用户名: 密码: 验证码:
延迟性、多次经巩膜电刺激对轴突横断的视网膜节细胞的神经保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中枢神经系统的损伤和修复一直是学术界研究的重点和难点。通常在成年哺乳动物中,中枢神经系统的损伤导致神经细胞的死亡和不可逆的轴突退化。视网膜节细胞属于中枢神经系统的一部分,也具有中枢神经细胞的特点,因此,视神经横断成为研究中枢神经系统损伤的重要动物模型。电刺激作为一种可靠的神经恢复方法,被广泛应用于外周神经系统中。如在坐骨神经的损伤模型中,电刺激可以促进受损的神经元存活,并促进轴突再生。在耳蜗螺旋神经节细胞的损伤模型中,慢性电刺激可以有效的促进神经元的存活。近期研究发现,在视网膜节细胞轴突横断后即刻进行眼部电刺激可以在视神经切断后7天促进神经元的存活,证实了电刺激对中枢神经系统的受损神经细胞有促进存活的作用。对于中枢神经系统,有研究表明在视神经横断当时给予1小时的电刺激,即可激活IGF-1系统,促使视网膜节细胞存活。本研究的第一部分,研究延迟及多次电刺激对轴突横断的视网膜节细胞存活的神经保护作用。结果显示在视神经切断后即刻、3天、5天给予巩膜电刺激时,在视神经切断后7天进行视网膜节细胞计数,刺激组的视网膜节细胞存活数显著高于对照组。我们对切断后3天这个时间点进行了详细研究。发现在这个时间点进行电刺激时,其神经保护作用可以持续至14天,其视网膜节细胞的存活数显著高于对照组。随后我们又增加了电刺激的次数,从切断后当时开始刺激,每3天刺激1次,直到第14天,视网膜节细胞的存活数又显著高于第3天单次刺激组。本研究的第二部分,研究延迟电刺激对轴突横断的视网膜节细胞的保护机制。我们对3天单次刺激组进行了免疫组化染色,发现3天刺激组的IGF-1表达高于假手术对照组,且主要集中于Müller细胞分布区。该结果显示延后电刺激可能激活Müller细胞,并促进IGF-1的释放,发挥神经保护作用。为了证实延后电刺激是否激活Müller细胞,我们对视网膜进行GFAP染色分析,发现Müller细胞可以表达GFAP,延后电刺激可以进一步增强这种作用。但对于星形胶质细胞这种反应不很明确,有待进一步证实。我们还对延后电刺激与小胶质细胞的关系进行了研究。发现延后电刺激可以抑制小胶质细胞的活性,从而减轻小胶质细胞对受损视网膜节细胞的损伤,起到神经保护作用。此外,电刺激对于视网膜节细胞也会产生直接作用,经免疫组化检测,我们发现电刺激组的p-Akt的表达高于对照组。我们推测电刺激通过激活视网膜节细胞内p-Akt/Akt途径发挥神经保护作用。因此,经巩膜延后电刺激发挥的神经保护作用是通过多系统的联合作用过程,这种方法可望为基础研究和临床治疗开辟思路。
Injury and recovery of central nervous system are the focal point and nodus in the academic circles. Injury of central nervous system usually leads to neurocyte death and nonreversible axon degeneration in adult mammal. RGCs belongs to central nervous system , and the characters of RGCs are similar as neurons of central nervous system . Many studies about central nervous system have been carried out using the transection of optic nerve as model system. Electrical stimulation is a kind of treatment to injury in peripheral nervous system. It has been reported that electrical stimulation can induce axotomized sciatic nerve to extend axons in vivo and in vitro. Moreover, chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness, and electrical stimulation enhances the survival of axotomized retinal ganglion cells in vivo. In central nervous system , it is reported that transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 System. In the first part of this study, we investigated the neuroprotective effect of delayed and repeated electrical stimulation on axotomized RGCs in adult rats . Our result showed that delayed and repeated electrical stimulation could enhance the survival of axotomized RGCs in adult rats. Treatment with electrical stimulation at the third day or the fifth day after ON transection induced a significant increase in the number of FG-labeled RGCs, when compared with the control animals. Electrical stimulation was carried on at the third day after ON axotomy, and the neuroprotective effect kept on 11 days. We performed ES repeatly, once every 3 days, from 0 day to the 14th day after ON axotomy. The survival number of RGCs was more than those without ES at the third day. Given these lines of evidence, we hypothesized that delayed electrical stimulation may improve the survival of axotomized RGCs in vivo. To test this hypothesis, in the present study, we examined, on day 7 after ON transection, the level of IGF-1 in the retinas with or without electrical stimulation 3 days after ON transection in adult rats. The express of IGF-1 in Müller cells with ES was more than those without ES. This indicate that ES activate IGF-1 system and promote the survival of RGCs. To test the state of Müller cells , we examined, on day 7 after ON transection, the level of GFAP in the retinas with or without electrical stimulation 3 days after ON transection in adult rats. The express of GFAP in Müller cells with ES was more than those without ES. This indicated that ES activated Müller cells and promoted the survival of RGCs. The reaction was not conspicuous in astrocyte. We also found the inhibition effect induced by ES in microglias, and those reduced the damage to RGCs. The direct effect to RGCs induced by ES was observed in our experiment. p-Akt signal pathway was activate by ES in RGCs, and apoptosis of RGCs was inhibited. Therefore, TsES was a useful neuroprotective method for clinical research, and the mechanism of TsES was complex.
