用户名: 密码: 验证码:
南京大胜关长江大桥受力特性、计算方法、桥面疲劳和防腐问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着中国高速铁路建设的快速发展,中国的铁路特大钢桥迅速增多,目前已建、在建和正在设计中的有近10座。其中,京沪高速铁路上的南京大胜关长江大桥是最早也最具影响力的一座高速铁路钢桥。该桥是世界上第一座6线铁路大桥,主桥为(108+192+336+336+192+108)m六跨连续三主桁拱结构,其中2线高速铁路设计时速为300km,预留350km。
     本文在广泛收集、研究国内外相关资料的基础上,采用理论分析和试验研究相结合的方法,对该桥的桥面结构形式、受力特性、设计计算方法、正交异性钢桥面U肋与横梁连接处的疲劳性能、钢桥面的防腐等问题作了较为系统的研究。本文的研究得到铁道部三个重点科研项目的支持。主要取得了如下创新性成果:
     1、针对南京大胜关长江大桥线路多,跨度大,行车速度高的特点,经多方面综合对比研究,为南京大胜关长江大桥推荐(并被采纳)了密布横梁体系正交异性板整体钢桥面结构方案。该方案整体性好、刚度大,由于下弦杆和系梁加高,不仅桥梁的整体变形减小,而且也改善了桥面系的受力状态。
     2、研究了密布横梁体系正交异性板整体桥面板桁组合结构桥面荷载的传力途径和传力比及其影响因素。首次定量地给出了两条路径的传力比,其中通过节间横梁传至下弦杆或系梁再传至下弦杆节点的桥面荷载有50%以上,这部分荷载会引起下弦杆和系梁的竖向弯曲。
     3、研究了桥面荷载在三主桁拱中的分配。提出了桥面荷载在三主桁中两次分配的概念、两次分配的分配比及其影响因素,提出了密布横梁体系的正交异性板整体钢桥面板桁组合结构在桥面荷载作用下主桁的受力模式,该模式可用于三主桁拱的设计。
     4、研究了整体桥面板桁组合结构的设计计算方法,总结归纳了整体分析和关键部位局部分析相结合的二步分析法、整体分析的三种实用有限元分析方法:空间板梁法、系统分解法和空间杆系结构法。空间板梁法适用于设计的中、后期,对桥梁施工过程和运营阶段的强度、刚度和稳定性作全面的检算;系统分解法适用于结构构造和构件的尺寸频繁改变的设计初期;空间杆系结构法适用于考察桥梁刚度、主桁杆件和桥面系骨架的强度和稳定性,对斜拉桥、拱桥等施工过程的优化计算、成桥的索力张拉顺序、张拉力的优化计算等也非常有效。
     5、对正交异性板U肋与横梁连接处的疲劳性能进行了试验研究。参照南京大胜关长江大桥正交异性板整体桥面系制作了U肋与横梁连接处2个1:1的整体模型,完成了精细的有限元分析和疲劳试验。得出结论:正交异性板U肋与横梁连接处有较好的抗疲劳性能;U肋下方腹板开平底形孔还是苹果形孔对疲劳性能影响不大;U肋上方与横梁腹板、翼板连接处腹板开不开小孔无关紧要;铁路桥梁应避免钢轨位于U肋的正上方;对U肋与横梁腹板连接处的疲劳性能进行了评估,把U肋下方横梁腹板孔边归为Ⅰ类疲劳类别(母材),具有足够的安全性。
     6、提出了一种具有柔性防水层的复合防腐体系,并完成了各种试验。结果表明:该体系具有较好的防腐、防水、抗磨、抗滑性能,施工工艺简单。但其防腐的长效性还有待长时间的考验,工地现场施工对环境的要求有待进一步降低。
     7、提出了厚度组合为(3+16)mm的321-Q370q不锈钢复合钢板的防腐体系,并完成了各种试验。结果表明:321-Q370q不锈钢复合钢板几乎不增加桥面恒载,材料来源方便,板面尺寸大,爆炸焊接工艺成熟,防腐、抗滑性能好。但其长效性还有待长时间的考验,价格有待降低。
     以上研究成果1-5已应用于南京大胜关长江大桥、济南黄河大桥、安庆铁路长江大桥、新广州站东平水道桥等多座特大铁路钢桥的设计。研究成果6、7还需进一步完善并经受长时间的考验。
In China, super steel railway bridges are increasing quickly with the rapid development of high speed railway construction; now there are about 10 super steel bridges built-up or under construction or under design. Nanjing Dashengguan Yangtze River Bridge (NDB) on Beijing-Shanghai high speed railway is the earliest and the most influential one among the steel bridges mentioned above, and is the first railway bridge with 6 lines in the world. The main bridge of NDB is a continuous three main truss arch structure with span arrangement as (108+192+336+336+192+108) m. Among the 6 railway lines of NDB, there are 2 high speed ones with 300km/h designed speed and 350km/h reserved speed.
