用户名: 密码: 验证码:
涡流阵列无损检测中裂纹参数估计和成像方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡流阵列检测是涡流无损检测一个新兴的分支,既有传统涡流检测方法非接触检测的优点,又融合了阵列检测方法易于实现大面积、快速检测的优势,因而成为目前传感器技术和无损检测技术一个共同的研究热点。本文结合部委级预研项目“××××小型化、集成化、快速化无损检测技术”和“基于阵列式磁场测量方法的××××××微损伤检测技术”,围绕裂纹的定量、可视化涡流阵列检测,基于分时多激励发射接收式涡流阵列传感器,展开了涡流阵列传感器优化设计方法、涡流阵列检测裂纹参数估计方法、涡流阵列传感器不同线圈单元组裂纹参数估计精度不一致性的校准方法、涡流阵列C扫描成像方法等方面的研究。主要内容及创新点如下:
     (1)针对涡流阵列传感器实施检测时存在不敏感区域的问题,提出了参数——线圈单元组有效检测区域比率,该参数能够量化反映涡流阵列传感器的不敏感区域,并可作为减小传感器不敏感区域优化设计中的参考依据。以电磁场理论为基础,探讨了涡流阵列检测问题的解析计算和数值计算方法。阐述了分时多激励发射接收式涡流阵列检测感应电压的详细计算过程,研究了裂纹长度、深度和位置等参数对感应电压的影响,并给出了数值计算结果的物理解释。借助双线圈单元简化模型,进行了涡流阵列传感器线圈单元间互感干扰的有限元仿真,得到了抑制互感干扰的方法。以线圈单元组(涡流阵列传感器可视为若干个线圈单元组的集成,每个线圈单元组包含数个线圈单元)为简化的研究对象,对检测灵敏度、空间分辨率、线圈单元组有效检测区域比率等参数,随线圈单元排布方式、中心距、外半径、高等的变化规律进行了有限元仿真,得到了可用于指导涡流阵列传感器设计的有意义的结论,验证了在涡流阵列传感器设计中引入参数——线圈单元组有效检测区域比率,对于传感器线圈单元排布方式、中心距、外半径等参数的优化设计具有重要参考价值。
     (2)基于缺陷重构技术的涡流阵列检测裂纹参数估计方法,存在需要完备准确的先验数据库和反演分析过程实时性较差等问题。分析了检测输出信号波峰、波谷、拐点等的扫描时刻与检测线圈单元中心到达裂纹长度边缘点时刻的对应关系,提出了一种无需受检部件先验知识的裂纹长度估计方法。分析了检测输出信号波峰幅值与裂纹深度的非线性递增映射关系,研究了基于弹性BP神经网络的裂纹深度估计方法,该方法在先验知识较少的受检部件检测中具有优势。针对垂直于扫描方向裂纹位置估计精度较低的问题,提出了基于参数——两波谷幅值偏离比率的垂直于扫描方向裂纹位置估计方法,该方法较基于缺陷重构技术的估计方法实时性更好。进行了上述裂纹长度、深度和位置等参数估计方法的实验验证,分析了结果的精度。实验结果表明,上述裂纹参数估计方法得到的裂纹参数精度较高。
     (3)针对涡流阵列传感器不同线圈单元组裂纹参数估计精度的不一致性、检测系统精确硬件校准周期较长、完成硬件校准后裂纹参数估计精度仍然较低等问题,提出了基于裂纹参数的涡流阵列检测系统软件校准方法。确立了软件校准模型的基本形式,研究了基于样条变换的偏最小二乘回归、基于核函数变换的偏最小二乘回归和最小二乘支持向量回归机等建模方法,建立了软件校准模型。借助于软件校准模型对初步检测得到的裂纹深度数据进行处理,分析了深度校准结果的精度,得到以下结论:在涡流阵列检测系统硬件校准之后,应用本文提出的软件校准方法,可以有效消除不同线圈单元组裂纹参数估计精度的不一致性,从而显著提高裂纹参数的估计精度;与其它建模方法相比较,基于样条变换的偏最小二乘回归方法所建立的软件校准模型,能够更为准确地估计裂纹深度。
     (4)在对裂纹参数估计精度有较高要求的部件的无损检测中,针对涡流阵列C扫描图像仅对裂纹参数进行定性反映、存在受污染区域、图像裂纹区域与实际裂纹区域存在位置偏差等不足,提出了定量反映裂纹位置、方向、长度和深度等参数的涡流阵列修正C扫描成像方法。将图像分割、边缘检测、轮廓跟踪、细化等图像处理算法和裂纹参数估计方法相结合,给出了涡流阵列修正C扫描图像生成算法。进行了含不同方向裂纹铝板试件的检测实验,生成了U检测模式和T检测模式的修正C扫描图像。实验结果表明:修正C扫描图像作为C扫描图像的衍生图像,能够较为准确地定量反映裂纹位置、方向、长度、深度等参数;修正C扫描成像方法去除了C扫描图像的受污染区域,消除了图像中与实际中裂纹区域位置的偏差,避免了检测人员视觉误差导致的裂纹区域的错误定位;修正C扫描图像生成算法由于包含较多图像处理算法和裂纹参数估计方法,实时性较C扫描图像生成算法稍差,工程实践中,可在C扫描成像方法完成初检判断有无裂纹后,用修正C扫描成像方法完成二次细化检测,进一步准确估计裂纹参数。
     (5)详细阐述了涡流阵列检测系统的总体设计方案,研究了DDS信号发生电路、正交锁定放大电路、模拟多路转换器阵列电路等主要硬件模块实现过程中的技术问题。基于本文设计实现的检测系统,分别对飞机输油管轴向和周向裂纹、飞机发动机叶片裂纹进行了检测,估计了裂纹参数,生成了涡流阵列C扫描图像和修正C扫描图像,实现了定量、可视化无损检测,从而验证了涡流阵列检测系统硬件的可靠性和软件算法的有效性。
Eddy current array testing (ECAT) is a new branch of eddy current nondestructive testing (NDT) technique developed in recent years. In view that ECAT has the advantages of non-contact detecting which merit conventional eddy current testing (ECT) has and easy to implement large-area and fast testing which merit array testing does in the pattern of electronic scan, it has become currently a common hot subject of research in sensor technonlogy and NDT technonlogy. Supported by ministerial-level pre-research projects‘××××miniaturization, integrated, rapid NDT technonlogy’and‘××××××micro-injury testing technonlogy based on methods of array magnetic field measurement’, this paper focuses on quantitative and visual crack detecting by ECAT. Based on time-sharing multi-excitation transimit-receive (TSMETR) eddy current array sensors, several key technology about optimal design methods of eddy current array sensors, methods of crack parameter estimation, calibration methods of crack parameter estimation precision unconsistency from different coil unit groups, methods of eddy current array C scan imaging are studied in this paper. The brief of these researches and the novel approaches are as follows:
     (1) To solve the problem that less sensitive zones exist when the workpieces are detected using ECAT, the ratio of effective detection area of coil unit group which can quantitatively reflect the less sensitive zones is proposed, and this parameter can guide eddy current array sensors’optimal design for reducing the range of less sensitive zones. Based on electromagnetic field theory, ECAT analytical calculation method and numerical method are discussed. Detailed calculation processes of induced voltage of TSMETR ECAT are described. The influence of crack parameters, such as length, depth and position, to induced voltage are researched, and the physical explanation of the results is given. With the help of simplified double coil unit model, finite element simulations of the mutual inductance between eddy current array sensor coil units are implemented, and the elimination methods of mutual inductance are discussed. Using coil unit group (an eddy current array sensor can be seen as integrated by many coil unit groups, and a coil unit group consists of several coil units) as the simplified object of study, the variations of sensitivity, spatial resolution and ratio of effective detection area of coil unit group with diffirent arranged patterns, center distances, outer radius and heights of coil unit are researched by means of finite element simulation method, and several significant conclusions which can guide the design of the eddy current array sensors are drawn. The simulation results verifies that the ratio of effective detection area of coil unit group brings important reference value to the optimal design of arranged pattern, center distance and outer radius of coil unit of eddy current array sensor.