引文
[1] Wade NJ. Cajal's retina. Cortex 2008;44 (3):227-8.
    [2] Fournier AE, Strittmatter SM. Repulsive factors and axon regeneration in the CNS. Current Opinion in Neurobiology 2001;11 (1):89-94.
    [3] Martini R. The effect of myelinating Schwann cells on axone. Muscle & Nerve 2001;24 (4):456-66.
    [4] Larsson K, Rydevik B, Olmarker K. Disc related cytokines inhibit axonal outgrowth from dorsal root ganglion cells in vitro. Spine 2005;30 (6):621-4.
    [5] Pasterkamp RJ, Giger RJ, Ruitenberg MJ, Holtmaat AJGD, De Wit J, De Winter F, Verhaagen J. Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Molecular and Cellular Neuroscience 1999;13 (2):143-66.
    [6] Arevalo JC, Chao MV. Axonal growth: where neurotrophins meet Wnts. Current Opinion in Cell Biology 2005;17 (2):112-5.
    [7] David S, Aguayo AJ. Axonal Elongation into Peripheral Nervous-System Bridges after Central Nervous-System Injury in Adult-Rats. Science 1981;214 (4523):931-3.
    [8] Varon S, Skaper SD, Manthorpe M. Trophic Activities for Dorsal-Root and Sympathetic Ganglionic Neurons in Media Conditioned by Schwann and Other Peripheral Cells. Developmental Brain Research 1981;1 (1):73-87.
    [9] Berkelaar M, Clarke DB, Wang YC, Bray GM, Aguayo AJ. Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 1994;14 (7):4368-74.
    [10] Batistatou A, Greene LA. Aurintricarboxylic Acid Rescues Pc12 Cells and Sympathetic Neurons from Cell-Death Caused by Nerve Growth-Factor Deprivation - Correlation with Suppression of Endonuclease Activity. Journal of Cell Biology 1991;115 (2):461-71.
    [11] Grafstein B, Ingoglia NA. Intracranial transection of the optic nerve in adult mice: preliminary observations. Exp Neurol 1982;76 (2):318-30.
    [12] Barron KD, Dentinger MP, Krohel G, Easton SK, Mankes R. Qualitative and quantitative ultrastructural observations on retinal ganglion cell layer of rat after intraorbital optic nerve crush. J Neurocytol 1986;15 (3):345-62.
    [13] Thanos S. Alterations in the morphology of ganglion cell dendrites in the adult rat retina after optic nerve transection and grafting of peripheral nerve segments. Cell Tissue Res 1988;254 (3):599-609.
    [14] Villegas-Perez MP, Vidal-Sanz M, Bray GM, Aguayo AJ. Influences of peripheral nervegrafts on the survival and regrowth of axotomized retinal ganglion cells in adult rats. J Neurosci 1988;8 (1):265-80.
    [15] Carmignoto G, Maffei L, Candeo P, Canella R, Comelli C. Effect of NGF on the survival of rat retinal ganglion cells following optic nerve section. J Neurosci 1989;9 (4):1263-72.
    [16] Villegas-Perez MP, Vidal-Sanz M, Rasminsky M, Bray GM, Aguayo AJ. Rapid and protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult rats. J Neurobiol 1993;24 (1):23-36.
    [17] Watanabe M, Sawai H, Fukuda Y. Survival of axotomized retinal ganglion cells in adult mammals. Clin Neurosci 1997;4 (5):233-9.
    [18] McKerracher L, Essagian C, Aguayo AJ. Marked increase in beta-tubulin mRNA expression during regeneration of axotomized retinal ganglion cells in adult mammals. J Neurosci 1993;13 (12):5294-300.
    [19] Raju TR, Rao MS, Nagaraja TN, Meti BL, Schulz M. Retinal ganglion cell survival and neurite regeneration in vitro after cell death period are dependent upon target derived trophic factor and retinal glial factor(s). Brain Res 1994;664 (1-2):247-51.
    [20] Isenmann S, Kretz A, Cellerino A. Molecular determinants of retinal ganglion cell development, survival, and regeneration. Progress in Retinal and Eye Research 2003;22 (4):483-543.
    [21] Miyoshi T, Kurimoto T, Fukuda Y. Attempts to restore visual function after optic nerve damage in adult mammals. Adv Exp Med Biol 2006;557:133-47.
    [22] Okazaki Y, Morimoto T, Sawai H. Parameters of optic nerve electrical stimulation affecting neuroprotection of axotomized retinal ganglion cells in adult rats. Neuroscience Research 2008;61 (2):129-35.
    [23] Mey J, Thanos S. Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 1993;602 (2):304-17.
