine. Journal of Medicinal Chemistry, 2003.46(4):p.499-511.
    32. Li, W., et al., Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking. Proteins:Structure, Function, and Bioinformatics,2008.71(2):p.938-949.
    33. Giammona, D.A., An examination of conformational flexibility in porphyrins and bulky-ligand binding in myoglobin.1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700