用户名: 密码: 验证码:
剪力墙结构基于性态的抗震设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于性态的抗震设计是根据建筑物的重要性和用途,确定不同的抗震设防标准下建筑的性态目标,使所设计的建筑在未来的地震中具备预期的功能,从而使建筑物在整个寿命期内,在遭遇可能发生的地震作用下,总的费用达到最小。基于性态的抗震设计方法自20世纪90年代提出以来,受到了广大科研和设计人员的关注,现已成为21世纪各国抗震设计规范修订的主要方向。
     本文以剪力墙结构作为研究对象,进行了剪力墙结构及构件基于性态的设计方法的研究,主要内容包括:
     讨论了如何合理划分设防水准和剪力墙结构性态目标。总结归纳了国内外性态水准研究成果,提出一套不同超越概率的“四水准”抗震设防性态水准,并归纳了各性态水准下剪力墙结构的性态描述,在试验的基础上定义了各性态水准对应的构件性能状态,以及各性能状态对应的层间位移角范围,将剪力墙结构的性态水准与剪力墙构件的位移角状态联系起来,并进一步在试验统计基础上量化了性态目标。
     在国内外关于构件损伤、结构损伤的损伤模型研究成果的基础上归纳统计了国内外对各性能状态下损伤指数的范围界定,提出了推荐采用的各级性态水准下的损伤指数界定范围。以宏观表现的形式给出相应的损伤描述,将各性能状态与损坏程度进行整理,量化了具体破坏程度,并分析了剪力墙结构的损伤模型,以试验数据对当前常用的各损伤模型进行了对比评估。
     讨论了剪力墙结构基于性态设计方法的具体步骤。将弹塑性位移反应谱法作为剪力墙结构非线性阶段位移反应的估计方法,将其应用到剪力墙结构的性态设计当中。讨论了国内外Pushover方法的研究成果,制定了一套剪力墙结构性态设计的具体步骤。此外,还对剪力墙结构性态设计需要注意的构造措施也做出了说明。
     本文通过剪力墙的低周反复荷载试验对剪力墙各设计参数做了较系统的研究。变化的参数包括:轴压比、高宽比、混凝土强度、边缘纵筋配筋率、边缘约束区长度、边缘配箍特征值。本文在试验的基础上,对剪力墙各设计参数对抗震性态的影响展开研究和分析,对影响剪力墙抗震性态的各参数做了量化的拟合,从试验的基础上总结出一套适用于剪力墙性态设计的具体的构件截面设计方法,同时也为进一步了解剪力墙的抗震性态提供了较系统的试验依据。
     结构变形能力是非线性阶段需要重点关注的问题。本文在试验的基础上对现行规范剪力墙承载能力估计方法、不同截面特征的剪力墙屈服位移角、峰值位移角和极限位移角的估计方法进行了探讨。研究了影响剪力墙抗震性态的各参数与目标位移控制点的关系,并在所提出的设计方法的基础上制定了剪力墙截面设计的详细步骤。
     最后,以实例的方式进一步说明了本文提出的剪力墙结构基于性态的抗震设计方法步骤。利用CANNY作为分析手段,对该实例结构进行了9条地震波作用下的位移分析,分析结果表明通过弹塑性位移反应谱法计算得到的剪力墙结构目标位移与时程分析得到的最大位移反应吻合良好,弹塑性位移反应谱法是一种较为可靠的剪力墙结构非线性位移估计方法。根据弹塑性位移反应谱法得到的目标位移和本文拟合的剪力墙构件各性能状态位移角估算公式进行验算、调整,可以实现剪力墙结构不同的性态目标。
Performance-based seismic design means confirming the performance aim of building under different protect level in order to gain an expected function when meeting a certain earthquake in the future, and to reduce the cost of the building to the lowest level during the whole lifespan under the potential earthquake according to the building importance and function. Performance-based seismic design has attracted an increased interest among researchers and engineers since it is proposed in 1990's. And now performance-based seismic design has become the main development direction of the seismic code mending.