    [24] Mansour-Robaey S, Clarke DB, Wang YC, Bray GM, Aguayo AJ. Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci U S A 1994;91 (5):1632-6.
    [25] PeinadoRamon P, Salvador M, VillegasPerez MP, VidalSanz M. Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells - A quantitative in vivo study. Investigative Ophthalmology & Visual Science 1996;37 (4):489-500.
    [26] Klocker N, Kermer P, Weishaupt JH, Labes M, Ankerhold R, Bahr M. Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3'-kinase/protein kinase B signaling. J Neurosci 2000;20 (18):6962-7.
    [27] Nakazawa T, Tamai M, Mori N. Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. InvestigativeOphthalmology & Visual Science 2002;43 (10):3319-26.
    [28] Unoki K, LaVail MM. Protection of the rat retina from ischemic injury by brain-derived neurotrophic factor, ciliary neurotrophic factor, and basic fibroblast growth factor. Invest Ophthalmol Vis Sci 1994;35 (3):907-15.
    [29] Siliprandi R, Canella R, Carmignoto G. Nerve growth factor promotes functional recovery of retinal ganglion cells after ischemia. Invest Ophthalmol Vis Sci 1993;34 (12):3232-45.
    [30] Rabacchi SA, Ensini M, Bonfanti L, Gravina A, Maffei L. Nerve growth factor reduces apoptosis of axotomized retinal ganglion cells in the neonatal rat. Neuroscience 1994;63 (4):969-73.
    [31] Bahr M, Vanselow J, Thanos S. Ability of adult rat ganglion cells to regrow axons in vitro can be influenced by fibroblast growth factor and gangliosides. Neurosci Lett 1989;96 (2):197-201.
    [32] Klocker N, Braunling F, Isenmann S, Bahr M. In vivo neurotrophic effects of GDNF on axotomized retinal ganglion cells. Neuroreport 1997;8 (16):3439-42.
    [33] Yan Q, Wang J, Matheson CR, Urich JL. Glial cell line-derived neurotrophic factor (GDNF) promotes the survival of axotomized retinal ganglion cells in adult rats: comparison to and combination with brain-derived neurotrophic factor (BDNF). J Neurobiol 1999;38 (3):382-90.
    [34] Sievers J, Hausmann B, Berry M. Fetal brain grafts rescue adult retinal ganglion cells from axotomy-induced cell death. J Comp Neurol 1989;281 (3):467-78.
    [35] Hofer M, Pagliusi SR, Hohn A, Leibrock J, Barde YA. Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J 1990;9 (8):2459-64.
    [36] Turner JE, Blair JR, Chappel ET. Peripheral nerve implant effects on survival of retinal ganglion layer cells after axotomy initiated by a penetrating lesion. Brain Res 1987;419 (1-2):46-54.
    [37] Bahr M, Eschweiler GW, Wolburg H. Precrushed sciatic nerve grafts enhance the survival and axonal regrowth of retinal ganglion cells in adult rats. Exp Neurol 1992;116 (1):13-22.
    [38] Lei JL, Lau KC, So KF, Cho EY, Tay D. Morphological plasticity of axotomized retinal ganglion cells following intravitreal transplantation of a peripheral nerve segment. J Neurocytol 1995;24 (7):497-506.
    [39] Maffei L, Carmignoto G, Perry VH, Candeo P, Ferrari G. Schwann cells promote the survival of rat retinal ganglion cells after optic nerve section. Proc Natl Acad Sci U S A 1990;87 (5):1855-9.
    [40] Yip HK, Li SX, Hu B, So KF. Schwann cells and fibroblasts transplanted intravitreally promote retinal ganglion cells axonal regeneration in adult rat. Journal of Neurochemistry 1998;70:S48-S.
    [41] Thanos S, Mey J, Wild M. Treatment of the Adult Retina with Microglia-Suppressing Factors Retards Axotomy-Induced Neuronal Degradation and Enhances Axonal Regeneration Invivo and Invitro. Journal of Neuroscience 1993;13 (2):455-66.
    [42] Fischer D, Pavlidis M, Thanos S. Cataractogenic lens injury prevents traumatic ganglion cell death and promotes axonal regeneration both in vivo and in culture. Invest Ophthalmol Vis Sci 2000;41 (12):3943-54.
    [43] Leon S, Yin Y, Nguyen J, Irwin N, Benowitz LI. Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci 2000;20 (12):4615-26.
    [44] Kermer P, Klocker N, Labes M, Bahr M. Inhibition of CPP32-like proteases rescues axotomized retinal ganglion cells from secondary cell death in vivo. Journal of Neuroscience 1998;18 (12):4656-62.
    [45] Chaudhary P, Ahmed F, Quebada P, Sharma SC. Caspase inhibitors block the retinal ganglion cell death following optic nerve transection. Molecular Brain Research 1999;67 (1):36-45.
    [46] Kurimoto T, Miyoshi T, Suzuki A, Yakura T, Watanabe M, Mimura O, Fukuda Y. Apoptotic death of beta cells after optic nerve transection in adult cats. Journal of Neuroscience 2003;23 (10):4023-8.