     (2) The method of crack parameter estimation based on the eddy current array defect reconstruction technique is deficient in complete accurate prior database and time -consuming during the process of inverse analysis. By analysing the mapping between the scan times of crest, trough and inflection point of the signals output by ECAT system and the moments when the center of receiving coil unit reach crack edges in the length direction, this paper presents a new method of crack length estimation without any prior knowledge of the workpieces. A method of crack depth estimation which has the advantage in detecting the workpieces with little prior knowledge based on resilient BP neural network is researched by analyzing the nonlinear incremental mapping between the crest amplititude and crack depth. To solve the problem that it is difficult to improve the eatimation precision of crack position that is perpendicular to the scanning direction, a new method of crack position estimation that is perpendicular to the scanning direction based on the amplitude deviation ratio of two valleys is proposed. This method has better real-time performance compared with the method of crack parameter estimation based on the eddy current array defect reconstruction technique. Experiments are done to verify the methods of crack length, depth and position parameter estimation, and the precision of the experimental results are analysed. The results show the high precision of the above mentioned methods of crack length, depth and position parameter estimation.
     (3) To solve the problem that different coil unit groups have different crack parameter estimation precision, the hardware calibration period of the testing system is long and the crack parameter estimation precision are still low after completing the hardware calibration processes, a new software calibration method of ECAT instrument based on the crack parameters is proposed. The basic forms of the software calibration models are established. By researching the partial least-squares (PLS) regression based on the spline transform as well as kernel function and the algorithm based on the least squares support vector machine (LS-SVM), the software calibration models are founded. According to the precision analysis of the crack depth estimated by the software calibration models, the following conclusions can be made, after the hardware calibration process, using the proposed software calibration method can largely reduce the crack parameter estimation precision unconsistency from different coil unit groups so that significantly improving the crack parameter estimation precision. The precision of the crack depth estimated by the software calibration models which are founded by the PLS regression method based on the spline transform is higher than the precision of the crack depth estimated by the software calibration models which are founded by the other modeling approaches.
     (4) In NDT of components whose crack parameters need to be estimated precisely, eddy current array C scan images have the disadvantages of only qualitatively reflecting the defects, existing contaminated areas, having differences between the positions of crack zones in C scan images and the real positions of crack zones, and et al. Eddy current array modified C scan imaging, which can quantitatively reflect the crack position, direction, length and depth, is proposed. Combining the image processing algorithms, such as image segmentation, edge detection, contour tracking, thinning and et al, with the crack parameter estimation methods, the generation algorithms of the eddy current array modified C scan images are researched. Detect the Aluminum specimen with cracks in different directions, generate the eddy current array modified C scan images in U testing mode and T testing mode. The experiments show the below conclusions. As one of the derivative images of the eddy current array C scan images, eddy current array modified C scan images are adaptive for fast testing some components, whose crack parameters need to be estimated precisely, because of precisely quatitative reflection of crack length, depth, direction and position. For eliminating the contaminated areas of the crack zones in C scan images and modifying the deviations between the positions of crack zones in C scan images and the real positions of crack zones, modified C scan images can effectively avoid the error orientation due to the inspectors’visual errors. However, modified C scan imaging is poor in real-time applications because of many image processing algorithms and methods of crack parameter estimation. Therefore, in practice modified C scan imaging may be used to complete the second-step testing for estimating the crack parameters accurately after C scan imaging has determined whether cracks exist.
     (5) Overall design scheme of ECAT system is elaborated, and implementation methods of main hardware modules, including DDS signal generation circuit, orthogonal lock-in Amplifier circuit, analog multiplexer array circuit and et al, are researched. Based on the designed ECAT system, airplane oil tubes with circumferential and axial cracks and aircraft engine blades with cracks are detected. The crack parameters are estimated from the detected signals. Eddy current array C scan image and modified C scan image are generated. Quantitative and visual nondestructive detection to the above key components is fulfilled. Therefore, the reliability of the ECAT system’s hardware and the effectiveness of the proposed algorithms are verified.
引文
[1]美国无损检测学会.美国无损检测手册(电磁卷)[M].上海:世界图书出版社, 1999: 21-22, 901-921.
    [2] C. J. Hellier. Handbook of Nondestructive Evaluation[M]. New York: McGraw-Hill, 2003: 1-2.
    [3]李家伟,陈积懋.无损检测手册[M].北京:机械工业出版社, 2002: 2-4.
    [4]石井勇五郎.无损检测学[M].北京:机械工业出版社, 1986: 1-5.
    [5]曾祥照.无损检测文化概论[J].无损探伤, 2002, (2): 34-37.
    [6]卢彬.无损检测技术及其进展[J].焦作大学学报, 2004, (1): 73-74.
    [7]谢小荣,杨小林.飞机损伤检测[M].北京航空工业出版社, 2006: 6-8.
    [8]杨明安.无损检测技术发展在航空装备修理中的应用[J].无损探伤, 2002, (4): 6-9.
    [9]许占显,李服群,伍艳.无损检测与航空维修[J].无损检测, 2000, 22(6): 269-271.
    [10]孙金立,段成美.无损检测及在航空维修中的应用[M].北京:国防工业出版社, 2004: 1-11.
    [11]耿荣生,郑勇.航空无损检测技术发展动态及面临的挑战[J].无损探伤, 2002, 24(1): 1-5.
    [12]许占显,吴德新,杨小林.飞机损伤检测影响因素分析[J].无损检测, 2001, 23(7): 306-308.
    [13]刘秀丽.飞机结构腐蚀检测技术研究[J].机械强度, 2004, (S1): 70-72.
    [14]许愕俊.缺陷、损伤、微裂纹对航空发动机构件服役总寿命及可靠性的影响[J].航空发动机, 2003, 29(2): 11-15.
    [15] A. R. Smith, J. M. Bending, L. D. Jones, et al. Rapid Ultrasonic Inspetion of Ageing Aircraft[C]. 41st Annual Conference of the Britain Institute NDT, 2002, 25-30.