     In this article, the performance-based seismic design method of the shear wall structure and the member design is developed. The main investigation contains:
     The method is discussed on how to classify the protect level and the performance aim of the shear wall structures. The performance research achievement in the world is generalized, and the "4 level" seismic protection level according to different probability level is put forward. The performance state of the shear wall structures under different performance level is described. The drift angle range of every performance level is defined. The performance level of the shear wall structures is connected to the member drift angle and the performance level is quantified based on the test statistical data.
     The damage index level range of different performance level based on the research achievement in the world about the member damage, structure damage is introduced. A damage index scope adopted under different performance level is recommended. The macrograph behavior of the damage is described, the damage degree to each performance level is summarized, and the detail of the damage degree is quantified. The damage model of the shear wall is analyzed, each damage model by the test data and evaluates the current damage model is compared.
     The performance-based seismic design method procedure is discussed. The inelastic seismic design spectra are used as the displacement response evaluation method in the inelastic stage, and are applied to the performance design of shear wall structures. The research achievement of the pushover method in the world is generalized. Based on the research analysis, a suit of performance-based design procedure is defined. The constructional detail of the performance-based design of the shear wall design is illustrated.
     A systematic research on each parameter of the shear walls are developed through the cyclic loading testes of the shear walls. The various parameters including axial ratio, aspect ratio, concrete strength, boundary longitudinal reinforcement ratio, confined area length and boundary stirrup ratio. Based on the tests, research and analysis on the affection of the design parameter are developed. The affection of the parameters on the seismic performance of the shear walls are fitted, and a suit of detailed member design procedure of the seismic performance design based on the test are summarized..The tests provide a basis leading to a further comprehension of the seismic performance.
     The deformation capacity is followed with great interest in inelastic stage. The discussion on the evaluation method of the current code on the resistant capacity, the evaluation on the yield drift angle, the peak point drift angle and the ultimate drift angle of different section are studied. The relationship between each parameter to the controlled points is investigated, and the detailed shear wall section design procedure is proposed.
     In the end, the procedure of the performance-based seismic design method for shear wall structures is illustrated by an example. Using the CANNY program as the analyze method; the seismic behavior of the structure under the excitation of 9 earthquake ground motion records is analyzed. The result illustrate that the time history result follow the deformation aim calculated through the inelastic seismic design spectra method. The inelastic displacement spectra method is a reliable inelastic deformation evaluation method of the shear wall structures. Through the checking calculation and adjusting of the parameter of the shear wall using the deformation aim gained from the inelastic displacement spectra method and the fitted drift angle evaluation function of deferent performance level, the performance level of the shear wall could he realized.
引文
[1].中华人民共和国国家标准.工业与民用建筑抗震设计规范(TJ11-78).1978,中国建筑工业出版社:北京.
    [2].戴国莹,王亚勇.房屋建筑抗震设计2005,北京:中国建筑工业出版社:12-13.
    [3].中华人民共和国国家标准,建筑抗震设计规范(GBJ 11-89).1989,北京:中国建筑工业出版社:55-56.
    [4].中华人民共和国国家标准.建筑抗震设计规范(GB 50011-2001).2001,北京:中国建筑工业出版社:56-59.
    [5].王亚勇.我国2000年抗震设计模式规范展望.建筑结构,1999.26(6):13-19.
    [6]. Moehle., J.P.: Displacement based design of RC structures, in Proceedings of the World Conference on Earthquake Engineering. 1992. Mexcio.
    [7]. Veletsos, A.S., Newmark, M.N. Effect of inelastic behavior on the response of simple systems to earthquake motions, in Proc. 2nd World Conf. Earthquake Eng. 1960. Tokyo, Japan.
    [8]. Freeman, S.A., Nicoletti, J.P., Tyrell, J.V. evaluations of existing buildings for seismic risk-a case study of puget sound naval shipyard, . in Proceedings of 1st U.S. National Conference on Earthquake EngineeringEarthquake Engineering & Structural Dynamics. 1975. Bermerton, Washington.
    [9]. Sozen, M.A. review of earthquake response of RC buildings with a view to drift control. in State of the Art in earthquake Engineering. 1981. Ankara.