    [47] Cenni MC, Bonfanti L, Martinou JC, Ratto GM, Strettoi E, Maffei L. Long-term survival of retinal ganglion cells following optic nerve section in adult bcl-2 transgenic mice. European Journal of Neuroscience 1996;8 (8):1735-45.
    [48] Inoue T, Hosokawa M, Morigiwa K, Ohashi Y, Fukuda Y. Bcl-2 overexpression does not enhance in vivo axonal regeneration of retinal ganglion cells after peripheral nerve transplantation in adult mice. Journal of Neuroscience 2002;22 (11):4468-77.
    [49] Malik JMI, Shevtsova Z, Bahr M, Kugler S. Long-term in vivo inhibition of CNS neurodegeneration by Bcl-X-L gene transfer. Molecular Therapy 2005;11 (3):373-81.
    [50] Isenmann S, Engel S, Gillardon F, Bahr M. Bax antisense oligonucleotides reduce axotomy-induced retinal ganglion cell death in vivo by reduction of Bax protein expression. Cell Death and Differentiation 1999;6 (7):673-82.
    [51] Qin Q, Patil K, Sharma SC. The role of Bax-inhibiting peptide in retinal ganglion cell apoptosis after optic nerve transection. Neuroscience Letters 2004;372 (1-2):17-21.
    [52] Morimoto T, Miyoshi T, Fujikado T, Tano Y, Fukuda Y. Electrical stimulation enhances the survival of axotomized retinal ganglion cells in vivo. Neuroreport 2002;13 (2):227-30.
    [53] Morimoto T, Miyoshi T, Matsuda S, Tano Y, Fujikado T, Fukuda Y. Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system. Investigative Ophthalmology & Visual Science 2005;46 (6):2147-55.
    [54] Goldberg JL, Espinosa JS, Xu YF, Davidson N, Kovacs GTA, Barres BA. Retinal ganglion cells do not extend axons by default: Promotion by neurotrophic signaling andelectrical activity. Neuron 2002;33 (5):689-702.
    [55] Al-Majed AA, Neumann CM, Brushart TM, Gordon T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. Journal of Neuroscience 2000;20 (7):2602-8.
    [56] Brushart TM, Hoffman PN, Royall RM, Murinson BB, Witzel C, Gordon T. Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. Journal of Neuroscience 2002;22 (15):6631-8.
    [57] Balkowiec A, Katz DM. Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. Journal of Neuroscience 2002;22 (23):10399-407.
    [58] Zhou P, Qian LP, Glickstein SB, Golanov EV, Pickel VM, Reis DJ. Electrical stimulation of cerebellar fastigial nucleus protects rat brain, in vitro, from staurosporine-induced apoptosis. Journal of Neurochemistry 2001;79 (2):328-38.
    [59] Morimoto T, Fujikado T, Choi JS, Kanda H, Miyoshi T, Fukuda Y, Tano Y. Transcorneal electrical stimulation promotes the survival of photoreceptors and preserves retinal function in royal college of surgeons rats. Investigative Ophthalmology & Visual Science 2007;48 (10):4725-32.
    [60] Wongriley MTT, Leakejones PA, Walsh SM, Merzenich MM. Maintenance of Neuronal-Activity by Electrical-Stimulation of Unilaterally Deafened Cats Demonstrable with Cytochrome-Oxidase Technique. Annals of Otology Rhinology and Laryngology 1981;90 (2):30-2.
    [61] Lousteau RJ. Increased Spiral Ganglion-Cell Survival in Electrically Stimulated, Deafened Guinea-Pig Cochleae. Laryngoscope 1987;97 (7):836-42.
    [62] Hartshorn DO, Miller JM, Altschuler RA. Protective Effect of Electrical-Stimulation in the Deafened Guinea-Pig Cochlea. Otolaryngology-Head and Neck Surgery 1991;104 (3):311-9.
    [63] Leake PA, Hradek GT, Rebscher SJ, Snyder RL. Chronic Intracochlear Electrical-Stimulation Induces Selective Survival of Spiral Ganglion Neurons in Neonatally Deafened Cats. Hearing Research 1991;54 (2):251-71.
    [64] Lustig LR, Leake PA, Snyder RL, Rebscher SJ. Changes in the Cat Cochlear Nucleus Following Neonatal Deafening and Chronic Intracochlear Electrical-Stimulation. Hearing Research 1994;74 (1-2):29-37.
    [65] Leake PA, Hradek GT, Snyder RL. Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. Journal of Comparative Neurology 1999;412 (4):543-62.
    [66] Salmon WD, Daughaday WH. A Hormonally Controlled Serum Factor Which Stimulates Sulfate Incorporation by Cartilage Invitro. Journal of Laboratory and Clinical Medicine 1990;116 (3):408-19.
    [67] Daughaday WH, Rotwein P. Insulin-Like Growth Factor-I and Factor-Ii - Peptide,Messenger Ribonucleic-Acid and Gene Structures, Serum, and Tissue Concentrations. Endocrine Reviews 1989;10 (1):68-91.