    [16] R. Leclerc, R. Samson. Eddy Current Array Probe for Corrosion Mapping on Ageing Aircraft[C]. Review of Progress in Quantitative NDE, New York, 2000, 19: 489-496.
    [17] V. Zilberstein, N. Goldfine, A. Washabaugh, et al. The Use of Fatigue Monitoring MWM Arrays in Production of NDI-Standards with Real Fatigue Cracks for Reliability Studies[C]. 16th World Conference on NDT, Montreal, Canada, 2004: 1-8.
    [18] E. Pelletier, M. Grenier, A. Chahbaz, et al. Array Eddy Current for Fatigue Crack Detection of Aircraft Skin Structures[C]. Proceeding of the Vth InternationalWorkshop, Advances in Signal Processing for Non Destructive Evaluation of Materials. Québec, Canada, 2005, 8: 85-92.
    [19] H. Y. Sun, R. Ali, M. Johnson, et al. Enhanced Flaw Detection Using an Eddy Current probe with a Linear Array of Hall Sensors[C]. Review of Progress in Quantitative NDE, New York, 2005, 24, 516-522.
    [20]安治永,李应红,梁华等.无损检测在航空维修中的应用[J].无损检测, 2006, 28(11): 598-601.
    [21] T. Inagaki, T. Ishii, T. Iwamoto. On the NDT and E for the Diagnosis of Defects Using Infrared Thermograph[J]. NDT&E International, 1999, 32: 247-257.
    [22] J. Snell. Infrared Thermography: a View from the USA[J]. Insight, 2005, 47(8): 486-490.
    [23]谭晓明,陈跃良,段成美.飞机结构搭接件腐蚀三维裂纹扩展特性分析[J].航空学报, 2005, 26(1): 66-69.
    [24]胡芳友,王茂才,温景林.沿海飞机铝合金结构件腐蚀与防护[J].腐蚀科学与防护技术, 2003, 15(2): 97-100.
    [25]姜波.飞机检测与维修实用手册[M].吉林:吉林科学技术出版社, 2009: 125-133.
    [26]唐健,聂有传.波音737-200/300/500飞机尾部结构疲劳裂纹的探伤检查[J].航空工程与维修, 1999, (1): 30-31.
    [27]郭海鸥.飞机某型发动机压缩机一级叶片裂纹检测研究[J].无损探伤, 2004, 28(5): 45-46.
    [28]高秀者,陈雷波,戴起勋.飞机燃油管裂纹分析[J].金属热处理, 2008, 33(11): 113-114.
    [29]顾海澄译.疲劳裂纹扩展——30年来的进展[M].西安:西安交通大学出版社, 1989: 1-15.
    [30]朱晨,王伯健.疲劳裂纹的扩展规律和最新研究进展[J].数字技术与机械加工工艺装备, 2010, (3), 10-13.
    [31]高文柱,吴欢,赵永庆.金属材料疲劳裂纹扩展研究综述[J].钛工业进展, 2007, 24(6): 33-37.
    [32]王建.疲劳裂纹的危害及原因分析[J].金属加工, 2009, (14): 67-69.
    [33]莫国影,左敦稳,黎向锋.基于CCD图像的表面疲劳裂纹检测方法[J].机械制造与研究, 2008, 37(6): 55-57,59.
    [34]陈亚文.磁粉探伤技术在流动式起重机疲劳裂纹检测中的应用[J].起重运输机械, 2008, (12): 4-6.
    [35]谢超军,仓恒川.超声波技术在钻杆90o台阶端疲劳裂纹检测中的应用[J].西部探矿工程, 2008, (11): 104-106.
    [36]万升云,熊腊森.端轴根部疲劳裂纹的超声波检测[J].无损检测, 2005, 27(5): 270-271.
    [37]徐敬岗,彭应秋,李丽.机翼接头螺栓孔疲劳裂纹超声检测方法研究[J].无损探伤, 2006, 30(6): 8-10.
    [38]万升云,张久恒,肖和国.驼梁弯曲部位疲劳裂纹的超声波检测[J].无损检测, 1996, 18(11): 319,327.
    [39]师小红,敦怡,王锋等.金属构件疲劳微裂纹非线性超声检测[J].固体火箭技术, 2008, 31(1): 99-102.
    [40]骆志高,李举,王祥.声发射技术在疲劳裂纹检测中的应用[J].制造技术与机床, 2008, (10): 134-136.
    [41]李耀东,黄成祥,侯力.模态声发射技术在构件疲劳裂纹检测中的应用[J].振动与冲击, 2005, 24(2): 122-125.
    [42]刘松平, Steve Ziola,刘晶.疲劳裂纹的模态声发射检测[J].无损检测, 2000, 22(3): 122-124,130.
    [43]李耀东,黄成祥,侯力等.疲劳裂纹的声发射信号检测技术[J].计算机测量与控制, 2004, 12(6): 504-506.
    [44]耿荣生,景鹏,雷洪.飞机主承力构件疲劳裂纹萌生和扩展的声发射评价[J].无损检测, 1999, 21(4): 145-148.
    [45]杨小林,谢小荣,江涛等.疲劳裂纹的振动红外热成像检测[J].激光与红外, 2007, 37(5): 442-444.
    [46]曹益平,李路明,黄刚等.基于电磁检测原理的疲劳裂纹检测方法[J].清华大学学报(自然科学版), 2005, 45(11): 1453-1455,1459.
    [47] U. Godbole, A. Gokh. Eddy Current Inspection in Aircraft Industry[C]. Proceeding of National Seminar on Non-Destructive Evaluation, Hyderabad, 2006: 319-325.
    [48] H. Y. Huang, N. Yusa, K. Miya. Eddy Current Testing and Sizing of Fatigue Cracks[C]. 12th Asia-Pacific Conference on NDT, Auckland, New Zealand, 2006: 1-5.
    [49] Philip MEILLAND, Maizières-lès-Metz. Novel Multiplexed Eddy-Current Array for Surface Crack Detection on Rough Steel Surface[C]. 9th European Conference on Non-Destructive Testing, Berlin, 2006, Tu.4.8.1:1-9.
    [50]徐可北,周俊华.涡流检测[M].北京:机械工业出版社, 2004: 1-2.
    [51]任吉林,林俊明,高春法.电磁检测[M].北京:机械工业出版社, 2000: 47-48.
    [52]林俊明,李同滨,林发炳等.相控阵涡流传感器的研制及其应用[J].无损检测, 2002, 24(1): 9-11.
    [53]徐可北.涡流阵列检测技术[J].冶金分析, 2004, (10): 645-647.
    [54] R. A. Smith, D. J. Harrison. Hall Sensor Array for Rapid Large-Area Transient Eddy-Current Inspection Using Arrays[J]. Insight, 2004, 46(3): 142-146.
    [55] D. C. Hurley, K. H. Hedengren, P. J. Howard, et al. An Eddy Current Array System for Aircraft Engine Inspections[C]. Review of Progress in Quantitative NDE, New York, 1994, 13: 1111-1118.