    [10]. SEAOC.Vision2000, Performance-based seismic engineering, in Report prepared by Structural Engineers Association of California. 1995: Sacramento, CA.
    [11]. ATC, Seismic evaluation and retrofit of concrete buildings. 1996, ATC-40, Applied Technology Council Redwood City.
    [12]. FEMA273, NEHRP Guidlines for the seismic rehabilitation of buildings. 1997: Washington, D.C.
    [13]. ATC(1996), Seismic evaluation and retrofit of concrete buildings, in Report ATC40. 1996, Applied Technology Council.
    [14]. FEMA(1997), NEHRP Guidlines for the seismic rehabilitation of buildings. 1997, FEMA273: Washington, D.C.
    [15]. FEMA(1997), NEHRP Commentary on the guidelines for the seismic rehabilitation of buildings. 1997, FEMA274: Washington, D.C.
    [16]. P.Fajfar, Capacity spectrum method based on inelastic demand spectra. Earth Quake Engineering and Structural Dynamic, 1999, 28(3): 979-993.
    [17]. Deierlein, G.G. and H. Noguchi, Overview of U.S.-Japan Research on the Seismic Design of Composite Reinforced Concrete and Steel Moment Fram Structures. Journal of Earthquake Engineering, 2004, 130(2).
    [18]. Anil K.Chopra, G., R.K., Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures: SDF systems, in Pacific Earthquake Engineering Research Center. 1999, Berkeley: United States.
    [19]. Gulkar P and M.A. Sozen, Inelastic response of reinforced concrete structures to earthquakes motion. ACI Structural Journal, 1974.71(12): 604-610.
    [20]. Shibata A. and S.M.A., Substitute-structure method for seismic design in R/C Journal of the Structural Division ASCE, 1976. 102(1).
    [21]. Kowalsky, M.J., Direct displacement-based design., a seismic design methodology and its application to concrete bridges[D]. 1997, University of California: San Diego.
    [22]. Kowalsky Mervyn J., M.J., Nigel Priestley, MacRae G.A. , Displacement-based design of RC bridge columns in seismic regions. Earthquake Engineering & Structural Dynamics, 1995.24(12): 1623-1643.
    [23]. Calvi G.M, K.G.R., Displacement based seismic design of multi-degree-of-freedom bridge structures. Earthquake Engineering & Structural Dynamics, 1995.24(9): 1247-1266.
    [24]. M., D.H., Equivalent Damping in Support of Direct Displacement-Based Design with Applications to Multi-Span Bridges[D]. 2004, North Carolina State University.
    [25]. Wallace, J.W., Displacement-Based Design of Slender RC Structural Walls -Experimental Verification. Journal Structural Engineering, ASCE, 2004. 130(4): 618-630.
    [26]. Paulay, T., The displacement capacity of reinforced concrete coupled walls. Engineering Structures, 2002.24(9): 1165-1175.
    [27].小谷俊介,日本基于性能结构抗震设计方法的发展.建筑结构,2000(6).
    [28]. Priestley, M.J.N. and F. Seible, Design of seismic retrofit measures for concrete and masonry structures. Construction and Building Materials, 1995.9(6): 365-377.
    [29]. M.J.N., P. and C. GM., Concepts and procedures for direct displacement-based design and assessment. Seismic design methodologies for the next generation of codes, ed. K.H. Fajfar 1997, Balkema: Rotterdam.
    [30]. Takami Shinji, Yoshioka Kenzo, and E. Hiroak. Performance-based Seismic Design Method of Ultra-high Rise Reinfored Concrete Buildings. in 12WCEE. 2000. Vancouver.
    [31]. T Nagao, H Mukai, and D. Nishikawa. Case Study on Performance Based Seismic Design Using Capacity Spectrum Method. in 12WCEE. 2000. Vancouver.
    [32]. H SLew and S.K. Kunnath. Evaluation of Analysis Procedures for Performance-based Seismic Design of Buildings. in 12WCEE. 2000. Vancouver.
    [33].钱稼茹,吕文,方鄂华.基于位移延性的剪力墙抗震设计.建筑结构学报,1999.20(3):42-48.
