用户名: 密码: 验证码:
轻骨料混凝土早期力学性能与抗冻性能的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对浮石性能的研究,针对轻骨料混凝土强度变异性大的特点,配制三种强度等级(LC30,LC25,LC20)的轻骨料混凝土并作了早期性能研究,针对粉煤灰、纤维等做了抗冻耐久性等的研究,研制适用于北方寒冷地区水工建筑物的使用的轻骨料混凝土。
     轻骨料混凝土早期强度发育较普通混凝土迟,随龄期增加,脆性能力平稳增强,在28天龄期受压破坏时,浮石骨料被完全剪切破坏;早期轻骨料混凝土弹性模量随龄期增长关系都较普通混凝土小,表现出塑性性能;轻骨料混凝土28天全应力应变曲线形式与普通混凝土基本类似,但变形区间较大;利用分段应力应变曲线方程对LC30混凝土在28天的拟合中,拟合结果较好。
     针对北方地区的资源情况和浮石骨料的表面特征,研究了粉不同煤灰掺量的耐久性能,考虑了寒区水工建筑物环境特点,耐久性设计了碳化性能、抗渗性能、氯离子侵蚀性能等方面的试验;得出粉煤灰掺入对轻骨料混凝土抗渗性能影响最优的为25%-32%之间;粉煤灰掺量对轻骨料混凝土碳化程度影响与粉煤灰掺量呈现正比关系;30%以内的粉煤灰掺量能保证轻骨料混凝土后期强度发育较高。
     本文进行了轻骨料混凝土、纤维混凝土和碎石轻骨料混凝土的立方体抗压强度、轴心抗压强度、抗折强度和弹性模量、受压破坏等试验,对比聚丙烯纤维和碎石对轻骨料混凝土的增强或增韧效果;以及对纤维增强轻骨料混凝土与碎石轻骨料混凝土的破坏形式进行对比,纤维破坏形式主要表现为横向受剪,碎石轻骨料混凝土破坏时骨料出现松动。
     抗冻耐久性试验中以LC30为基准轻骨料混凝土,在掺入纤维后能大幅度提高轻骨料混凝土的抗冻性能。碎石取代部分轻骨料后,轻骨料混凝土强度虽有一定的提高,抗冻性能却下降较大。纤维轻骨料混凝土在冻融后损伤情况进行研究:以损伤度作为研究对象,得出的轻骨料混凝土耐久性性能在纤维掺量为0.9kg/m3时,抗冻性能较好。利用多项式拟合纤维轻骨料混凝土碎冻融次数与损伤度变化的关系,拟合关系较好。
     在模拟室外环境条件下对纤维轻骨料混凝土进行三温冻融循环试验发现,冻融次数的增加,温度传导更加顺畅,协调变形能力增强,与标准冻融循环相比强度与质量损失在相同冻融次数下较小,纤维掺量为0.9kg/m3时冻胀应力较小,协调变形能力最好,75次冻胀量发育为2mm左右。
2In this paper, pumice lightweight aggregate concrete (LWAC) of LC20,LC25 and LC30, which are specially suitable for being used in cold region, are compounded with the method of mixing fibers, high-quality air-entraining agent and mineral admixtures. In view of the environmental features of cold region,Lightweight aggregate concrete early strength development later than normal, with a view to increasing age, the capacity of a smooth enhancing brittle, in the age of 28 days compressive damage, the pumice aggregate were completely shear failure; lightweight aggregate concrete with early modulus of elasticity growth are small compared with ordinary concrete, the plastic properties of performance; lightweight aggregate concrete stress-strain curves of concrete forms and general similar, but larger deformation range; the use of sub-equation of stress-strain curves of concrete in 28 of LC30 days of fitting in better fitting results.
     Resources for the northern region and the surface characteristics of pumice ,studing the different ash content of flour durability, cold regions taking into account the environmental characteristics of hydraulic structures, the durability design of the carbonation performance, impermeability, chlorine properties of ion erosion of the test; come incorporation of fly ash lightweight aggregate concrete impermeability properties for the best between 25% -32%; fly ash lightweight aggregate concrete carbonation on the degree of influence and a positive correlation between fly ash; 30% less than the fly ash lightweight aggregate concrete guarantee that the late development of higher strength.