    [56] W. R. Sheppard, O. V. Manning. Low Frequency Eddy Current Array Assessment at the FAANDI Validation Center[J]. Material Evaluation, 1995, 53(7): 844-847.
    [57] I. Sasada, N. Watanabe. Eddy Current Probe for Nondestructive Testing Using Cross-Coupled Figure-Eight Coils[J]. IEEE Transactions on Magnetics, 1995, 31(6): 3149-3151.
    [58] M. Uesaka, K. Hakuta, K. Miya, et al. Micro Eddy Current Testing by Micro Magnetic Sensor Array[J]. IEEE transaction on magnetics, 1995, 31(1): 870-876.
    [59] M. Uesaka, K. Hakuta, K. Miya, et al. Eddy-Current Testing by Flexible Microloop Magnetic Sensor Array[J]. IEEE Transactions on Magnetics, 1998, 34(4): 2287-2297.
    [60] K. Arunachalam, U. P. Parrikar, P. Ramuhalli, et al. Automated Algorithms for the Analysis of Eddy Current Array Probe Data[J]. IEEE Sensors Applications Symposium, Houston, Texas USA, 2006: 111-114.
    [61] A. Mcnab, J. Thomson. An Eddy Current Array Instrument for Application on Ferritic Welds[J]. NDT&E Intemational, 1995, 28(2): 103-112.
    [62] N. Goldfine, V. Zilberstein, A. Washabaugh, et al. Eddy Current Sensor Networks for Aircraft Fatigue Monitoring[J]. Materials Evaluation, 2003, 61(7): 852-859.
    [63] R. Leclerc. Eddy Current Arrays for Wheel Inspection[C]. Review of Progress in Quantitative NDE, New York, 2001, 20: 949-952.
    [64] J. D. Siegel. Array Coil Probes Versus Sngle Rotating Coil Probes for the Inspection of Steam Generator Tubes[J]. Insight, 1999, 41(9): 592-595.
    [65] Z. Vladimir, T. Lovett, W. Andrew. Applications for Conformable Eddy Current Sensors Including High Resolution and Deep Penetration Sensor Arrays in Manufacturing and Power Generation[J]. American Society of Mechanical Engineers NDE, 2001, 20: 179-186.
    [66] J. F. Bureau, R. C. Wade, J. Wade. Advances in Eddy Current Array Sensor Technology[C]. 17th World Conference on Nondestructive Testing, Shanghai, China, 2008: 1-4.
    [67] S. G. Marnov. Theoretical and Experimental Investigation of Eddy Current Inspection of Pipes with Arbitrary Position of Sensor Coils[J]. Review of Progress in Quantitative NDE, New York, 1986, 5: 225-232.
    [68] M. Gramz, T. Stepinski. Eddy Current Imaging, Array sensors and Flaw Reconstruction[J]. Research in Nondestructive Evaluation, 1994, 5(3): 157-174.
    [69] I. M. Eric, P. W. William, H. P. William. Nondestructive Evaluation for the SpaceShuttle’s Wing Leading Edge[C]. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, 2005: 5-7.
    [70] S. Johnstone, J. Marsh. Investigation into the Use of Inductive Coil Arrays for Metal Object Identification[C]. Proceedings of IEEE Sensors, 2003, 10: 523-528.
    [71] A. E. Crouch, T. Goyen, P. Porter. New Method Uses Conformable Array to Map External Pipeline Corrosion[J]. Oil and Gas Journal, 2004, 102(41): 55-59.
    [72] C. Gilles-Pascaud, B. Lorecki, M. Pierantoni. Eddy Current Array Probe Development for Non-Destructive Testing[C]. 16th World Conference on NDT, Montreal, Canada, 2004: 1-8.
    [73] M. Z. Lou, Y. Guo. The Design of High Strength Bolts Scanning Testing Imaging System Based on the Eddy Current Array Probe[C]. 17th World Conference on Nondestructive Testing, Shanghai, China, 2008: 1-6.
    [74] Y. D. Krampfner, D. D. Johnson. Flexible Substrate Eddy Current Coil Arrays[C]. Review of Progress in Quantitative NDE, New York, 1988, 7: 471-478.
    [75] W. N. Podney, P. V. Czipott. An Electromagnetic Microscope for Eddy Current Evaluation of Materials[J]. IEEE Transactions on Magnetics, 1991, 27(2): 3241-3244.
    [76] J. R. Melcher. Apparatus and Methods for Measuring Permeability and Conductivity in Materials Using Multiple Wavelength interrogations[P]. US Patent Number: 5015951, 1991-4-14.
    [77]李德胜,黄操军,藤田博之. MOS霍尔传感器阵列.电子测量与仪器学, 2001, 15(1): 6-15.
    [78] C. H. Smith, R. W. Schneider, T. Dogaru, et al. GMR Magnetic Sensor Arrays for NDE Eddy-Current Testing[C]. Review of Progress in Quantitative NDE, New York, 2002, 21: 419-426.
    [79] T. Sollier, B. Lorecki, O. Goupillon. CODECI, a New System for the Inspection of Surface Breaking Flaws Based on Eddy Current Array Probe and High Resolution CCD Camera[C]. ENDE’2003 Workshop Proceedings, IOS Press, 2004: 215-222.
    [80] H. Y. Sun, R. Ali, M. Johnson, et al. Enhanced Flaw Detection Using an Eddy Current Probe with a Linear Array of Hall Sensors[C]. Review of Progress in Quantitative NDE, New York, 2004, 23: 516-522.
    [81] J. B. Nestleroth, R. J. Davis. Application of Eddy Currents Induced by Permanent Magnets for Pipeline Inspection[J]. NDT&E International, 2007, 40: 77-84.
    [82] J. Jun, J. Hwang, J. Lee. Quantitative Nondestructive Evaluation of the Crack on the Austenite Stainless Steel Using the Induced Eddy Current and the Hall Sensor Array[C]. Instrumentation and Measurement Technology Conference, Warsaw, Poland, 2007: 1-6.
    [83] R. M. Chen, L. M. Li. Study on the Method of Detection of the Marks of Ferromagnetic Material Based on the Array of Hall Element[C]. 17th World Conference on Nondestructive Testing, Shanghai, China, 2008: 1-5.
    [84] A. Bluschke, U. Schmucker.一种用于检测金属物体轮廓和材料性能的新型传感器——涡流阵列[J].无损检测, 1995, 17(6): 177-178.
    [85] C. H. Smith, R. W. Schneider, T. Dogaru, et al. Eddy-Current Testing with GMR Magnetic Sensor Arrays[C]. Review of Progress in Quantitative NDE, New York, 2003, 22: 406-413..
    [86] L. Perez, C. Dolabdjian, C. W. Waché, et al. Advance in Magnetoresistance Magnetometer Performances Applied in Eddy Current Sensor Arrays[C]. 16th World Conference on NDT, Montreal, Canada, 2004: 1-6.
    [87] S. Yamada, K. Chomsuwan, T. Hagino, et al. Conductive Micorbead Array Detection by High-frequency Eddy-Current Testing Technique with SV-GMR Sensor[J]. IEEE Transaction on Magnetics, 2005, 41(10): 3622-3624.