    [34].罗文斌,钱稼茹,钢筋混凝土框架基于位移的抗震设计.土木工程学报,2003.36(5).22-29.
    [35].吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱.地震工程与工程振动,2004.24(1):39-48.
    [36].吕西林,郭子雄,RC框架梁柱组合件抗震性能试验研究.建筑结构学报,2001.22(1):2-7.
    [37].王亚勇.关于设计反应谱、时程法和能量方法的探讨.建筑结构学,2000.21(1):21-28.
    [38].马宏旺,吕西林,陈晓宝.建筑结构抗震设防等级个数的研究.土木工程学报,2006.39(5).
    [39].吴波,李艺华.直接基于位移可靠度的抗震设计方法中目标位移代表值的确定.地震 工程与工程振动,2002.22(6):44-51.
    [40].罗文斌.钢筋混凝土框架基于位移的抗震设计原理及方法[D].2003,清华大学博士论文(指导老师:钱稼茹):北京.
    [41].李应兵.钢筋混凝土结构基于性能的抗震设计理论与应用研究[D].2004,西安建筑科技大学博士论文(指导老师:刘伯权):西安.
    [42].范立础,桥梁抗震.1997,上海:同济大学出版社.
    [43].李国强,黄宏伟,郑步全.工程结构荷载与可靠度设计理论.1999,北京:中国建筑工业出版社.
    [44].左春仁,左振宇.基于地震损伤性能的抗震设计方法.大连大学学报,2000.21(6).
    [45].雷磊,直接基于位移的抗震设计方法在剪力墙结构中的应用与研究[M].2005:华南理工大学硕士论文.
    [46].马宏旺,基于性能抗震设计—几个相关问题的研究.2003,同济大学博士后出站报告.
    [47].季静,雷磊,杨志强,韩小雷,郑宜.基于性能的抗震设计方法在剪力墙结构中的应用.地震工程与工程振动,2006.26(3).
    [48].孙景江,姚大庆,王威.利用等位移原则估计高层结构的非弹性地震反应(一).地震工程与工程振动,2004.24(4):41-45.
    [49].孙景江,姚大庆,王威.利用等位移原则估计高层结构的非弹性地震反应(二).地震工程与工程振动,2004.24(5).
    [50]. C.Rai, D., Future Trends in Earquake-Resistant Design of Structures. special section:seismology, 2000.79(9): 1291-1300.
    [51]. RAHNAMA, M., et al. Seismic Performance Based Loss Assessment. in 13th World Conference on Earthquake Engineering. 2004. Vancouver, B.C., Canada.
    [52].周雍年,张小志,谢礼立.工程抗震设防标准的效益分析.地震工程与工程振动,2002.22(1):14-20.
    [53]. Leelataviwat, S. and S.C. Goel, Energy-based Seismic Design of Structures using Yield Mechanism and Target Drift. Journal of Earthquake Engineering, 2002. 128(8): 1046-1054.
    [54]. Rosowsky, D.V., Reliability-based Seismic Design of Wood Shear Walls. Journal of Earthquake Engineering, 2002. 128(11): 1439-1453.
    [55]. S.A.Freeman, J.P.N., J.V.Tyrell. Evaluations of existing buildings for seismic risk-A case study of Puget Sound Naval Shipyard. in Proceeding .Ist U.S. National Conference. 1975. Berkeley.
    [56]. S.A.Freeman, J.P.Nicoletti, and J.V.Tyrell. Development and use of capacity spectrum method, in Proceeding Proc.6th U. S.N a tion Conference. 1998. Okaldan
    [57]. Peter, F., Krawinkler, and Helmut. Seismic design methodologies for the next generation of codes, in proceedings of the International Workshop on Seismic Design Methodologies for the Next Generation of Codes. 1997. Bled, Slovenia,
    [58].李康宁,洪亮.结构三维弹塑性分析方法及计算机程序CANNY.四川建筑科学研究,2001.27(4):1-6.
    [59].龚治国.复杂体型框架—核心筒结构抗震性能和减震研究[D].2006,同济大学博士论文(指导教师:吕西林):上海.