     On base of extensive collection and study of relevant information from home and abroad, combing theoretical analysis and experimental research, systematic research aiming at NDB was carried out in the thesis, including deck structural forms, mechanical characteristics, design and calculation methods, fatigue performance of U rib-to-diaphragm connection in orthotropic steel bridge deck and the anticorrosion problem of steel deck. The research of this thesis is supported by three key projects founded by Ministry of Railways. The innovative results are as follows:
     1. Aiming to the characteristics of multi-line, great span, high speed of NDB, after comprehensive comparison and study, orthotropic monolithic steel deck system with dense transverse girder (OSDTS) was recommended (and adopted) for NDB. OSDTS not only has good wholeness, big stiffness, but also decreases the whole deformation of bridge and improves the mechanical behavior of deck with the bottom chord and tie beam heightened.
     2. The transmission paths were studied for the deck loads on truss-girder composite structures with OSDTS, so was the load ratio through the paths and influence factors. The ratio of deck loads transferred through the two paths was given quantitatively for the first time. There is over 50% deck loads transferred from panel transverse girders to bottom chords or tie beam and then to bottom chord joints, which will cause vertical bending of the bottom chords and tie beam.
     3. Deck loads allocation among the three main trusses or arches were researched in the thesis. A concept of two steps allocation, ratio of the two allocations and its influence factors were put forward for the deck load on the three main trusses or arches. With the action of deck loads, load models of the three main trusses were put forward for truss-girder composite structures with OSDTS, which can be used for the design of the three main trusses or arches.
     4. According to the mechanical characteristics of truss-girder composite structures with monolithic steel deck, Two Step Analysis Method combing global analysis and local analysis of key parts, and three practical FEA methods for global analysis, namely, SPBM, SSM and SFM were summarized. SPBM is applicable for the middle and later design periods, for overall checking the stiffness, strength and stability of the bridges in construction or in service. SSM is good for the beginning design period, in which the bridge structure and member dimensions will be changed frequently. SFM is applicable for checking bridge stiffness, strength and stability of the main truss and deck frameworks, it is also effective for the construction procedure optimization calculation, tension order and forces of cable tension optimization calculation of cable stayed bridges and arch bridges.
     5. Experimental research was carried out on the fatigue performance of the U rib-to-diaphragm connection in orthotropic steel bridge deck. Referring to the orthotropic monolithic steel deck system of NDB, two full scale monolithic models of U rib-to-diaphragm connection were fabricated, refined finite element analysis and fatigue experiments were carried out on the two models. Results show that the U rib-to-diaphragm connection has good fatigue performance, which is neither influenced by hole shape in the diaphragm web under U rib, no matter it is apple shaped or flat bottom shaped nor by holes at the upper rib-diaphragm web-flange connections. The steel rails should be avoided to be located on the deck right above U ribs. The fatigue life of U rib-to-diaphragm connection was evaluated and the hole edge of diaphragm web under U rib was categorized into I fatigue type, corresponding to basic metal.
     6. A kind of compound preservation system with flexible waterproof layer for ballast orthotropic monolithic steel deck was presented and relevant tests were done. The results show that the antiseptic property, waterproofness, abrasion resistance and anti-skidding performance of this preservation system are good and the construction technology is simply. The long-term effectiveness of antiseptic property is still under observation. The environmental request of in-site operating should be reduced further more.
     7. The 321-Q370q stainless composite steel plate preservation system with the thickness (3+16) mm was presented and relevant tests were done. The results show that the 321-Q370q stainless composite steel plate hardly increases the deck load of the bridge while the material resources is wide and the plate size is large, the explode weld technique is mature, the antiseptic property and anti-skidding performance are good. The long-term effectiveness of antiseptic property is still under test. The price should be reduced further more.
     The above research achievements from 1-5 have been applied in the design of many a great steel bridge, such as Nanjing Dashengguan Yantze River Bridge, Jinan Yellow River Bridge, Anqing Railway Yantze River Bridge, Dongping River Bridge. The last two researches still need further improvement and long time observation.