    [88] L. Butin, G. Wache, L. Perez, et al. New NDE Perspectives with Magneto -resistance Array Technologies-from Research to Industrial Applications[J]. Insight, 2005, 47(5): 280-284.
    [89] F. Vacher, C. Gilles-Pascaud, J. M. Decitre. Non Destructive Testing with GMR Magnetic Sensor Arrays[C]. 9th European Conference on Non-Destructive Testing, Berlin, 2006, Tu.4.4.2: 1-8.
    [90] D. Benitez, P. Gaydecki, S. Quek. Solid-State Multi-Sensor Array System for Real Time Imaging of Magnetic Fields and Ferrous Objects[C]. Review of Progress in Quantitative NDE, New York, 2007, 26: 881-887.
    [91] M. Kreutzbruck. High Resolution Eddy Current Testing of Superconducting Wires using GMR-Sensors[C]. 17th World Conference on Nondestructive Testing, Shanghai, China, 2008: 1-6.
    [92]陈铁群,谢宝忠,刘桂雄.基于巨磁阻元件的涡流/磁一体化阵列传感器[J].科学技术与工程, 2007, 7(13): 3096-3100.
    [93] B. A. Auld. Probe-Flaw Interactions with Eddy Current Array Probes[C]. Review of Progress in Quantitative NDE, New York, 1991, 10: 951-955.
    [94] A. E. Michelle, N. M. Andrei, C. M. John, et al. Non-Destructive Evaluation with a Linear Array of 11 HTS SQUIDs[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 1303-1306.
    [95] S. Gartner, H. J. Krause, N. Walters, et al. Non-Destructive Evaluation of Aircraft Structures with a Multiplexed HTS rf SQUID Magnetometer Array[J]. Physica C, 2002, 372-376: 287-290.
    [96] T. Hato, S. Adachi, Y. Sutoh, et al. NDE of Coated-Conductor Using HTS SQUID Array[J]. Physica C, 2009, 469: 1630-1633.
    [97] N. J. Goldfine, J. R. Melcher. Magnetometer Having Periodic Winding Structure and Material Property Estimator[P]. US Patent Number: 5453689; 1995-9-26.
    [98] N. Goldfine, D. Schlicker, Y. Sheiretov, et al. Conformable Eddy-Current Sensors and Arrays for Fleetwide Gas Turbine Component Quality Assessment[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(4): 904-909.
    [99] N. Goldfine, Z. Vladimir, J. Steve. Meandering Winding Magnetometer Array Eddy Current Sensors for Detection of Cracks in Regions with Fretting Damage[J]. Materials Evaluation, 2002, 60(7): 870-877.
    [100] Z. Vladimir, W. Karen, G. Dave, et al. MWM Eddy-Current Arrays for Crack Initiation and Growth Monitoring[J]. International Journal of Fatigue, 2003, 25: 1147–1155.
    [101] R. Grimberg, S. C. Wooh, A. Savin, et al. A Linear Eddy Current Array Transducer for Rapid High-Performance Inspection[J]. Insight, 2002, 44(5): 289-293.
    [102] Raimond G, Lalita U, Adriana S, et al. 2D Eddy Current Sensor Array[J]. NDT&E International, 2006, 39: 264-271.
    [103] G. Mook, F. Michel, J. Simonin. Electromagnetic Imaging Using Probe Arrays[C]. 17th World Conference on Nondestructive Testing, Shanghai, China, 2008: 1-8.
    [104] M. Kurokawa, et al. New Eddy Current Probe for NDE of Steam Generator Tubes[J]. Studies in Applied Electromagnetics and Mechanics 15, IOS Press, Amsterdam, 1999: 57-64.
    [105] H. Endo, T. Takagi. Vectorized Flaw Imaging by Arrayed Transmit-Receive Type ECT Probe[C]. SICE-ICASE International Joint Conference, Bexco, Busan, Korea, 2006, 10: 2538-2541.
    [106] D. Johnson, S. Mateo, Y. Krampfer, et al. Flexible Coil Assembly for Reffectance -Mode Nondestructive Eddy Current Examination[P]. U.A. Patent Number: 5057719, 1991-9-10.
    [107] H. Fukutomi, T. Ogata. Eddy-Current Inspection of Crack in Land-Based Gas Turbine Blades[C]. Review of Progress in Quantitative NDE, New York, 2003, 22: 368-373.
    [108] J. M. Decitre, G. Mangenet, E. Juliac, et al. Flexible EC Array Probe for the Inspection of Complex Parts Developed within the European VERDICT Project[C]. 9th European Conference on Non-Destructive Testing, Berlin, 2006, Tu.4.4.3: 1-8.
    [109] X. L. Chen, T. H. Ding. Flexible Eddy Current Sensor Array for Proximity Sensing[J]. Sensors and Actuators A: 2007, 135: 126–130.
    [110] C. Ravat, M. Woytasik, P. Y. Joubert, et al. Study for the Design of Eddy Current Microsensor Arrays for Non Destructive Testing Applications[C]. 14th International Conference on Solid-State Sensors, Actuators and Microsystems,Lyon, France, 2007: 583-586.
    [111] M. C. Lugg. Rapid Scanning with Non-Contacting ACFM Array Probes[C]. Review of Progress in Quantitative NDE, New York, 1991, 10A: 1003-1010.
    [112] M. S. Dariush, R. F. Mostafavi. 1-D Probe Array for ACFM Inspection of Large Metal Plates[J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(2): 374-382.
    [113] D. Topp, M. Lugg. Advances in Thread Inpection Using ACFM[C]. 3rd Middle East Nondestructive Testing Conference & Exhibition, Bahrain, Manama, 2005: 1-11.
    [114] C. Laenen, G. Salazar, D. Topp. Application of the ACFM Inspection Method for the Inspection of Internal Tank Welds[C]. IVth Conferencia Panamericana de END Buenos Aires, 2007: 1-13.
    [115] G. Y. Tian, A. Sophian, D. Taylor, et al. Multiple Sensors on Pulsed Eddy Current Detection for 3-D Subsurface Crack Assessment[J]. IEEE Sensors Journal, 2005, 5(1): 90-96.
    [116] B. F. Yang, F. L. Luo, D. Han. Research on Edge Identification of a Defect Using Pulsed Eddy Current based on Principal Component Analysis[J] NDT&E International, 2007, 40: 294-299.
    [117] F. L. Luo, Y. Z. He, B. F. Yang. Array Pulsed Eddy Current Imaging Technique for Nondestructive Testing of Aging Aircraft[C]. 17th World Conference on Nondestructive Testing, Shanghai, China, 2008: 1-7.
    [118]邢丽冬,于盛林,曲民兴.三维远场涡流探头的设计与实验研究[J].仪器仪表学报, 2006 ,27 (11) : 1529-1534.
    [119]李学超,冯恩信,冯非.阵列式脉冲远场涡流管道缺陷检测方法[J].计量技术, 2008, (9): 6-10.