    [68] Daughada.Wh, Salmon WD, Vandenbr.Jl, Vanwyk JJ, Raben MS, Hall K. Somatomedin - Proposed Designation for Sulfation Factor. Nature 1972;235 (5333):107-&.
    [69] Ullrich A, Gray A, Tam AW, Yangfeng T, Tsubokawa M, Collins C, Henzel W, Lebon T, Kathuria S, Chen E, Jacobs S, Francke U, Ramachandran J, Fujitayamaguchi Y. Insulin-Like Growth Factor-I Receptor Primary Structure - Comparison with Insulin-Receptor Suggests Structural Determinants That Define Functional Specificity. Embo Journal 1986;5 (10):2503-12.
    [70] Lewis ME, Vaught JL, Neff NT, Grebow PE, Callison KV, Yu E, Contreras PC, Baldino F. The Potential of Insulin-Like Growth Factor-I as a Therapeutic for the Treatment of Neuromuscular Disorders. Annals of the New York Academy of Sciences 1993;692:201-8.
    [71] Neff NT, Prevette D, Houenou LJ, Lewis ME, Glicksman MA, Yin QW, Oppenheim RW. Insulin-Like Growth-Factors - Putative Muscle-Derived Trophic Agents That Promote Motoneuron Survival. Journal of Neurobiology 1993;24 (12):1578-88.
    [72] Li LX, Oppenheim RW, Lei M, Houenou LJ. Neurotrophic Agents Prevent Motoneuron Death Following Sciatic-Nerve Section in the Neonatal Mouse. Journal of Neurobiology 1994;25 (7):759-66.
    [73] Guan J, Williams C, Gunning M, Mallard C, Gluckman P. The Effects of Igf-1 Treatment after Hypoxic-Ischemic Brain Injury in Adult-Rats. Journal of Cerebral Blood Flow and Metabolism 1993;13 (4):609-16.
    [74] Tagami M, Ikeda K, Nara Y, Fujino H, Kubota A, Numano F, Yamori Y. Insulin-like growth factor-1 attenuates apoptosis in hippocampal neurons caused by cerebral ischemia and reperfusion in stroke-prone spontaneously hypertensive rats. Laboratory Investigation 1997;76 (5):613-7.
    [75] Tagami M, Yamagata K, Nara Y, Fujino H, Kubota A, Numano F, Yamori Y. Insulin-like growth factors prevent apoptosis in cortical neurons isolated from stroke-prone spontaneously hypertensive rats. Laboratory Investigation 1997;76 (5):603-12.
    [76] Homma K, Koriyama Y, Mawatari K, Higuchi Y, Kosaka J, Kato S. Early downregulation of IGF-I decides the fate of rat retinal ganglion cells after optic nerve injury. Neurochemistry International 2007;50 (5):741-8.
    [77] Al-Majed AA, Brushart TM, Gordon T. Electrical stimulation accelerates and increases expression of BDNF and trkB rnRNA in regenerating rat femoral motoneurons. European Journal of Neuroscience 2000;12 (12):4381-90.
    [78] Al-Majed AA, Tam SL, Gordon T. Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons. Cellular and Molecular Neurobiology 2004;24 (3):379-402.
    [79] Hernandezsanchez C, Lopezcarranza A, Alarcon C, Delarosa EJ, Depablo F. AutocrineParacrine Role of Insulin-Related Growth-Factors in Neurogenesis - Local Expression and Effects on Cell-Proliferation and Differentiation in Retina. Proceedings of the National Academy of Sciences of the United States of America 1995;92 (21):9834-8.
    [80] Kermer P, Klocker N, Labes M, Bahr M. Insulin-like growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-K-dependent akt phosphorylation and inhibition of caspase-3 in vivo. Journal of Neuroscience 2000;20 (2):722-8.
    [81] Meyerfranke A, Kaplan MR, Pfrieger FW, Barres BA. Characterization of the Signaling Interactions That Promote the Survival and Growth of Developing Retinal Ganglion-Cells in Culture. Neuron 1995;15 (4):805-19.
    [82] Sato T, Fujikado T, Morimoto T, Matsushita K, Harada T, Tano Y. Effect of electrical stimulation on IGF-1 transcription by L-type calcium channels in cultured retinal Muller cells. Japanese Journal of Ophthalmology 2008;52 (3):217-23.
    [83] Faden AI, Salzman S. Pharmacological Strategies in Cns Trauma. Trends in Pharmacological Sciences 1992;13 (1):29-35.
    [84] Schwab ME, Caroni P. Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J Neurosci 1988;8 (7):2381-93.
    [85] Vanselow J, Schwab ME, Thanos S. Responses of Regenerating Rat Retinal Ganglion Cell Axons to Contacts with Central Nervous Myelin in vitro. Eur J Neurosci 1990;2 (2):121-5.
    [86] Cammermeyer J. The life history of the microglial cell: a light microscopic study. Neurosci Res (N Y) 1970;3:43-129.
    [87] Schnitzer J, Scherer J. Microglial cell responses in the rabbit retina following transection of the optic nerve. J Comp Neurol 1990;302 (4):779-91.