引文
[1]郑健.中国高速铁路桥梁建设关键技术.中国工程科学.2008.10(7):18-27
    [2]辛学忠,张晔芝.我国铁路钢-混凝土结合梁桥技术发展思考.桥梁建设,2007,(5):12-16
    [3]王召祜.京沪高速铁路桥梁设计.铁道科学与工程学报.2005,2(5):13-16,49
    [4]乔健,辛学忠.世纪之交铁路桥梁发展的体会.铁道标准设计.2004(7):106-110
    [5]高宗余.跨长江黄河的高速铁路大跨度桥梁.中国工程科学.2009.11(17):17-21
    [6]高宗余.武汉天兴洲公铁两用长江大桥总体设计.桥梁建设,2007,(1):5-9
    [7]秦顺全,高宗余,潘东发.武汉天兴洲公铁两用长江大桥关键技术研究.桥梁建设,2007(1):1-4,20
    [8]徐伟.武汉天兴洲公铁两用长江大桥主桥钢梁设计.桥梁建设,2008,(1):4-7,22
    [9]张敏,叶梅新,靳飞.京沪高速南京长江大桥结点受力性能分析.铁道科学与工程学报,2007,4(3):21-26
    [10]朱志虎,易伦雄,高宗余.南京大胜关长江大桥三主桁结构受力特性分析与施工控制措施研究.桥梁建设,2009(3):1-4,32
    [11]ZHANG Min, ZHANG Yezhi. Structure and mechanics characteristics of two highspeed railway Changjiang bridge.Proceeding of the 12th International Conference on Inspection, Appraisal, Repairs and Maintenance of Structures, 2010, Yantai, P.R.China,1419-1427
    [12]周胜利,林亚超.日本北陆新干线犀川桥.国外桥梁,1996(3):1-11
    [13]Vincent, Richard B., Kennedy, D. J. Laurie. Composite Floor Trusses, Design Considerations and Practice. Proceedings of the Conference:Composite Construction in Steel and Concrete IV, May 28-Jun,2000, Banff, Alta., Canada,286-297
    [14]周胜利,林亚超.高速铁路钢桁梁桥桥面结构设计及减小噪音的结构措施.国外桥梁,1996(3):22-31
    [15]大治一,大川宗男.長大斜長 鋼床版の圧縮+度の評価.本四技報,1996,20(4):78
    [16]CHANG S, L EE P, CHANG S. Design of Shear Connection in Composite Steel and Concrete Bridges with Precast Decks. Journal of Constructional Steel Research,2001 (57):203-219
    [17]刘春彦.法国地中海线高速铁路桥梁的技术特点及建议.铁道标准设计,2005(5):38-43
    [18]Jacques B. Design Development of Steel-Concrete Composite Bridges in France. Journal of Constructional Steel Research,2000 (55):229-243
    [19]张晔芝.下承式铁路钢桁结合桥的桥式结构比较.铁道学报,2005,27(5):107-110
    [20]Brozzetti J.Design development of steel-concrete composite bridges in France. Journal of Constructional Steel Research,2000,55 (2):229-243
    [21]张晔芝.高速铁路下承式钢桁结合桥研究.铁道学报,2004,26(6):71-74.
    [22]彭岚平,徐升桥,高静青.钢桁梁有碴桥面结构设计研究.铁道勘察,2007(增刊):14-19
    [23]严国敏.厄勒海峡大桥的招投标设计与施工.国外桥梁,1999(3):1-7
    [24]左明福.厄勒海峡大桥的设计与施工.中国港湾建设,2001(1):5-9
    [25]叶梅新,张晔芝等.秦沈线钢与混凝土结合梁试验研究.中南大学土建学院科研报告,2001
    [26]张晔芝.高速铁路连续结合梁的响应分析.铁道学报,2002,24(6):84-88
    [27]叶梅新,张晔芝.桁梁结合梁及其剪力连接件试验研究.铁道学报,1999,21(1):67-71
    [28]郑凯锋,刘春彦,王应良等.铁路板桁桥梁的结构空间计算及其应用发展研究.铁道工程学报,1997,3(55):17-21
    [29]陈玉骥,叶梅新.高速铁路下承式板桁结合梁的受力分析.中南大学学报,2004,35(5):849-855
    [30]高静青.双线下承式钢桁结合梁桥面系构造研究.铁道标准设计,2005(5):73-75
    [31]张晔芝.下承式钢桁半结合桥桥面系的受力状态及改善方法.中国铁道科学,2008,29(2):53-58
    [32]徐勇,戴晓春.高速铁路96m钢桁梁桥面系结构形式比较研究.铁道勘察,2007(增刊):24-27
    [33]马坤全,吴定俊,曹雪琴.高速铁路钢结构桥梁桥面结构布局探讨.铁道标准设计,2003(12):56-59
    [34]叶梅新,周德,陈佳.高速铁路下承式大跨度系杆拱桥无碴轨道桥面结构形式的对比研究.铁道科学与工程学报,2008,5(2):1-6
    [35]周德,叶梅新.高速铁路大跨度系杆拱桥结合梁构造形式.中南大学学报(自然科学版),2009,40(1):256-262
    [36]周德,叶梅新.高速铁路下承式钢箱系杆叠拱桥的受力分析.钢结构,2009,24(5):42-46
    [37]秦顺全.武汉天兴洲公铁两用长江大桥关键技术研究.工程力学,2008,25(增刊2):99-105
    [38]胡汉舟.武汉天兴洲公铁两用长江大桥主桥上部结构施工方案.桥梁建设,2007(3):1-4
    [39]李明华,高宗余.武汉天兴洲公铁两用长江大桥正桥的设计.中国铁路,2006(3):38-41
    [40]张晔芝,张敏.高速铁路纵横梁体系结合桥面横梁面外弯曲问题的研究.铁道学报,2010,32(1):59-64
    [41]Ye-Zhi Zhang, Ying-Hui Liu.Behavior of Tianxingzhou Yangtze Bridge of wuguang passenger dedicated line.Proceeding of the 4th International Symposium on Lifetime Engineering of Civil Infrastructure(ISLECI2009), 2009, Changsha, P.R.China,581-586