    [120]戴光智,陈铁群,刘桂雄.基于虚拟仪器和传感器阵列技术的综合无损检测系统[J].无损探伤, 2007, 31(2): 28-30.
    [121] A. McNab, J. Thomson. Measurement Technique for Eddy-Current Arrays[C]. IEEE Proceedings, 1990, 137(3): 147-154.
    [122] J. C. Treece, L. D. Sabbagh, H. A. Sabbagh. A Phased Array for Focused Eddy-Current Excitation[C]. Review of Progress in Quantitative NDE, New York, 1991, 10: 987-993.
    [123] L. Hardy, A. Billat, G. Villermain-Lecolier. Flat Eddy-Current Matrix Sensor for Detecting Metallic Objects[J]. Sensor and Actuators A, 1991, 29 (1): 13-19.
    [124] G. Geithman. An Eddy Current Array Imaging System[C]. Review of Progress in Quantitative NDE, New York, 1992, 11: 1025-1029.
    [125]蒋齐密,史海滨,康宜华等.基于涡流传感器阵列的火车轮在役自动检测系统设计[J].机械与电子, 2000, (6): 26-27.
    [126]高印寒,杨柳松,杨晓璐等.含交错层叠电涡流传感器阵列的成像定位仪的研究[J].无损检测, 2005, 27(10): 505-508.
    [127]杨宾峰,罗飞路,曹雄恒等.脉冲涡流腐蚀成像阵列传感器应用研究[J].传感技术学报, 2005, 18(1): 112-115.
    [128]陈祥林,丁天怀,黄毅平.新型接近式柔性电涡流阵列传感器系统[J].机械工程学报, 2006, 42(8): 150-153.
    [129]王泽新.阵列交流电磁场检测(ACFM)的探头设计与试验研究[D].北京:中国石油大学, 2006: 20-64.
    [130]何毅.涡流阵列探头技术在螺栓探伤中的应用[J].无损检测, 2007, 29(9): 534-536.
    [131]赵磊.阵列涡流无损检测技术的研究及进展[J].无损检测, 2009, 33(2): 19-22.
    [132]楼敏珠,郭韵.基于涡流阵列传感器的高强度螺栓扫描检测成像系统设计[J].无损检测, 2009, 31(6): 485-487.
    [133]付小强,吴素君,张佳佳等.涡流阵列无损检测技术在大飞机中的应用[J].民用飞机设计与研究, 2009, (S1): 84-88.
    [134]左勇斌,陈振茂.基于多线圈激励的深裂纹涡流定量检测方法[J].无损检测, 2009, 31(12): 925-927.
    [135]何永勃,邵雨果.基于阵列涡流技术的裂纹特征量研究[J].传感器与微系统, 2010, 29(2): 80-82, 86.
    [136]林俊明,李同滨,林发炳等.阵列涡流探头在钢管探伤中的实验研究[J].钢管, 2001, 30(3): 39-40.
    [137]王长清.现代计算电磁学基础[M].北京:北京大学出版社, 2005: 12-20.
    [138] W. Renhart, C. A. Magele. The Treatment of Cracks in NDT problems using FEM[J]. IEEE Transactions on Magnetics, 1990, 26(2): 873-876.
    [139] K. Ishibashi. Eddy Current Analysis by Boundary Element Method Utilizing Impedance Boundary Condition[J]. IEEE Transactions on Magnetics, 1993, 31(2): 1512-1515.
    [140] A. Bossavit, J. C. Verite. A Mixed FEM-BEM Method to Solve 3-D Eddy-Current Problem[J]. IEEE Transactions on Magnetics, 1982, 18(2): 432-435.
    [141] J. R. Bowler, L. D. Sabbagh, H. A. Sabbagh. A Theoretical and Computational Modal of Eddy-Current Probes Incorporating Volume Integral and Conjugate Gradient Methods[J]. IEEE Transactions on Magnetics, 1989, 25(3): 2750-2664.
    [142]唐磊.涡流无损检测中体积分方程法及缺陷重构智能系统研究[D].西安:西安交通大学, 1997: 3-6.
    [143]丁天怀,陈祥林.电涡流传感器阵列测试技术[J].测试技术学报, 2006, 20(1): 1-5.
    [144] A. Zaoui, M. Feliachi, V. Doirat, et al. A fast 3D modeling of arrayed eddy current sensor[C]. Proceeding of the 12th Biennial IEEE Conference Electromagnetic Fields Computation, CEFC, 2006: 66.
    [145] A. Zaoui, H. Menana, M. Feliachi, et al. Generalization of the Ideal Crack Model for an Arrayed Eddy Current Sensor[J]. IEEE Transaction on Magnetics, 2008, 44(6): 1638-1641.
    [146]刘波,罗飞路,何赟泽等.多激励涡流阵列探头阻抗分析[J].中国电机工程学报, 2010, 30(18): 122-126.
    [147] B. A. Auld, J. C. Moulder. Review of Advances in Quantitative Eddy Current Nondestructive Evaluation[J]. Journal of Nondestructive Evaluation, 1999, 18(1): 3-36.
    [148] S. K. Burke, M. E. Ibrahim. Mutual Impedance of Air-cored Coils above a Conducting Plate[J]. Journal of Physics D: Application of Physics 2004, 37: 1857-1868.
    [149]刘波,罗飞路,侯良洁.平板表层缺陷检测涡流阵列传感器的设计[J].传感技术学报, 2011, 24(5): 679-683.
    [150] L. Janousek, Z. M. Chen, N. Yusa, et al, Excitation with Phase Shifted Fields-Enhancing Evaluation of Deep Cracks in Eddy Current Testing[J]. NDT&E International, 2005, 38(6): 508-515.
    [151] L. Janousek, K. Capova, N. Yusa, et al Multiprobe Inspection for Enhancing Sizing Ability in Eddy Current Nondestructive Testing[J]. IEEE Transactions on Magnetics, 2005, 44(6):1618-1621.
    [152] H. Y. Huang, N. Sakurai, T. Takagi, et al. Design of an Eddy-Current Array Probe for Crack Sizing in Steam Generator Tubes[J]. NDT and E International, 2003, 36(7): 515-522.
    [153] J. Pavo, K. Miya. Optimal Design of Eddy Current Testing Probe Using Fluxset Magnetic Field Sensors[J]. IEEE Transactions on Magnetics, 1996, 32(3): 1597-1600.
    [154] J. Fava, M. Ruch. Design, Construction and Characterisation of ECT Sensors with Rectangular Planar Coils[J]. Insight, 2004, 46(5): 268-274.
    [155]于亚婷,杜平安,廖雅琴.线圈形状及几何参数对电涡流传感器性能的影响[J].仪器仪表学报, 2007, 28(6): 1045-1050.
    [156] J. R. Bowler. Modeling of Eddy Current Array Sensor Sensitivities[R]. Air Force Research Laboratory Final Report, 2002: 1-38.
    [157] V. Katyal, J. R. Bowler. Simulation of Eddy-Current Corrosion Detection Using a Sensor Array. Review of Progress in Quantitative NDE, New York, 2002, 21: 359-366.