    [88] Milligan CE, Levitt P, Cunningham TJ. Brain macrophages and microglia respond differently to lesions of the developing and adult visual system. J Comp Neurol 1991;314 (1):136-46.
    [89] Perry VH, Gordon S. Macrophages and microglia in the nervous system. Trends Neurosci 1988;11 (6):273-7.
    [90] Giulian D, Chen J, Ingeman JE, George JK, Noponen M. The role of mononuclear phagocytes in wound healing after traumatic injury to adult mammalian brain. J Neurosci 1989;9 (12):4416-29.
    [91] Streit WJ, Graeber MB, Kreutzberg GW. Functional plasticity of microglia: a review. Glia 1988;1 (5):301-7.
    [92] Ling EA, Kaur LC, Yick TY, Wong WC. Immunocytochemical localization of CR3 complement receptors with OX-42 in amoeboid microglia in postnatal rats. Anat Embryol (Berl) 1990;182 (5):481-6.
    [93] Thanos S. The Relationship of Microglial Cells to Dying Neurons During Natural Neuronal Cell Death and Axotomy-induced Degeneration of the Rat Retina. Eur JNeurosci 1991;3 (12):1189-207.
    [94] Hickey WF, Kimura H. Perivascular Microglial Cells of the Cns Are Bone-Marrow Derived and Present Antigen Invivo. Science 1988;239 (4837):290-2.
    [95] Perry VH, Gordon S. Macrophages and Microglia in the Nervous-System. Trends in Neurosciences 1988;11 (6):273-7.
    [96] Streit P, Thompson SM, Gahwiler BH. Anatomical and Physiological Properties of GABAergic Neurotransmission in Organotypic Slice Cultures of Rat Hippocampus. Eur J Neurosci 1989;1 (6):603-15.
    [97] Giulian D. Microglia, Cytokines, and Cytotoxins - Modulators of Cellular-Responses after Injury to the Central-Nervous-System. Eos-Rivista Di Immunologia Ed Immunofarmacologia 1990;10 (1):15-21.
    [98] Giulian D, Vaca K, Noonan CA. Secretion of Neurotoxins by Mononuclear Phagocytes Infected with Hiv-1. Science 1990;250 (4987):1593-6.
    [99] Cras P, Kawai M, Siedlak S, Mulvihill P, Gambetti P, Lowery D, Gonzalezdewhitt P, Greenberg B, Perry G. Neuronal and Microglial Involvement in Beta-Amyloid Protein Deposition in Alzheimers-Disease. American Journal of Pathology 1990;137 (2):241-6.
    [100] Boyle EA, Mcgeer PL. Cellular Immune-Response in Multiple-Sclerosis Plaques. American Journal of Pathology 1990;137 (3):575-84.
    [101] Mailleux P, Mitchell F, Vanderhaeghen JJ, Milligan G, Erneux C. Immunohistochemical distribution of neurons containing the G-proteins Gq alpha/G11 alpha in the adult rat brain. Neuroscience 1992;51 (2):311-6.
    [102] Boycott BB, Hopkins JM. Microglia in the retina of monkey and other mammals: its distinction from other types of glia and horizontal cells. Neuroscience 1981;6 (4):679-88.
    [103] Schops P, Erdl R, Knorr H, Seichert N, Schnizer W. An investigation of the microcirculation of the human tympanic membrane with laser-Doppler flowmetry. Arch Otorhinolaryngol 1987;244 (5):288-90.
    [104] Roque RS, Caldwell RB. Isolation and culture of retinal microglia. Curr Eye Res 1993;12 (3):285-90.
    [105] Thanos S, Mey J, Wild M. Treatment of the adult retina with microglia-suppressing factors retards axotomy-induced neuronal degradation and enhances axonal regeneration in vivo and in vitro. J Neurosci 1993;13 (2):455-66.
    [106] Tzehoval E, Segal S, Stabinsky Y, Fridkin M, Spirer Z, Feldman M. Tuftsin (an Ig-Associated Tetrapeptide) Triggers Immunogenic Function of Macrophages - Implications for Activation of Programmed Cells. Proceedings of the National Academy of Sciences of the United States of America 1978;75 (7):3400-4.
    [107] Fridkin M, Najjar VA. Tuftsin - Its Chemistry, Biology, and Clinical Potential. Critical Reviews in Biochemistry and Molecular Biology 1989;24 (1):1-40.
    [108] Naim JO, Hinshaw JR, Vanoss CJ. The Lack of Antigenicity of Tuftsin - aNaturally-Occurring Phagocytosis Stimulating Tetrapeptide. Immunological Investigations 1989;18 (6):817-24.
    [109] Platasalaman CR. Immunoregulators in the Nervous-System. Neuroscience and Biobehavioral Reviews 1991;15 (2):185-215.
    [110] Spirer Z, Zakuth V, Tzehoval E, Dagan S, Fridkin M, Golander A, Melamed I. Tuftsin Stimulates Il-1 Production by Human Mononuclear-Cells, Human Spleen-Cells and Mouse Spleen-Cells Invitro. Journal of Clinical & Laboratory Immunology 1989;28 (1):27-31.