    [42]叶梅新,张扬.桁梁正交异性整体钢桥面结构受力分析.铁道标准设计,2008(2):37-39
    [43]叶梅新,胡文军,陈佳.南京大胜关长江大桥桁拱部分节段模型试验研究.铁道标准设计,2008(3):73-77
    [44]刘春彦.有碴正交异性板钢桥面系铁路钢桥的设计研究及优越性的探讨.铁道标准设计,1989(1):11-16
    [45]李凤芹,何伟,杨欣然.钢桁结合梁桥面系结构设计研究.铁道勘察,2007(增刊):20-23
    [46]胡光伟,钱振东,黄卫.正交异性钢箱梁桥面第二体系结构优化设计.东南大学学报(自然科学版),2001,31(3):76-78
    [47]刑中凯.钢箱梁正交异性桥面板受力特征及计算方法研究[D].[硕士论文学位].上海:同济大学,2003
    [48]刘桂红,易伦雄.采用正交异性钢桥面板的铁路钢桁梁设计.桥梁建设,2007(增刊):8-10
    [49](日)小西一郎.钢桥(第一分册).宋慕兰译.北京:人民铁道出版社,1980
    [50](日)小西一郎.钢桥(第二分册).宋慕兰译.北京:人民铁道出版社,1980
    [51]龙驭球,龙志飞,岑松.新型有限元论.北京:清华大学出版社,2004
    [52]Mccarthy W C, Melhhem AQ. Elastic-Plastic Analysis of Steel-Concrete Superstructure. Computer & Structure,1998,29 (3):601-610
    [53]汉勃利EC.桥梁上部构造性能.郭文辉译.北京:人民交通出版社,1982
    [55]王应良,李小珍,强士中.梯形加劲肋正交异性板钢桥面分析的等效格子梁法.西南交通大学学报,1999,34(5):545-549
    [56]尚仁杰,吴转琴,李佩勋,刘景亮.一种正交各向异性板的等效各向同性板计算法.力学与实践,2009,31(1):27-60
    [57]刘世恩.应用正交异性板理论分析正交异性桥面板.河北理工学院学报.1997,19(3):72-79
    [58]林逸汉,陈世平,王禹钦.正交异性板的三维渐近方程.复旦学报(自然科学版).2006,45(2):135-140
    [59]Lin Y H, Wan F. First integrals and the residual solution for orthotropic plates in plane strain or axi-symmetric deformations. Studies in Applied Mathematics. 1988 (79):93-125
    [60]Lin Y H, wan F. Semi-infinite orthotropic cantilevered strips and the foundations of plate theories. Studies in Applied Mathematics,1990 (82):217-244
    [61]Lin Y H, wan F. Bending and flexure of semi-infinite cantilevered of orthotropic strips. Computers & Structures,1990,35 (4):349-359
    [62]李湘平,钟正华.正交异性板的多重屈曲状态.湖南大学学报.1992,19(3):61-67
    [63]Asta A D, Zona A.Comparison and validation of displacement and mixed elements for the non-linear analysis of continuous composite beams.Computers & Structures,2004,82(4):2117-2130
    [64]陈玉骥,叶梅新.板桁组合结构分析中的板梁单元.中南大学学报(自然科学版),2005,36(4):715-720
    [65]陈玉骥.高速铁路下承式钢桁结合梁桥的计算理论及其应用研究.[博士学位论文].长沙:中南大学,2004.
    [66]韩衍群.高速铁路三主桁道碴整体桥面板桁组合桥受力特性及计算理论研究.[博士学位论文].长沙:中南大学,2008.
    [67]邱波,王荣辉,刘光栋.桁梁结构空间计算的三节点截面.湖南大学学报(自然科学版),2001,28(6):92-96
    [68]E. J. Sapountzakis, D. G Panagos. Shear deformation effect in nonlinear analysis of spatial beams. Engineering Structures,2008,30(3):653-663
    [69]Dall'Asta A, Zona A.Slip locking in finite elements for composite beams with deformable shear connection.Finite Elements in Analysis and Design,2001,40 (4):1907-1930
    [70]Asta A D, Zona A. Non-linear analysis of composite beams by a displacement approach.Computers & Structures,2002,80 (4):2217-2228
    [71]万鹏,郑凯锋,洪显诚.正交异性板桥面体系计算支承长度匹配问题研究.中国铁道科学,2003,24(2):72-77
    [72]Zona A, Ragni L, Asta A D. Simplified method for the analysis of externally prestressed steel-concrete composite beams. Journal of Constructional Steel Research,2009,65 (2):308-313
    [73]Gara F, Leoni G, Dezi L. A beam finite element including shear lag effect for the time-dependent analysis of steel-concrete composite decks. Engineering Structures,2009,31 (8):1888-1902
    [74]荣振环,张玉玲,刘晓光.苏通大桥正交异性板模型计算分析.铁道建筑,2008(1):1-4
    [75]吴冲,曾明根,冯凌云.苏通大桥正交异性板局部模型极限承载力试验.桥梁建设,2006(2):21-23,35
    [76]王应良,强士中.正交异性板的极限承载力分析.钢结构.1999,14(4):46-48
    [77]陈列,李小珍,刘德军,何赓馀.高速铁路下承式结合梁系杆拱桥桥面结合方式.中国铁道科学,2007,28(5):37-42
    [78]李立峰.正交异性钢箱梁局部稳定分析理论及模型试验研究.长沙:湖南大学,2005.