     In this paper, a lightweight aggregate concrete, fiber reinforced concrete and lightweight aggregate concrete rubble of the cube compressive strength, axial compressive strength, flexural strength and modulus of elasticity, compression damage test, comparison of polypropylene fiber and gravel lightweight aggregate concrete for enhanced or toughening effect; as well as fiber-reinforced lightweight aggregate concrete and lightweight aggregate concrete rubble of the destruction of the form of contrast, fiber damage is mainly expressed in the form of transverse shear, damage to lightweight aggregate concrete rubble occur when loose aggregate.
     In this paper, based on LC30 lightweight aggregate concrete, in the introduction of fiber can significantly improve the lightweight aggregate concrete properties of the antifreeze. Gravel to replace the part after the lightweight aggregate, lightweight aggregate concrete strength despite some improvement in performance has declined more antifreeze. Fiber lightweight aggregate concrete after freeze-thaw damage in the study to investigate the degree of injury for the study, drawn from the performance of lightweight aggregate concrete durability in the fiber content for 0.9kg/m3, the antifreeze properties. The use of polynomial fitting broken fiber lightweight aggregate concrete and the number of freeze-thaw damage the relationship between the degree of change, a better fitting relations. In a simulated environment under the condition of outdoor fiber lightweight aggregate concrete freeze-thaw cycle three temperature test found that increase in the number of freeze-thaw, temperature conduction more smooth, enhancing the capacity of co-deformation, compared with the standard freeze-thaw cycles and the mass loss of strength in the same the smaller the number of freeze-thaw, when the fiber content for 0.9kg/m3 less frost heave stress, deformation capacity to coordinate the best, 75 times the volume of development of frost heave for about 2mm.
引文
1霍俊芳纤维轻骨料混凝土力学性能及抗冻性能试验研究[D],内蒙古农业大学,2007,
    2龚洛书,刘春圃.混凝土的耐久性及其防护修补.中国建筑工社,1992,4:31-42
    3赵炜璇.冻融环境下混凝土结构温度场及温度应力分析研究[D],哈尔滨工业大学硕士学位.2006
    4吴宏阳,受冻条件下混凝土冻胀应力与温度应力的研究[D].哈尔滨工业大学硕士学位论文,2006
    5 Holm T A. Lightweight concrete and aggregates[C].In:Klieger P, Lamond J F, eds.Tests and properties of concrete and concrete-making materials.Detroit:ASTM,1994.522-532
    6龚洛书,柳春圃.轻集料混凝土[M].北京:中国铁道出版社,1996:25
    7 FIP.FIP manual of lightweight aggregate concrete [M].2nd edition. London: Surrey University Press,1983