    [111] Bump NJ, Najjar VA, Reichler J. The Characteristics of Purified Hl60 Tuftsin Receptors. Molecular and Cellular Biochemistry 1990;92 (1):77-84.
    [112] Krausberthier L, Ferry G, Combeperez V, Visalli M, Remond G, Vincent M, Boutin JA. Approaches to Some Biochemical-Mechanisms of Action of Tuftsin and Analogs. Biochemical Pharmacology 1991;41 (10):1411-8.
    [113] Auriault C, Joseph M, Tartar A, Capron A. Characterization and Synthesis of a Macrophage Inhibitory Peptide from the 2nd Constant Domain of Human Immunoglobulin-G. Febs Letters 1983;153 (1):11-5.
    [114] Thanos S, Pavlidis C, Mey J, Thiel HJ. Specific Transcellular Staining of Microglia in the Adult-Rat after Traumatic Degeneration of Carbocyanine-Filled Retinal Ganglion-Cells. Experimental Eye Research 1992;55 (1):101-17.
    [115] Liu XY, Zhou HF, Pan YL, Liang XB, Niu DB, Xue B, Li FQ, He QH, Wang XH, Wang XM. Electro-acupuncture stimulation protects dopaminergic neurons from inflammation-mediated damage in medial forebrain bundle-transected rats. Experimental Neurology 2004;189 (1):189-96.
    [116] Jinno S, Kosaka T. Reduction of Iba-1-expressing microglial process density in the hippocampus following electroconvulsive shock. Experimental Neurology 2008;212 (2):440-7.
    [117] Jeong SH, Jun SB, Song JK, Kim SJ. Activity-dependent neuronal cell migration induced by electrical stimulation. Medical & Biological Engineering & Computing 2009;47 (1):93-9.
    [118] Newman E, Reichenbach A. The Muller cell: A functional element of the retina. Trends in Neurosciences 1996;19 (8):307-12.
    [119] Zeng XX, Ng YK, Ling EA. Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Visual Neuroscience 2000;17 (3):463-71.
    [120] Wang X, Ng YK, Tay SSW. Factors contributing to neuronal degeneration in retinas of experimental glaucomatous rats. Journal of Neuroscience Research 2005;82 (5):674-89.
    [121] Reichenbach A, Stolzenburg JU, Eberhardt W, Chao TI, Dettmer D, Hertz L. What Do Retinal Muller (Glial) Cells Do for Their Neuronal Small Siblings. Journal of Chemical Neuroanatomy 1993;6 (4):201-13.
    [122] Eisenfeld AJ, Buntmilam AH, Sarthy PV. Muller Cell Expression of Glial FibrillaryAcidic Protein after Genetic and Experimental Photoreceptor Degeneration in the Rat Retina. Investigative Ophthalmology & Visual Science 1984;25 (11):1321-8.
    [123] Battisti WP, Wang J, Bozek K, Murray M. Macrophages, Microglia, and Astrocytes Are Rapidly Activated after Crush Injury of the Goldfish Optic-Nerve - a Light and Electron-Microscopic Analysis. Journal of Comparative Neurology 1995;354 (2):306-20.
    [124] Zahir T, Klassen H, Young MJ. Effects of ciliary neurotrophic factor on differentiation of late retinal progenitor cells. Stem Cells 2005;23 (3):424-32.
    [125] Heins S, Aebi U. Making Heads and Tails of Intermediate Filament Assembly, Dynamics and Networks. Current Opinion in Cell Biology 1994;6 (1):25-33.
    [126] Grosche J, Hartig W, Reichenbach A. Expression of Glial Fibrillary Acidic Protein (Gfap), Glutamine-Synthetase (Gs), and Bcl-2 Protooncogene Protein by Muller (Glial) Cells in Retinal Light Damage of Rats. Neuroscience Letters 1995;185 (2):119-22.
    [127] Kim IB, Kim KY, Joo CK, Lee MY, Oh SJ, Chung JW, Chun MH. Reaction of Muller cells after increased intraocular pressure in the vet retina. Experimental Brain Research 1998;121 (4):419-24.
    [128] Casson RJ, Chidlow G, Wood JPM, Vidal-Sanz M, Osborne NN. The effect of retinal ganglion cell injury on light-induced photoreceptor degeneration. Investigative Ophthalmology & Visual Science 2004;45 (2):685-93.
    [129] Casson RJ, Wood JPM, Melena J, Chidlow G, Osborne NN. The effect of ischemic preconditioning on light-induced photoreceptor injury. Investigative Ophthalmology & Visual Science 2003;44 (3):1348-54.
    [130] Sato T, Fujikado T, Lee TS, Tano Y. Direct effect of electrical stimulation on induction of brain-derived neurotrophic factor from cultured retinal muller cells. Investigative Ophthalmology & Visual Science 2008;49 (10):4641-6.
    [131] Scherer J, Schnitzer J. Intraorbital Transection of the Rabbit Optic-Nerve - Consequences for Ganglion-Cells and Neuroglia in the Retina. Journal of Comparative Neurology 1991;312 (2):175-92.