    [79]孔祥福,周绪红,狄谨,程德林,吕耀秀.钢箱梁斜拉桥正交异性桥面板的受力性能.长安大学学报(自然科学版),2007,27(3):52-56
    [80]钱冬生.谈谈钢桥的疲劳和断裂.桥梁建设.2009(3):12-21
    [81]刘晓光.钢桥疲劳研究关键技术分析.钢结构.2007,22(5):7-9,43
    [82]费希尔.J.W.钢桥的疲劳和断裂-实例研究.北京:中国铁道出版社,1989
    [83]格尔.R R.焊接结构的疲劳.周殿群译.北京:机械工业出版社.1988
    [84]El-Sheikh, Ahmed I. Optimum Design of Composite Space Trusses.Journal of the International Association for Shell and Spatial Structures,1999,40 (130) 79-92
    [85]American Railway Bridge & Building Association.Proceedings of the 94th Annual Conference.1989
    [86]潘际炎.大跨度钢桥.中国铁道科学,2000,21(2):1-7
    [87]Wolchuk R.Lessons from weld cracks in orthotropic decks on three European bridges.Journal of Structural Engineering,1990,116(1):75-84
    [88]J. W. Fisher,三木千寿.美国焊接桥梁疲劳破坏事例.桥梁と基础(日本).1982,16(10):18-24
    [89]周胜利,林亚超.高速铁路钢桥的疲劳问题及构造处理.国外桥梁,1996(3):38-45
    [90]李小珍,任伟平,卫星,强士中.现代钢桥新型结构型式及其疲劳问题分析.钢结构,2006,21(5):50-55
    [91]任伟平,李小珍,李俊,卫星,强士中.现代公路钢桥典型细节疲劳问题分析.公路,2007(4):82-87
    [92]P. Dong.A structural stress definition and implementation for fatigue analysis of welded joints.International Journal of Fatigue,2001 (23):856-876
    [93]S.B. Shin.The use of hot spot stress for estimating the fatigue strength of welded components.Steel Research,2000,71 (11):466-473
    [94]潘际炎.铁路钢桥疲劳可靠性设计及铁路桥梁荷载谱研究.铁道学报,1992,14(4):58-66
    [95]童乐为,沈祖炎,陈忠延.城市道路桥梁的疲劳荷载谱.土木工程学报,1997.30(5):20-27
    [96]Hahin C., South J. M., Mohammadi J.. Accurate and rapid determination of fatigue damage in steel bridges. Journal of Structural Engineering,1993,119 (2):150-167
    [97]陈惟珍,G. Alrecht.应用断裂力学方法计算老钢桥剩余寿命.华东公路,2000,5(4):43-46
    [98]陈惟珍,D. Kosteas.钢桥疲劳设计方法研究.桥梁建设,2000(2):1-3
    [99]李兆霞.损伤力学及其应用.北京:科学出版社,2002
    [100]万鹏,郑凯锋.铁路桥梁正交异性钢桥面的疲劳特征.世界桥梁,2004(1):44-48
    [101]T Partanen, E Neimi. Hot spot stress approach to fatigue strength analysis of welded components.Fatigue Fractu Engng Mater Struct,1996,19(16):709-722
    [102]S.B.Shin. The use of hot spot stress for estimating the fatigue strengthen of welded components.Steel Research,2000,71 (11):466-473
    [103]G.Savaidis, M.Vormwald. Hot spot stress evaluation of fatigue in welded structural connections supported by finite element analysis.International Journal of Fatigue,2000 (22):85-91
    [104]Sakimoto T, Sakata T. The out-of-plane buckling strength of through-type arch bridges. Journal of Constructional Steel Research,1990,16 (4):307-318
    [105]G.Savaidis, M.Vormwald.Hot spot stress evaluation of fatigue in welded structural connections supported by finite element analysis.International Journal of Fatigue,2000 (22):85-91
    [106]童乐为,沈祖炎.开口纵肋的正交异性钢桥面板疲劳试验研究.中国公路学报,1997,10(3):59-65
    [107]童乐为,沈祖炎.正交异性钢桥面板疲劳验算.土木工程学报,2000,33(3):16-21,70
    [108]童乐为,沈祖炎.正交异性钢桥面板静力试验和有限元分析.同济大学学报,1997,25(6):617-622
    [109]童乐为,沈祖炎,陈忠延.正交异性钢桥面板疲劳验算时的结构分析.上海力学,1998,19(3):204-212