    [60]. Bagchi, A., Evaluation of the seismic performance of reinforced concrete buildings[D]. 2001, Jadavpur University Calcutta.
    [61]. Gupta, B., Enhanced pushover procedure and inelastic demand eatimation for performance-based seismin evaluation of buildings[D]. 1998, University of Central Florida: Orlando, Florida.
    [62]. Cha, E.-j., Impact of "Nchrp Project 12-49" on Performance-Based Seismic Design of Bridges in Low to Hign Seismic Zones[D]. 2003, Illinois Institute of Technology: Chicago.
    [63]. Medina, R.A., Seismic demands for nondeteriorating frame structurea and their dependence on ground motions[D]. 2002, Stanford University
    [64].马玉宏,谢礼立,赵桂峰.地震环境下不同重要性建筑的抗震设防水准.自然灾害学报,2004.13(5):117-121.
    [65].中国工程建设标准化协会标准.建筑工程抗震性态设计通则(试用).2004,北京:中国计划出版社.
    [66].吕西林,章红梅.对《建筑工程抗震性态设计通则(试用)》的评述.地震工程与工程振动,2005.25(8):180-186.
    [67].马玉宏,谢礼立,赵桂峰.不同重要性建筑的抗震设防水准.哈尔滨建筑大学学报,2002.35(5):1-4.
    [68]. Smith, K.G., Innovation in earthquake resistant concrete structure design philosophies: a century of progress since Hennebique's patent. Engineering Structures, 2001.23(1): 72-81.
    [69]. FEMA368, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. 2000: Washington, D.C.
    [70]. EC8, Design of Structures for Earthquake Resistance. 2003, European Committee for Standardization.
    [71].谢礼立,马玉宏.基于抗震性态的设防标准研究.地震学报,2002.24(2):200-209.
    [72].龚思礼.建筑抗震设计.1994,北京:中国建筑工业出版社.
    [73].郭子雄,基于变形的抗震设计理论及应用研究[D].2000,同济大学博士论文(指导教师:吕西林):上海.
    [74].蔡四维,蔡敏.混凝土的损伤断裂.2000,北京:人民交通出版社.
    [75].江见鲸,陆新征,叶列平.混凝土结构有限元分析.2005,北京:清华大学出版社.
    [76].王东升,司炳君,艾庆华,孙治国.改进的Park-Ang地震损伤模型及其比较.工程抗震与加固改造(增刊),2005.27:138-144.
    [77].何政,欧进萍.钢筋混凝土结构基于改进能力谱法的地震损伤性能设计.地震工程与工程振动,2000.20(2):31-38.
    [78].吴斌,欧进萍,张纪刚.基于可靠度的结构损伤性能设计.世界地震工程,2002.18(3):10-18.
    [79].潘龙,孙利民,范立础.基于推倒分析的桥梁地震损伤评估模型与方法.同济大学学报,2001.29(1):10-14.
    [80].王东升,冯启民,考虑低周疲劳寿命的改进Park_Ang地震损伤模型.土木工程学报,2004.37(1):41-49.
    [81].于海祥,武建华,张国彬,一种新型的混凝土结构双参数地震损伤模型.重庆建筑大学学报,2004.26(5).
    [82]. P.Fajar, T.Vidic, and M.Fischinger. Influnce of damping model on seismic response of nonlinear SDOF system, in Structural Dynamics-EURDYN 93. 1993, . T.Moan.
    [83]. Park Y J , A.H.S., Mechanistic Seismic Damage Model for Reinforced Concrete. Journal of structure Engineering, 1985.111 (4): 722-739.
    [84]. Wiliams, M. and R. Sexsmith, Seismic Damage Indices for Concrete Structures: A State-of-the-Art Review. Earthquake Spectra. 1995, . 11 (2): 319-349.
    [85]. Bozorgnia, Y. and B. Vitelmo V, Damage Spectura: Characteristics and Applications to Seismic Risk Reduction. Journal of Earthquake Engineering, 2003.129(10): 1330-1340.