    [158] V. Lunin, A. Zhdanov. Automated Data Analysis in Eddy Current Inspection ofSteam Generator Tubes[C]. 9th European Conference on Non-Destructive Testing, Berlin, 2006, We.2.3.4: 1-7.
    [159]林俊明,余兴增,林春景等.基于小波分析的涡流信号去噪处理[J].无损检测, 2003, 25(5): 257-257.
    [160] B. H. Shin. Independent Component Analysis for Enhanced Feature Extraction from Non-Destructive Evaluation[D]. Michigan: Michigan State University, 2004: 24-36.
    [161] R. P. R. Hasanzadeha, A. R. Moghaddamjoob, S. H. Sadeghia, et al. Optimal Signal-Adaptive Maximum Likelihood Filter for Enhancement of Defects in Eddy Current C-Scan Images[J]. NDT&E International, 2008, 41: 371-381.
    [162]刘波,罗飞路,侯良洁.涡流阵列检测裂纹特征提取方法的研究[J].仪器仪表学报, 2011, 32(3): 654-659.
    [163]陈德智.涡流无损检测中数值模拟与信号处理的研究[D].西安:西安交通大学, 1998: 32-42.
    [164] T. Taniguchia, K. Nakamura, S. Yamada, et al. Image Processing in Eddy-Current Testing for Extraction of Orientations of Defects[J]. International Journal of Applied Electromagnetics and Mechanics, 2001/2002, 14: 503-506.
    [165] H. Endo, T. Uchimoto, T. Takagi, et al. Natural Crack Sizing Based on Eddy Current Image and Electromagnetic Field Analysis[C]. Review of Progress in Quantitative NDE, New York, 2005, 24: 720-727.
    [166]幸玲玲,王东进.涡流检测中的组合神经网络模型[J].电子学报, 2002, 30(5): 734-737.
    [167] B. P. C. Rao, R. Baldev, T. Jayakumar, et al. A New Approach for Restoration of Eddy Current Images[J]. Journal of Nondestructive Evaluation, 2001, 20(2): 61-72.
    [168]高印寒,吴定超,李春光等.涡流实时成像技术的研究[J].仪表技术与传感器, 2003, (4): 44-47.
    [169]吴迪,张兆东,韩秀甫等.通用扫描成像检测软件的开发及应用[J].无损检测, 2003, 25(8):403-406.
    [170]王雅萍,朱目成.磁光/涡流无损检测技术的研究[J].激光与红外, 2005, 7(35): 515-517.
    [171]程玉华,周肇飞,尹伯彪.磁光/涡流实时成像检测系统的研究[J].光学精密工程. 2006, 5(14): 797-801.
    [172] X. Ma, A. J. Peyton, X. Y. Zhao. Measurement of the Electrical Conductivity of Open-Celled Aluminium Foam Using Non-Contact Eddy Current Techniques[J]. NDT&E International, 2005, 38: 359-367.
    [173] X. Ma, A. J. Peyton, S. R. Higson, et al. Hardware and Software Design for anElectromagnetic Induction Tomography System for High Contrast Metal Process Applications[J]. Measurement Science and Technology, 2006, 17: 111-118.
    [174]李连宇.电磁层析成像系统仿真研究[D].北京:北京交通大学,2006: 6-14.
    [175] F. Kojima, F. Kobayashi, F. Kawai, et al. Development of Hybrid Nondestructive Evaluation System Using Electromagnetic Inverse Analysis with Measurements[C]. Proceeding of SICE Annual Conference, Okayama, 2005, 992-995.
    [176] N. T. Duong, F. Kojima. ECT Database and Greedy-Search Inverse Analysis for Crack Shape Recovery Arising in Eddy Current Testing[C]. SICE-ICASE International Joint Conference, Bexco, Busan, Korea, 2006: 3537-3542.
    [177] M. Macecek. Advanced Eddy Current Array Defect Imaging[C]. Review of Progress in Quantitative Nondestructive Evaluation, LaJolla, California, 1991, 10: 995-1002.
    [178]刘波,罗飞路,侯良洁.涡流阵列检测修正C扫描成像技术研究[J].传感技术学报, 2011, 24(8): 1172-1177.
    [179] J. R. Bowler, V. Katyal. Magnetic Sensor Array for Eddy Current Field Measurement with a Racetrack Coil Excitation[J]. Electromagnetic Nondestructive Evaluation VIII, 2004: 36-43.
    [180] C. C. Cheng, C. V. Dodd, W. E. Deeds. General Analysis of Probe Coils Near Stratified Conductors[J]. International Journal of Nondestructive Test, 1971, 3: 109-130.
    [181]唐磊.涡流无损检测中体积分方程法及缺陷重构职能系统研究[D].西安:西安交通大学, 1997: 20-36.
    [182]雷银照.三维探伤涡流场及其逆问题的研究[D].北京:清华大学, 1995: 29-50.
    [183]姜宇,郭黎利.工程电磁场与电磁波[M].武汉:华中科技大学出版社, 2009: 123-137.
    [184]金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社, 1998: 15-22.
    [185]张惠娟.运动电磁系统涡流场有限元研究[D].天津:河北工业大学, 2000: 5-14.
    [186] N. V. Nair, V. R. Melapudi, H. R. Jimenez, et al. A GMR-Based Eddy Current System for NDE of Aircraft Structures[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3312-3314.
    [187]陈乔夫,李湘生.互感器电抗器的理论与计算[M].武汉:华中理工大学大学出版社, 1992: 251-256.
    [188]周宁,李在铭.一种小波域平滑滤波的杂波抑制方法[J].电子学报, 2010,38(7): 1641-1645.
    [189]何继善,吴小平,柳建新等.利用小波变换确定电磁测深曲线拐点的应用研究[J].物探化探计算技术, 2005, 27(3): 219-222.
    [190] H. J. Sussmann. Uniqueness of the Weights for Minimal Feed Forward Nets with a Given Input-Output Map[J]. Neural Network s, 1992, 5 (3): 589-593.
    [191] K. Hornik. Approximation Capabilities of Multilayer Feed Forward Networks[J]. Neural Networks, 1991, 4(2): 251-257.
    [192] J. S. K. Suykens, B. D. Moor, J. Vandewalle. Robust Local Stability of Multi -Layer Recurrent Neural Networks. IEEE Transactions on Neural Networks[J], 2000, 11(1): 222-229.
    [193] H. E. A. Elgamel. A Simple and Efficient Technique for the Simulation of Capacitive Pressure Transducers [J]. Sensors and Actuators A, 1999, 77: 183-186.
    [194]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社, 2003: 78-92.
    [195] Z. Q. Bian, X. G. Zhang. Patten Recognition [M]. Beijing: Publishing company of Tsinghua University, 1999, 12: 254-257.
    [196] Z. H. Shen, F. Liu. Applying Improved BP Neural Network in Underwater Targets Recognition[C]. International Joint Conference on Neural Networks, Vancouver, BC, Canada, 2006, 7: 2588-2592.