    [110]陶晓燕.正交异性钢桥面板开口肋空孔形式疲劳优化分析.铁道建筑,2008(1):37-39
    [111]荣振环,张玉玲,刘晓光,陶晓燕.大跨度斜拉桥正交异性板疲劳试验研究.钢结构,2009,24(5):13-16
    [112]荣振环,张玉玲,刘晓光.天兴洲桥正交异性板焊接部位疲劳性能研究.中国铁道科学,2008,29(2):48-52
    [113]张玉玲,辛学忠,刘晓光.对正交异性钢桥面板构造抗疲劳设计方法的分析.钢结构,2009,24(5):33-37
    [114]张玉玲,潘际炎.高速铁路钢桥疲劳设计研究.钢结构,1999,14(3):1-3,15
    [115]潘际炎.铁路栓焊钢桥疲劳设计理论的研究与革新.中国铁道科学,1999,20(2):35-41
    [116]Ashraf Ayoub. A force-based model for composite steel-concrete beams with partial interaction. Journal of Constructional Steel Research,2005,61(3): 387-414
    [117]PARTANEN T., Neimi E. Hot spot stress approach to fatigue strength analysis of welded components.Fatigue & fracture of engineering materials & structures,1996,19 (16):709-722
    [118]Ronaldo C. Battista, Michele S., Pfeil, Eliane M. L. Carvalho. Fatigue life estimates for a slender orthotropic steel deck.Journal of Constructional Steel Research,2008,64 (1):134-143
    [119]British Standards Institution.BS5400.Steel, concrete and composite bridges, Part 10.Code of practice for fatigue.1980.
    [120]European Committee for Standardization (CEN).Design of composite steel and concrete structures.Ⅱ:Bridges.Brussels (Belgium):Eurocode 4, EN1994-2, 2005.
    [121]ECCS.欧洲钢结构协会.钢结构疲劳设计规范
    [122]张健康,胡光伟,俞先江,沈承金,黄卫.大跨径钢桥面铺装体系关键技术研究进展.交通运输工程与信息学报,2008,6(2):12-20,42
    [123]徐伟,李智,张肖宁.正交异性钢桥面铺装设计及设计要点分析.中外公路,2006,26(42):174-179
    [124]黄卫,张晓春,胡光伟.大跨径钢桥面铺装理论与设计的研究进展.东南大学学报(自然科学版),2002,40(9):480-487
    [125]Sheikh A. H, Mukhopadtyay M. Geometric nonlinear analysis of stiffened plates by the spline finite strip method. Computers and Structures,2000 (76): 765-785
    [126]Tsiatas G., Palmquist S. M. Fatigue evaluation of Highway Bridge. Probabilistic Engineering Mechanics,1999 (14):189-194
    [127]Park S. W., Kim Y. R., Schapery R.A. A visco-elastic continuum damage model and its application to uniaxial behavior of asphalt concrete. Mechanics of Material,1996,63 (2):241-255
    [128]沈国良.美国的公路桥梁涂装.上海涂料.2007,46(9):29-31
    [129]陈永龙,戴咸林,苏凯.闵浦大桥钢桥面铺装环氧沥青混合料设计研究.中国市政工程,2009(3):34-37
    [130]钱振东,黄卫,茅荃,胡光伟.南京长江第二大桥钢桥面铺装层受力分析研究.公路交通科技,2001,18(6):43-46
    [131]胡光伟,黄卫,张晓春.润扬大桥钢桥面铺装层力学分析.公路交通科技,2002,19(4):1-3
    [132]林伍湖.海沧大桥钢桥面铺装层损坏原因及维修探讨.公路,2004(10):77-80
    [133]沈桂平,曹雪琴.正交异性钢桥面铺装的疲劳承载能力试验研究.上海铁路大学学报,1996,17(3):100-108
    [134]陈辉,马奕斌.广州珠江黄埔大桥钢箱梁防腐设计.公路与汽运,2005(4):114-116
    [135]杜存山,祝和权,郭建勋.铁路正交异性钢桥面板防腐防水体系研究.中国建筑防水,2008(11):28-30
    [136]J. Bordzilowski, K. Darowicki, S. Krakowiak, A. Krolikowska. Impedance measurements of coating properties on bridge structures.Progress in Organic Coatings,2003 (46):216-219
    [137]Agnieszka Krolikowska.Requirements for paint systems for the steel bridges in Poland.Progress in Organic Coatings,2000 (39):37-39
    [138]Miki C.Fatigue Damage in Orthotropic Steel Bridge Decks and Retrofit Works.International Journal of Steel Structures,2006 (6):255-267