    [86]. Fajfar, P., Equivalent Ductility fFactors: Taking into Account Low-cycle Fatigue. Earthquake Engineering and Structural Dynamics 1992.21(10): 837-848.
    [87]. R.E. Valles, A.M.R., S.K. Kunnath, C. Li, and A. Madan. IDARC 2D Version 4.0: A Program for the Inelastic damage Analysis of Buildings. in Technical Report NCEER-96-0010.1996.
    [88]. Martin S. Williams, I.V., Robert G. Sexsmith, Evaluation of Seismic Damage Indices for Concrete Elements Loaded in Combined Shear and Flexure. ACI Structural Journal,, 1997.94(3): 315-322.
    [89]. Kunnath, S.K. and Y.H. Chai, Cumulative damage-based inelastic cyclic demand spectrum. Earthquake Engineering & Structural Dynamics, 2004.33(4): 499-520.
    [90].候钢领,何政,吴斌,欧进萍.钢筋混凝土结构的屈服位移Chopra能力谱损伤分析与性能设计.地震工程与工程振动,2001.21(3):29-34.
    [91]. Park,Y.J.,Ang,A. H.-S. and Wen,Y.K,Ddamage-limitingAseismic Design of Building, 1987, 3(1): 1-26. Earthq. Spectra, 1987.3(1): 1-26.
    [92]. Ghobarah A, A.-E.H., Biddah A., Response-based damage assessment of structures. Earthquake Engineering and Structural dynamics, 1999.28(1): 79-104.
    [93].牛荻涛,任利杰.改进的钢筋混凝土结构地震破坏模型.地震工程与工程振动 1996.16(4):44-45.
    [94].刘伯权,白绍良.抗震结构的等效延性破坏准则及其子结构试验验证.地震工程与工程振动,1997.17(3):77-83.
    [95]. MJN., P. Performance based seismic design, in 12th World Conference on Earthquake Engineering (12WCEE), . 2000. Auckland, New Zealand,
    [96]. Kowalsky, M.J., RC structural walls designed according to UBC and displacement-based methods. Journal of Structural Engineering, 2001. 127(5): 506-516.
    [97].叶献国.多层建筑结构抗震性能的近似评估—改进的能力谱方法.工程抗震,1998.4:10-14.
    [98]. Black, E., Seismic design and evaluation of multistory buildings using yield point spectra[D]. 2000, Illinois Urbana.
    [99]. TJHIN, T.N., M.A. ASCHHEIM, and J.W. WALLACE. Yield Displacement Estimates for Displacement-Based Seismic Design of Ductile Reinforced Concrete Structural Wall Buildings. in 13th World Conference on Earthquake Engineering. 2004. Vancouver, B.C., Canada.
    [100]. M. Selim GUNAY1, H.S. A Comparative Evaluation of Performance-Based Seismic Assessment Procedures. in 13th World Conference on Earthquake Engineering. 2004. Vancouver, B.C., Canada.
    [101]. Whittaker, A., M. Constantinou, and P. Tsopelas, Displacement estimates for performance-based seismic design. Journal of Structural Engineering-Asce, 1998.124(8): 905-912.
    [102]. KING, S.A., et al. Application of Empirical Fragility Functions From Recent Earthquakes. in 13th World Conference on Earthquake Engineering. 2004. Vancouver, B.C., Canada.
    [103]. Miranda, E., Estimation of Inelastic Deformation Demands of SDOF Systems. Strucrtral Engineering, 2001. 127(9): 1005-1012.
    [104]. Aschheim, M., Yield Point Spectra A Simple Alternative to the Capacity Spectrum Method. ASCE, 2004.
    [105].易伟建,张海燕.结构随机延性需求谱的理论研究.工程力学,2006.23(5):14-19.
    [106].李英民,杨成,赖明.性态设计方法及能力需求曲线方法的几个问题.重庆建筑大学学报,2003.25(6):26-32.
    [107].钱稼茹,罗文斌.静力弹塑性分析—基于性能/位移的抗震设计分析工具.建筑结构,2000.30(6):14-16.