    8 Holm T A, Bermner T W. State-of-the-art report on high-strength, high-durability structural low–density concrete for applications in severe marine environments. 2000.1-7
    9韩静云.日本轻集料混凝土的最新进展[C].见:中国建筑学会建材分会轻集料及轻集料混凝土专业委员会主编.“2002年全国轻骨料及轻骨料混凝土生产、应用、技术研讨会”论文集.2004. 5-7
    10罗建林.抗冻混凝土在重复荷载作用下的力学性能研究.哈尔滨工业大学工学硕士论文.2005
    11丁建彤,郭玉顺,木村薰.结构轻骨料混凝土的现状与发展趋势[J].混凝土,2000,(12):23-26
    12郑晓燕,吴文清,王发国,方从贵,栾焕明,考虑温度自约束应力的圬工拱桥温度应力计算[J],合肥工业大学学1999年4期
    13陆培毅;韩丽君;于勇;基坑支护支撑温度应力的有限元分析[J],岩土力学2008年5期
    14 Frank J.Vecchio.Nonlinear Analysis of Reinforced Concrete Frames Subjected to Thermal and Mechanical Loads.ACI Structural Journal,Nov-Dec,1987,492-501
    15 K.van Breugel.Prediction of Temperature Development in Hardening Concrete. Munich, March 1998.Avoidance of Thermal Cracking in Concrete at Early16 Ages.51-75
    16 M.Emborg.Development of Mechanical Behaviour at Early Ages.Munich,March 1998. Avoidance of Thermal Cracking in Concrete at Early Ages.76-148
    17 T.Tanabe.Measurement of Thermal Stress In Situ.Munich,March 1998.Avoidance of Thermal Cracking in Concrete at Early Ages.232-254
    18 S.Bernandec Practical Measures to Avoiding Early Age Thermal Cracking in Concrete Structures.Munich,March 1998.Avoidance of Thermal Cracking in Concrete at Early Ages.231-314
    19 Yan-zhou Niu,Chuan-lin Tu,Robert YLiang,Shui-wen Zhang.Modeling ofThermaomechanical Damage of Early-age Concrete.Journal of Structural Engineering,1995,121(4):717~726
    20 W.C.Horden,E.Maatjes,A.C.Berlage.A Computerized Concrete Hardening Control System and its Application in Tunnel Construction.Proc.Immersed Tunnel Techniques Manchester,1989.pp.235-248
    21朱伯芳.大体积混凝土温度应力与温度控制.北京:中国电力出版社,1998
    22朱伯芳.有限单元法原理与应用.北京:中国水利水电出版社,1998:2-10
    23朱伯芳.水工结构的温度应力与温度控制.北京:中国电力出版社,1998
    24田敬学.大体积混凝土地下结构温度应力场研究.同济大学博士学位论文.上海:同济大学土木工程学院地下建筑与工程系,2002
    25王雍,段亚辉,周海蓉.采用等效徐变度研究混凝土温度应力问题.中国农村水利水电,2001.9,81-83
    26刘杰.地下室现浇墙板早期温度应力及裂缝发展研究.同济大学硕士学位论文.上海:同济大学,1997
    27高勋华.超厚超长钢筋混凝土结构施工温控技术.建筑施工,1987,2:18-35
    28张德兴,李美玲.弹性地基板块温度应力半解析元分析.同济大学学报,1992,20(4):437-444
    29王增春,陈栋,夏明耀.大面积混凝土在变形荷载作用下的应力控制.工程力学,1998
    30方义琳,卓家寿.用刚体界面元法分析温度场、温度应力及徐变应力.水利学报,1998,(7):50~5431
    31张德兴.考虑双向限制弹性地基墙板的温度应力计算.同济大学学报.1989,17(4):483~490
    32 S.Jacobsen, E.J.Sellevold. Frost Salt Scaling and Ice Formation of Concrete: Effect of Curing Temperature and Silica fume on Normal and High Strength Concrete. Freeze-Thaw Durability of Concrete. 1997.93-106
    33 P.K.梅泰著.混凝土的结构、性能与材料[M].祝永年,沈威,陈志源译.上海:同济大学出版社,1991.152;72-88
    34刘巽伯.轻骨料在高性能混凝土中应用的展望[J].房材与应用,1998,(5):35.