    [197]马春,刘辉.无损检测仪器检定和校准方法[J].装备制造技术, 2008, (1): 70-71.
    [198] Bo Liu, Feilu Luo, Mengchun Pan, Liangjie Hou. A New Channel Calibration Method of Eddy Current Array Technology[C]. IEEE International Conference on High Performance Networking, Computing and Communicaiton Systems & International Conference on Theoretical and Mathematical Foundations of Computer Science, Singapore, 2011: 207-212.
    [199]王惠文,吴载斌,孟洁等.偏最小二乘回归的线性与非线性方法[M].北京:国防工业出版社, 2006: 186-226.
    [200]王新生,姜友华,李仁东等.模拟退火算法及其在非线性地学模型参数估计中的应用[J].华中利技大学学报, 2001, 35(1): 103-106.
    [201] Y. F. Li, H. Q. Wang. RBF Neural Network Based Soft Measurement Model for Dryness of Wet Steam[J]. Process Automation Instrumentation, 2003, 24(9): 9-12.
    [202] W. W. Yan, H. H. Shao, X. F. Wang. Soft Sensing Modeling Based on Support Vector Machine[J]. Computes and Chemical Engineering, 2004, 28: 1489-1498.
    [203]蔡煜东,陈常庆.用遗传算法辨识发酵动力学模型参数[J].化工学报, 1995, 46(3): 338-342.
    [204]陆克中,方康年. PSO算法在非线性回归模型参数估计中的应用[J].计算机技术与发展, 2008, 18(12): 134-136.
    [205] J. F. Durand. Local Polynomial Additive Regression through PLS and Splines: PLSS[J]. Chemometrics and InteVigent Laboratory Systems, 2001, 58: 235-246.
    [206]孟洁,王慧文,黄海军等.基于核函数的PLS回归的非线性结构分析[J].系统工程, 2004, 22(10): 93-97.
    [207]李亚芬,任峰,李喜等.基于样条变换偏最小二乘回归应用航油干点的软测量[J].计算机与应用化学, 2009, 26(3): 300-304.
    [208] V. N. Vapnik. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995: 15-32.
    [209] M. A. Mohandes, T. O. Helawani, S. Rehman, et al. Support Vector Machines for Wind Speed Prediction[J]. Renewable Energy, 2004, 29: 939-947.
    [210] A. K. S. Johan, L. Lukas, J. Vandewalle. Sparse Approximation Using Least Squares Support Vector Machines[J]. IEEE International Symposium on Circuits and Systems, 2000, 5: 28-31.
    [211]李亚芬,曹茂松,李琦等.基于最小二乘支持向量机的航煤干点软测量应用研究[J].计算机与应用化学, 2006, 23(4): 367-371.
    [212]徐志明,文孝强,孙媛媛等.基于最小二乘支持向量回归机的燃煤锅炉结渣特性预测[J].中国电机工程学报, 2009, 29(17): 8-13.
    [213] N. R. Pal, S. K. Pal. A Review on Image Segmentation Techniques[J].Pattern Recognition, 1993, 26: 1227-1249.
    [214]李弼程,彭天强等.智能图像处理技术[M].北京:电子工业出版社, 2004: 126-140.
    [215] P. K. Sahoo, S. Soltani, A. K. C. Wang, et a1. A Survey of Thresholding Techniques[J].Computer Vision, Graphics and Image Processing, l988, 4l(2): 233-260.
    [216]林瑶,田捷.医学图像分割方法综述[J].模式识别与人工智能, 2002, 15(2): l92-204.
    [217]邱明,张二虎.医学图像分割方法[J].计算机工程与设计, 2005, 26(6): 1557-1559,1588.
    [218] H. S. Yang, S. U. Lee. Split and Merge Segmentation Employing Thresholding Technique[C]. Proceedings of IEEE International Conference on Image Processing, 1997: 239-242.
    [219] B. Wang, H. Z. Shu, C. J. Shi, et al. A Novel Stochastic Search Method for Polygonal Approximation Problem[J]. Neurocomputing, 2008, 71(16/18): 3216-3223.
    [220] L. N. Manousakes,P. E. Undrill, G. G. Cameron, et al. Split and Merge Segmentation of Magnetic Resonance Medical Images: Performance Evaluationand Extension to Three Dimensions[J]. Computers and Biomedical Research, 1998, 31: 393-412.
    [221] G. Damiand, P. Resch. Split and Merge Algorithms Defined on Topological Maps for 3D Image Segentation[J]. Graphical Model, 2003, 65(1/3): 149-167.
    [222] V. Barra. Robust Segmentation and Analysis of DNA Microarray Spots Using an Adaptive Slit and Merge Algorithm[J]. Computer Methods and Programs in Biomedicine, 2006, 81(2): 174-180.
    [223] L. F. Liu, S. Sclaroff. Deformable model-Guided region Split and Merge of Image Regions[J]. Image and Vision Computing, 2004, 22(4):343-354.
    [224] L. Chang, Z. S. Tang, S. H. Chang, et al. A Region Based GLRT Detection of Oil Spills in SAR images[J]. Pattern Recognition Letters, 2008, 29(14): 1915-1923.
    [225]张燕.一种改进的快速中值滤波算法[J].安徽建筑工业学院学报, 2008, 16(4): 24-25,90.
    [226]白俊江,洪春勇.基于Sobel的边缘检测方法[J].计算机工程应用技术, 2009, 5(21): 5847-5849.
    [227]刘彩.一种改进的Sobel图像边缘检测算法[J].贵州工业大学学报, 2004, 30(5): 77-79.
    [228]袁野.摄像机标定方法及边缘检测和轮廓跟踪算法研究[D].大连:大连理工大学, 2002: 36-41.
    [229]张昊,徐刚.基于四邻域的二值图像细化算法[J].信号处理与模式识别, 2004, (6): 24-27.
    [230] Y. Y. Zhang, C. Y. Suen. A Fast Parallel Algoritlm for Thinning Digital Patterns[J]. Communications of the ACM, 1984 27(6): 236-239.
    [231] H. E. Lu, P. S. Wang. A Comment on“a Fast Parnllel Thinning Algorithm for Thinning Digital Pattems"[J]. Communications of the ACM, 1986 29(3): 239-242.
    [232]任传波,吴红.二值字符图案细化的一种算法——神经网络算法.小型微型计算机系统, 1999, 20(3): 228-232.
    [233]高军哲,罗飞路,潘孟春等.基于AD9850和AD9854的涡流检测系统信号源设计[J].电子器件, 2009, 32(2): 394-497.
    [234]高晋占.微弱信号检测[M].北京:清华大学出版社, 2004: 104-136.
    [235]李勇军.正确选择模拟开关[J].世界电子元器件, 2000, (8): 23-24.
    [236] Bo Liu, Feilu Luo, Zhongqing Jin, Jiali Liu. Eddy Current Array Instrument and Probe for Crack Detection of Aircraft Tubes[C]. IEEE International Conference on Intelligent Computation Technology and Automation 2010, Changsha, China, 2010: 177-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700