    [108].翟长海,李爽,谢礼立,孙亚民.抗震结构等延性比谱研究.in第七届全国地震工程学术会议.2006.广州.
    [109].朱杰江,吕西林,容柏生.复杂体型高层结构的推覆分析方法和应用.地震工程与工程振动,2003.23(2):26-36.
    [110].汪梦甫,周锡元.高层建筑结构静力弹塑性分析方法的研究现状与改进策略.工程抗震,2003.4:12-15.
    [111].李琪,顾荣蓉,缪志伟,王德.基于位移模式静力弹塑性分析方法的研究.河海大学学报,2005.33(6):688-691.
    [112].魏巍,冯启民.几种push-over分析方法对比研究.地震工程与工程振动,2002.22(4):66-73.
    [113].尹华伟,易伟建.结构地震反应Pushover位移形状向量的选取.湖南大学学报,2004.31(5):88-93.
    [114].叶燎原,潘文.结构静力弹塑性分析push-over的原理和计算实例.建筑结构学报,2000.21(1):37-51.
    [115].尹华伟,汪梦甫,周锡元.结构静力弹塑性分析方法的研究和改进.工程力学,2003.20(4):45-49.
    [116]. RANA, R., L. JIN, and A. ZEKIOGLU. PUSHOVER ANALYSIS OF A 19 STORY CONCRETE SHEAR WALL BUILDING. in 13th World Conference on Earthquake Engineering. 2004. Vancouver, B.C., Canada.
    [117].杨溥,李东,李英民,赖明.抗震结构静力弹塑性分析Push over方法的研究进展.重庆建筑大学学报,2000.22:87-92.
    [118].吴晓涵,吕西林.反复荷载下混凝土剪力墙有限元分析.同济大学学报,1996.24(2):117-123.
    [119].朱杰江,吕西林.钢筋混凝土框架—剪力墙结构推覆分析.地震工程与工程振动,2003.23(4):56-63.
    [120]. R.Park and T.Paulay, Reinforced Concrete Structure. 1975: M.
    [121]. Nassar, A. and H. Krawinkler, Seismic Demands for SDOF and MDOF Systems, in John A.Blume Earthquake Engineering Center. 1991, Stanford University Dept. of Civil Engineering.
    [122].周定松.钢筋混凝土框架结构基于性能的抗震设计方法研究[D].2004,同济大学博士论文(指导教师:吕西林):上海.
    [123]. Miranda, E., Evaluation of Site-Dependent Inelastic Seismic Design Spectra. Journal of Structural Engineering, ASCE, 1993. 119(5): 1319-1338.
    [124].杨富涌,蒋志强,陈德银.剪力墙边缘构件体积配箍率和纵筋配筋率计算程序的开发.四川建筑,2005.25(4).
    [125].陈哲,提高剪力墙轴压比限值的方法.山西建筑,2006.32(10).
    [126].章红梅,吕西林,鲁亮,曹文清.边缘约束构件对钢筋混凝土剪力墙抗震性能影响的研究.地震工程与工程振动,2007.27(1):92-98.
    [127].中华人民共和国国家标准.高层建筑混凝土结构设计规程(JGJ 3-2002).2002,北京:中国建筑工业出版社.56-59.
    [128].李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型试验研究.建筑结构学报,2004.25(5):5-7.
    [129].蒋欢军.沿竖向耗能剪力墙抗震理论与应用研究[D].1999,同济大学(指导老师:吕西林):上海.
    [130].张云峰.钢筋混凝土剪力墙高轴压比下抗震性能试验研究[M].1996:清华大学硕士论文.
    [131].陈勤,钱稼茹,李耕勤.剪力墙受力性能的宏模型静力弹塑性分析.土木工程学报.37(39).
    [132]. lefas, L.D., Michael D. Kotsovos, and N.N. Ambraseys, Behavior of Reinforced Concrete Structural Walls: Strength, Deformation Characteristics, and Failure Mechanism. ACI structural journal. 87(1): 12-31.
    [133].张展,周克荣.变高宽比高性能混凝土剪力墙抗震性能的试验研究.结构工程师,2004.21(2):62-68.