    35 A.E.谢依金,水泥混凝土的结构与性能[M],胡春芝译.北京:中国建筑工业出版社,1984.261-273
    36 J.C.Maso.硬化水泥浆体与骨料间粘结[C].陈志源译.第七届水泥化学会议论文集.北京:中国建筑工业出版社,1980.593-605
    37高建明,董祥,朱亚菲等.活性矿物掺合料对高性能轻集料混凝土物理力学性能的影响[C].见:范锦忠主编.“第七届全国轻骨料及轻骨料混凝土学术讨论会”暨“第一届海峡两岸轻骨料混凝土产制与应用技术研讨会”论文集.2004.279-283
    38黄承逵.纤维混凝土结构[M].北京:机械工业出版社,2004.62-63;83-84
    39 G.H.Findrnegg,A.Schreiber.Freezing and Melting of Water in Ordered NanoPorous Silica Materials.Journal of Colloid and Interface Science.1995,171:92-102
    40 N.V.Churaev,V.D.Sobolev.Disjoining Pressure of Water Films in Frozen Materials. Advances in Colloid and Interface Science.2002,(96):231-264
    41慕儒,廖昌文,刘加平等.氯化钠,硫酸钠溶液对混凝土抗冻性的影响及机理.硅酸盐学报.2001,29(6):523-528
    42沈旦申.粉煤灰优质混凝土.上海科学技术出版社.1992:128-145
    43高丹盈,塑性混凝土单向受压应力—应变关系的试验研究,水利学报,2009年1期(82-87)
    44 M.Sandvik,O.E.Gj?rv.Effect of Condensed Silica Fume Strength Development for Silica Fume Concrete.ACI SP-91.1991,2:893~901
    45 M.Sandvik,O.E.Gj?rv.Prediction of Strength Development for Silica Fume Concrete.ACI SP-132.1992:987-996
    46 C.Wang,W.H.Dilger.Modelling of the Development of Heat of Hydration in High-Performance Concrete.ACI SP-154.1995:473~488
    47 E.Mirambell,J.L.Calmon,A.Aguado.Heat of Hydration in High-Strength -Concrete:Case Study.Proceedings of 3rd International Symposium on theUtilization of HSC,Lillehammer.1993:554-561
    48 C.L.Townsend.Control of Temperature Cracking in Mass Concrete.ACI SP-20.1968:119-139
    49 S.L.Khayat,P.C.Aitcin.Silica Fume-A Unique Supplementary Cementitious Material. Progress in Cement and Concrete.1993,4:226-265
    50王海龙申向东,轻骨料混凝土早期力学性能的试验研究[J],硅酸盐通报,2008,5(27),1018-1022
    51 J.E.Cook.Research and Application of High-Strength Concrete,10,000 psi Concrete. Concrete International.1989,11(10):67-75
    52 G.G.Carette,V.M.Malhotra.Long Term Strength Development of Silica Fume Concrete.ACI SP-132.1992:1017-1044
    53 Stefan Jacobsen,Jacques Marchand,Hugues Homain.SEM observations of the microstructure of frost deteriorated and self-healed concretes[J].Cement and Concrete Research, 1995,25(8):1781-1790
    54李金玉,曹建国,徐文雨等.混凝土冻融破坏机理的研究[C].见:曹永康,张树凯主编.混凝土与水泥制品1997年学术年会论文集,北京:混凝土与水泥制品编辑部,1997.58-69
    55高丹盈,塑性混凝土单向受压应力—应变关系的试验研究,水利学报,2009年1期(82-87)
    56过镇海、关于混凝土的破坏准则_破坏形态和纯剪强度的讨论,工程力学,1996(2)(132-142)
    57赵霄龙.寒冷地区高性能混凝土耐久性及其评价方法研究[D].博士学位论文.哈尔滨:哈尔滨工业大学,2001.65-66
    58 JGJ138-2001型钢混凝土组合结构设计和施工规程
    59程文,李爱群,张晓峰,等.钢筋混凝土柱的轴压比限值.建筑结构学报,1994(12)
    60叶列平.钢骨混凝土柱的轴压力限值.建筑结构学报,1997(5)
    61宋小软,张燕坤,粉煤灰陶粒混凝土的弹性模量计算,工业建筑, 2006/02
    62慕儒,缪昌文,刘加平,孙伟.氯化钠、硫酸钠溶液对混凝土抗冻性的影响及其机理[J].硅酸盐学报,2001,29(6):523-529
    63刘娟红,宋少民.粉煤灰和磨细矿渣对高强轻骨料混凝土抗渗及抗冻性能的影响[J].硅酸盐学报.2005,33(4):529-532
    64 Breton D, Carles-Gibergues A, Ballivy G. Contribution to the Formation Mechanism of the Transition Zone Between Rock-Cement Paste[J].Cement and Concrete Research,1993,23 (2) :335-346
    65汪澜.水泥混凝土—组成、性能、应用[M].北京:中国建材工业出版社,2005.410-411;34-35
    66 H.S.Muller, K. Rubner.高性能混凝土的耐久性.冯乃谦,丁建彤,张新华,庄青峰译.北京:科学出版社,1998.14-16;19-24;44-45
    67 K.L.Scrivener, A.Bentur and P.L.Paratt. Quantitative charac- terization of the transtition zone in high strength concrete[J]. Advances in Cement Res.,1988,1(4):203-237.