    [132] Huxlin KR, Dreher Z, Schulz M, Dreher B. Glial Reactivity in the Retina of Adult-Rats. Glia 1995;15 (2):105-18.
    [133] Peng YW, Blackstone CD, Huganir RL, Yau KW. Distribution of Glutamate-Receptor Subtypes in the Vertebrate Retina. Neuroscience 1995;66 (2):483-97.
    [134] Lopez T, LopezColome AM, Ortega A. NMDA receptors in cultured radial glia. Febs Letters 1997;405 (2):245-8.
    [135] Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao RJ, Cooper GM, Segal RA, Kaplan DR, Greenberg ME. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997;275 (5300):661-5.
    [136] Burgering BMT, Coffer PJ. Protein-Kinase-B (C-Akt) in Phosphatidylinositol-3-Oh Inase Signal-Transduction. Nature 1995;376 (6541):599-602.
    [137] Testa JR, Bellacosa A. Commentary - AKT plays a central role in tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America 2001;98 (20):10983-5.
    [138] BujBello A, Adu J, Pinon LGP, Horton A, Thompson J, Rosenthal A, Chinchetru M, Buchman VL, Davies AM. Neurturin responsiveness requires a GPI-linked receptor and the Ret receptor tyrosine kinase. Nature 1997;387 (6634):721-4.
    [139] Coffer PJ, Jin J, Woodgett JR. Protein kinase B (c-Akt): A multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochemical Journal 1998;335:1-13.
    [140] Dragunow M. A role for immediate-early transcription factors in learning and memory. Behavior Genetics 1996;26 (3):293-9.
    [141] Nakazawa T, Shimura M, Tomita H, Akiyama H, Yoshioka Y, Kudou H, Tamai M. Intrinsic activation of PI3K/Akt signaling pathway and its neuroprotective effect against retinal injury. Current Eye Research 2003;26 (1):55-63.
    [142] Segal RA, Greenberg ME. Intracellular signaling pathways activated by neurotrophic factors. Annual Review of Neuroscience 1996;19:463-89.
    [143] Gallo V, Kingsbury A, Balazs R, Jorgensen OS. The Role of Depolarization in the Survival and Differentiation of Cerebellar Granule Cells in Culture. Journal of Neuroscience 1987;7 (7):2203-13.
    [144] Collins F, Lile JD. The Role of Dihydropyridine-Sensitive Voltage-Gated Calcium Channels in Potassium-Mediated Neuronal Survival. Brain Research 1989;502 (1):99-108.
    [145] Koike T, Martin DP, Johnson EM. Role of Ca-2+ Channels in the Ability of Membrane Depolarization to Prevent Neuronal Death Induced by Trophic-Factor Deprivation - Evidence That Levels of Internal Ca-2+ Determine Nerve Growth-Factor Dependence of Sympathetic-Ganglion Cells. Proceedings of the National Academy of Sciences of the United States of America 1989;86 (16):6421-5.
    [146] Collins F, Schmidt MF, Guthrie PB, Kater SB. Sustained Increase in Intracellular Calcium Promotes Neuronal Survival. Journal of Neuroscience 1991;11 (8):2582-7.
    [147] Franklin JL, Sanzrodriguez C, Juhasz A, Deckwerth TL, Johnson EM. Chronic Depolarization Prevents Programmed Death of Sympathetic Neurons in-Vitro but Dogs Not Support Growth - Requirement for Ca2+ Influx but Not Trk Activation. Journal of Neuroscience 1995;15 (1):643-64.
    [148] Galli C, Meucci O, Scorziello A, Werge TM, Calissano P, Schettini G. Apoptosis in Cerebellar Granule Cells Is Blocked by High Kcl, Forskolin, and Igf-1 through Distinct Mechanisms of Action - the Involvement of Intracellular Calcium and Rna-Synthesis. Journal of Neuroscience 1995;15 (2):1172-9.
    [149] Hegarty JL, Kay AR, Green SH. Trophic support of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins or cAMP and requires elevation of [Ca2+](i) within a set range. Journal of Neuroscience 1997;17 (6):1959-70.
    [150] Yao RJ, Cooper GM. Requirement for Phosphatidylinositol-3 Kinase in the Prevention of Apoptosis by Nerve Growth-Factor. Science 1995;267 (5206):2003-6.
    [151] D'Mello SR, Borodezt K, Soltoff SP. Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: Possible involvement of PI 3-kinase in IGF-1 signaling. Journal of Neuroscience 1997;17 (5):1548-60.
    [152] Miller TM, Tansey MG, Johnson EM, Creedon DJ. Inhibition of phosphatidylinositol 3-kinase activity blocks depolarization- and insulin-like growth factor I-mediated survival of cerebellar granule cells. Journal of Biological Chemistry 1997;272 (15):9847-53.
    [153] Xia ZG, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing Effects of Erk and Jnk-P38 Map Kinases on Apoptosis. Science 1995;270 (5240):1326-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700