    [134].董宇光.型钢与混凝土粘结—滑移关系及型钢混凝土剪力墙抗震性能研究[D].2006,同济大学(指导老师:吕西林):上海.
    [135]. Salonikios, T.N. and A.J. Kappos, Cyclic Load Behavior of low slendemess reinforced concrete walls : Design basis and test results. ACI Structure Journal, 1999.96(48).
    [136].崔京浩,黄东升.剪力墙结构的分析与设计.2006,北京:中国水利水电出版社.151.
    [137].滕智明,邹离湘.反复荷载下钢筋混凝土构件的非线性有限元分析.土木工程学报.29(2):19-27.
    [138]. T.Nakachi, T.Toda, and K.Tabata. Experimental Study on Deformation Capacity of Reinforced Concrete Core Walls After Yielding. in 11 st WCEE. 1996.
    [139].龚治国,吕西林,姬守中.不同边缘构件约束剪力墙抗震性能试验研究.结构工程师,2006.22(1):56-61.
    [140].赵祥,王社良,刘瑞杰,苗晓瑜.带边框柱剪力墙模型抗震性能试验研究.西安建筑科技大学学报,2004.36(3):275-279.
    [141].左晓宝,戴自强,李砚波.改善高强混凝土剪力墙抗震性能的试验研究.工业建筑,2001.31(6):37-39.
    [142].吕文,钱稼茹,方鄂华.钢筋混凝土剪力墙延性的试验和计算.清华大学学报(自然科学版),1999.39(4):88-91.
    [143].崔熙光,刘永健.冷轧带肋钢筋混凝土剪力墙的试验分析.
    [144].吕西林,吴晓涵.新型抗震耗能剪力墙的震动台试验与分析.地震工程与工程震动,1996.16(1):70-78.
    [145].关萍,王清湘,赵国藩.高强约束混凝土应力-应变本构关系的试验研究.工业建筑, 1997.27(11):26-29.
    [146].孙飞飞,沈祖炎.箍筋约束混凝土模型比较研究.结构工程师,2005.21(1):27-29.
    [147].周文峰,黄宗明,白绍良.约束混凝土几种有代表性应力-应变模型及其比较.重庆建筑大学学报,2003.25(4):122-127.
    [148].周云龙.截面形状及配筋对单片剪力墙抗震性能的影响[M].1987:清华大学硕士论文.
    [149].李耕勤.冷轧带肋焊接网剪力墙延性试验结果分析.昆明理工大学学报,2003.28(2).
    [150].李少云.高轴压比剪力墙的延性问题.第十一届全国高层建筑结构学术交流会.1990.辽宁.
    [151].中华人民共和国国家标准.混凝土结构设计规范(GB 50010-2002).2002,北京:中国建筑工业出版社:56-59.
    [152].中华人民共和国国家标准.建筑工程抗震设防分类标准(GB 50223-2004).2004,北京:中国建筑工业出版社:3-4.
    [153]. Paulay, T., An estimation of displacement limits for ductile systems. EarthQuake Engineering and Structural Dynamic, 2002.31 (10): 583-599.
    [154].过镇海.钢筋混凝土原理.1999,北京:清华大学出版社.
    [155].中华人民共和国国家标准.建筑抗震试验方法规程(JGJ101-96).1997,北京:中国建筑工业出版社:18-20.
    [156]. Thomsen J H and W. J., Displacement-based Design of Slender Reinfomced Concrete Walls-Experomental Verification. Journal of Structure Engineering, 2004. 130(4) : 618-630.
    [157]. Jorge Ruiz-Garcia, E.M., Evaluation of residual drift demands in regular multi-storey frames for performance-based seismic assessment. Earthquake Engineering & Structural Dynamics, 2006.35(13): 1609-1629.
    [158]. Park R and T.Paulay, Reinforced concrete structures. 1995: John Wiley&Sons.
    [159]. K.N., L., CANNY2004 Technical manual. Oct. 2003.
    [160]. FEMA274, NEHRP Commentary on the guidelines for the seismic rehabilitation of buildings. 1997: Washington, D.C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700