    68 Breton D, Carles-Gibergues A, Ballivy G,et al. Contribution to the Formation Mechanism of the Transition Zone Between Rock-Cement Paste[J]. Cement and Concrete Research,1993,23(2):335-346
    69郑秀华.陶粒吸水返水特性及其对轻集料混凝土结构与性能的影响[D].博士学位论文.哈尔滨:哈尔滨工业大学,2005.
    70 Shondeep L.Sarkar, Satish Chandra, Leif Berntsson.Inter-dependence of microstructure and strength of structural lightweight aggregate concrete[J]. Concent and Concrete Composites,1992,(14) :239-248
    71胡曙光,王发洲,丁庆军.轻集料与水泥石界面结构[J].硅酸盐学报,2005,33(6):713-717
    72程靳,赵树山.断裂力学[M].北京:科学出版社,2006.9;14-16
    73张义顺,金祖权,李小雷.混凝土在受压下的破坏机理研究[J].焦作工学院学报,2002,21(2):123-126
    74谷光平,蔡学勤,江传顺.混凝土的断裂强度计算模型研究[J].安徽建筑工业学院学报,1999,7(1):51-54
    75 Kaplan M.F.Crack Propagation and the Fracture of Concrete[J].J. ACI,1996,58(5):51-64
    76 A.Hillerborg, M.Modeer, F.E.Petersson. Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements[J].Cement and Concrete Research,1976,6(6):773-782
    77 Jenq Y S and Shah S P.Two parameter fracture model for concrete[J].Journal Engineering Mechanical,ASCE,1985,111(10): 1227-1241
    78 Karigaloo B L and Nallathambi P.Effective crack for the determination of fracture toughness of concrete[J].Engineering Fracture Mechanics,1990,35(4/5):637-645
    79 Xu Shilang and Reinhardt H W.Determination of double-K criterion for crack propagation in quasi-brittle fraxture,PartⅢ:Compact tension specimens and wedge splitting specimens[J].International Journal of Fracture,1990,(98):179-193
    80王海龙申向东,粉煤灰对轻骨料混凝土耐久性影响的试验研究[J].新型建筑材料,2009,4
    81封伯昊,张立翔,李桂青.混凝土损伤研究综述[J].昆明理工大学学报,2001,26(3):21-30
    82高丹盈.混凝土单向损伤的应力应变关系[J].混凝土与水泥制品,1994,(4):14-19
    83马继忠,姚崇德.损伤力学原理在混凝土强度理论中的应用和发展[J].工业建筑,1990,(9):40-45
    84 J.Mazars,G.Pijaudier-Cabot.Continuum Damage Theory Application to Concrete[J].J.of Engin.Mechanics,1989,115(2): 345-365
    85 K.E.Loland.Continuum damage model for load response estimation of concrete.Cement and Concrete Research,1980,10:395-402
    86余天庆,宁国钧.损伤理论及其在混凝土结构研究中的应用[J].桥梁建设,1986,(3):58-71
    87蔡四维,蔡敏.纤维混凝土的损伤理论[J].合肥工业大学学报(自然科学版),2000,23(1):73-77
    88唐光普,刘西拉.基于维象损伤观点的混凝土冻害模型研究[J].四川建筑科学研究,2007,33(3):138-143
    89姚武.纤维混凝土的低温性能和冻融损伤机理研究[J].冰川冻土,2005,27(4):545-549
    90 Robert M. Jones. Mechanics of Composite Materials [M]. Scripta Book Company, 1996.1-29