    [139]李勇,付红,张伯权.钢桥面防腐蚀方案的比较与选择.材料保护,2006,39(12):61-63
    [140]陈阶亮.桥梁钢结构防腐蚀技术探析.钢结构,2002,17(5):60-62
    [141]杜存山,王淑霞.我国铁路钢桥的防腐蚀涂装.腐蚀与防护,2004,25(1):24-25,28
    [142]R. Naderi, M.M. Attar.Application of the electrochemical noise method to evaluate the effectiveness of modification of zinc phosphate anticorrosion pigment. Corrosion Science,2009 (51):1671-1674
    [143]席时俊,汪大鸣,李惠英,穆瑞君,杨松柏.正交异性钣铁路桥面防蚀涂装系的研究.材料保护,1995,28(2):25-26
    [144]方秦汉.长江上的四座公路铁路两用桥[J].铁道科学与工程学报.2004(1):10-13
    [145]韩衍群,叶梅新.整体桥面钢桁梁桥桥面荷载传递途径的研究,铁道学报,2008,30(1):65-69
    [146]韩衍群,叶梅新.连续钢桁结合梁桥桥面系受力状态及与桥面系刚度的关系,中南大学学报,2008,39(2):1-7
    [147]钟新谷.马平.曾庆元.多室箱形梁非线性有限元分析[J].土木工程学报.1999,32(6):32-39
    [148]李廉锟主编.结构力学.第3版.北京:高等教育出版社,1996
    [149]侯文崎,叶梅新.南京大胜关长江大桥三主桁钢正交异性板整体桥面结构受力特性的试验研究.铁道科学与工程学报,2008,5(3):11-17
    [150]张凤鸣,熊健民,周金枝等.板桁组合结构分析的超级有限元法.湖北工学院学报,2000,15(1):21-23
    [151]叶梅新,江锋.芜湖桥板桁组合结构的研究.铁道学报,2001,23(5):65-69
    [152]El-Sheikh, Ahmed I. Optimum Design of Composite Space Trusses. Journal of the International Association for Shell and Spatial Structures,v40, n130,1999, 79-92
    [153]周凌宇.钢-混凝土组合箱梁受力性能及空间非线性分析:[博士学位论 文].长沙:中南大学,2004
    [154]ANSYS UIDL Programmer's Guide. ANSYS Inc,2002
    [155]ANSYS APDL Programmer's Guide. ANSYS Inc,2002
    [156]Guide to ANSYS User Programmable Features.ANSYS Inc,2005
    [157]铁建设[2004]157号,京沪高速铁路设计暂行规定(上、下册)[S].
    [158]Tim Gurney. TRL State of the Art Review 8:Fatigue of Steel. Bridge Decks[M]. London:HMSO,1992.
    [159]Cuninghame,J R, Beales C.Fatigue crack location in orthotropic steel decks[J]. IABSE Periodical,1990,4(2)
    [160]Cuninghame,T R. Strengthening fatigue prone details in a steel bridge deck[C]. Proc of International Conference on Fat of welded Structures,1987
    [161]Cuninghame, T R. Fatigue classification of welded joints in orthotropic steel bridge decks[C]. TRRL Research Report 259,1990
    [162]钱东书.关于正交异性钢桥面板的疲劳[J].桥梁建设,1996,2,9-11
    [163]王春生.冯亚成.正交异性钢桥面板的疲劳研究综述[J].钢结构,2009,24(9):10-13
    [164]钱冬生.钢桥疲劳设计[M].成都:西南交通大学出版社,1986.
    [165]余波,邱洪兴,王浩,郭彤.正交异性钢桥面板构造细节疲劳性能及损伤演化研究[J].公路交通科技,2009,9:64-69.
    [166]范洪军.刘铁英.闭口肋正交异性板钢桥面的疲劳裂纹及检测[J].中外公路,2009,29(5):171-175
    [167]颜飞.刘林.正交异性钢桥面板不同闭口纵肋疲劳寿命分析[J].中国市政工程,2009,139(2):22-23
    [168]Paul A.Tsakopoulos,John W.Fisher.Full-Scale Fatigue Tests of Steel Orthotropic Decks for the Williamsburg Bridge[J].J Bridge Eng,ASCE 2003,8(5):323-333.
    [169]Robert J.Connor,John W.Fisher.Consistent Approach to Calculating Stresses for Fatigue Design of Welded rib-to-Web Connections in Steel Orthotropic Bridge Decks[J].J Bridge Eng,ASCE 2006,11(5):517-525.
    [170]Paul A.Tsakopoulos,John W.Fisher.Fatigue Performance and Design Refinements of Steel Orthotropic Deck Panels Based on Full-Scale Laboratory Tests[J].Steel Structures,2005,5:211-223.