    91王海龙申向东,冻融环境下钢纤维对轻骨料混凝土力学性能的影响[J],混凝土,2008,8,65-68
    92林小松,杨果林.钢纤维高强与超高强混凝土[M].北京:科学出版社, 2002
    93耿飞.水泥基材料塑性收缩与干燥收缩研究[D].硕士学位论文.南京:东南大学,2004
    94 S.P. Shah. Fiber Reinforced Concrete [M].Handbook of Structural Concrete,1984
    95赵若鹏.陶粒混凝土破坏机理的研究[J].混凝土与水泥制品,1983,(4):2-4
    96刘兰强,曹诚.聚丙烯纤维在混凝土中的阻裂效应研究[J].公路,2000,(6):39-42
    97董振英,李庆斌.纤维增强复合材料细观力学若干进展[J].力学进展, 2001, 31(4):555-582
    98陈志源,林江.高强材料学[M].上海:同济大学出版社,1994
    99 M.Wecharatana and S.P.Shah.Double Tension Test for Studying Slow Crack Growth of Portland Cement Mortar[J].Cement and Concrete Research,1980,10(5):832-844
    100 M.Wecharatana and S.P.Shah.A Model for Predicting Fracture Resistance of FiberReinforced Concrete[J].Cement and Concrete Research,1983,13(6):819-829
    101 K.Vishalvanich and A.E.Naaman.Fracture Model for Fiber Reinforced Concrete[J].J.of the ACI,1983,80(2):128-138
    102于骁中,张玉美,郭桂兰等.混凝土断裂能GF[J].水利学报,1987,(7):30-37
    103吴科如.轻集料混凝土的断裂能[J].三峡大学学报,2002,24(1):9-11
    104黄煜镔,钱觉时,王智等.钢纤维混凝土断裂性能研究[J].建筑技术,2002,33(1):28-29
    105蔡敏,蔡四维.混凝土、纤维混凝土的Ⅰ型断裂[J].工程力学,1999,16(4):54-58
    106王慧.混凝土及纤维混凝土的断裂分析[J].合肥工业大学学报,1996,19(4):64-68
    107董毓利,谢和平,李世平.砼受压损伤力学本构模型的研究[J].工程力学,1996,13(1):44-53
    108何明,符晓陵,徐道远.混凝土的损伤模型[J].福州大学学报(自然科学版), 1994, 22(4):109-114
    109张盛东,樊承谋.混凝土受拉损伤本构关系的研究[J].哈尔滨建筑大学报,2000,33(1):68-72
    110邓宗才,钱在兹.钢纤维混凝土的弹塑性损伤模型[J].力学与实践,2000,22(4):34-37
    111高路彬.混凝土变形与损伤的分析[J].力学进展,1993,23(4):510-519
    112 Mazars J.A Model of a Unilateral Elastic Damageable Material and its Application to Concrete[C].Proc.RILEM Int.Conference Fracture Energy of Concrete,Elsevier.NewYork:N.Y.J.,1986:300-306
    113 Gao lubin,Cheng Qingquo.An anisotropic damage constitutive model for concrete and its applications. Applied Mechanics(ed Zheng Zhemin).International Academic Publishers,1989.578-583
    114韩大建.塑性、断裂及损伤在建立混凝土本构模型中的应用.力学与实践,1988,10(1):7-13
    115程庆国,高路彬,徐蕴贤等.钢纤维混凝土理论及应用[M].北京:中国铁道出版社,1999
    116徐道远,符晓陵,朱为玄等.坝体混凝土损伤—断裂模型[J].大连理工大学学报, 1997,37 (增刊1):1-5
    117余寿文.断裂损伤与细观力学[J].力学与实践,1988,10(6):12-18
    118孙雅珍,赵颖华.混凝土结构断裂与损伤耦合分析研究进展[J].沈阳建筑工程学院学报,2001,17(1):30-33
    119邓宗才.混凝土Ⅰ型裂缝的损伤断裂判据[J].岩石力学与工程学报,2003,22(3):420-424
    120邓宗才,郑骏杰.混凝土裂缝在拉应变下的损伤与断裂分析[J].华中理工大学学报,1999,27(2):49-51
    121徐世烺,赵国藩.混凝土结构裂缝扩展的双K准则[J].土木工程学报,1992,25(2):21-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700