    [171]Bocchieri W J, Fisher J W. Williamsburg Bridge Replacement Orthotropic Deck as Built Fatigue Test[R]. ATLSS Report No.98-04,1998
    [172]王春生 陈惟珍等.即有钢桥工作状态模拟与剩余寿命评估[J].长安大学学报.2004(1):43-47
    [173]陈惟珍Albrecht G,Koesteas D.钢桥焊接构件疲劳寿命预测[J].同济大学学报.2001(1):45-49
    [174]管德清.焊接结构疲劳断裂与寿命预测[M]湖南大学出版社.长沙.1996
    [175]Choi Dong Ho, Choi Hang Yong, Chung Sang Hwan, et al. Mixed-Mode Fatigue Crack Growth in Orthotropic Steel Decks[J]. Key Engineering Material,2006:321-323.
    [176]中华人民共和国建设部.TB10002.2-2005.铁路桥梁钢结构设计规范[S].北京:中国铁道出版社,2005-06-14
    [177]中华人民共和国建设部.GB50017-2003.钢结构设计规范[S].北京:中国计划出版社,2003-12-01
    [178]钱振东,罗剑,敬淼淼.沥青混凝土钢桥面铺装方案受力分析.中国公路学报.2005,(2):61-64
    [179]王民,李玉龙,郝增恒.钢桥面铺装防腐性能评价方法探讨.交通标准化,2009,(4):152-156
    [180]王世潜,张铮,王毅,孙淑华.钢结构桥梁防腐蚀工艺研究.中国市政工程,2003(3):40-42
    [181]陈国虞,张政权.设计寿命80-120a的钢桥防腐蚀途径.技术创新,2008(10):148-152
    [182]郭建勋,杜存山,陈列.福厦铁路钢系杆拱桥有碴钢桥面防护体系设计与施工工艺研究.钢结构,2009,(5):79-82
    [183]SHEN Cheng-jin,MING Tu-zhang,HU Guang-wei. Research on the Anticorrosion Coating Under the Paved Layer for Highway Steel Box Bridge Deck. J.China Univ. of Mining & Tech.(English Edition),Vol.16 No.4:429-432
    [184]樊叶华,王敬民,陈雄飞.正交异性钢桥面柔性防水粘结材料应用技术研究.交通运输工程与信息学报,2007,(2):57-61
    [185]D.de la Fuente, J.Simancas, M.Morcillo.Effect of variable amounts of rust at the steel paint interface on the behaviour of anticorrosive paint systems.ELSEVIER, Progress in Organic Coatings 46,(2003):241-249
    [186]易伦雄.钢结构桥梁防腐蚀涂装体系的选择.桥梁建设,999,(1):68-70
    [187]南京大胜关长江大桥关键技术的研究—道碴整体桥面结构分析与试验研究.中南大学,2006年11月
    [188]黄徽波.纯聚脲—京沪高铁防水成功的关键.中华建筑学报,2009,7,30:02版
    [189]黄徽波,王宝柱,陈酒姜.喷涂聚脲弹性体技术及其在重防腐领域的应用.腐蚀科学与防护技术,2003,(1),56-58
    [190]王宝柱,黄徽波,陈酒姜.喷涂聚脲超重防腐涂层的应用.聚氨酯工业,2004,(6):30-33
    [191]黄徽波,王宝柱,陈酒姜.喷涂聚脲弹性体技术在我国的发展和展望.聚氨酯工业,2002,(3):6-9
    [192]侯发臣.张超.辛宝.岳宗洪.张保奇.铁路桥梁321-Q327q复合钢板性能研究[J].钢结构,2009,24(9):33-46
    [193]李晓琼.刘永斌.不锈复合钢板焊接质量控制.电焊报,2009,39(6):83-85
    [194]李雪莲.正交异性钢桥面复合铺装结构研究.[博士学位论文].长沙:长沙理工大学
    [195]0Cr13Ni5Mo钢资料汇编.哈尔滨电机厂.1992
    [196]不锈钢手册.唐纳德.皮克纳.I.M.伯恩斯坦主编.顾守仁.周有德等译.北京:机械工业出版社,1987,3:754-761,766-775
    [197]侯文崎.叶梅新.罗如登.钢-高配筋现浇混凝土结合梁裂缝宽度试验研究[J].中国铁道科学,2001,22(5):54-59
    [198]张华,张峰,郝增恒.正交异性板钢桥面铺装防水材料试验研究.公路工程,2009,(1):139-142
    [199]黄徽波.喷涂聚脲技术在京沪高铁的应用与展望.上海涂料,2009,(5):1-4
    [200]武峰,易大勇,姜才兴.氟碳涂料在大型钢桥防腐中的应用.涂料综述,21-24
    [201]刘东晖,吴静波,黄徽波.喷涂聚脲弹性体技术及其在机车车辆上的应用.铁道车辆,2003,(8):29-40
    [202]钢铁材料手册.第5卷,不锈钢/张少棠主编.《钢铁材料手册》总编辑委员会编著.北京:中国标准出版社,2001,3:97-125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700