用户名: 密码: 验证码:
纤维增强复合材料寿命预测与疲劳性能衰减研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料因其优良的材料性能而被广泛应用于航空领域。为提高飞机性能,降低使用成本,一个必然途径是提高复合材料的设计许用应变/强度,如此,则材料原先被静强度所覆盖的疲劳问题将逐渐暴露出来,复合材料的抗疲劳设计将成为飞机结构设计的重要关注点。而现阶段有关复合材料疲劳行为研究的理论结果与实际情况相差较大,仍处于初级阶段,需要对复合材料疲劳行为展开广泛而深入的研究。鉴此,本文从以下几个方面对复合材料疲劳行为进行研究:
     首先研究了复合材料的疲劳损伤演化规律,并通过可检测的材料剩余刚度定义一个反映损伤大小的参量,由此构建了含两未知参数的宏观唯象损伤模型。再依据复合材料刚度衰减速率在寿命全区域内呈“快→缓→快”的变化特点,并结合损伤模型的函数特征,推导出两模型参数成线性关系,以及参数与外加载荷水平成反比,与材料静强度、疲劳寿命成正比。算例结果表明该模型能对变幅载荷下复合材料的剩余寿命给出较好预测结果,与试验值的误差基本限于3倍范围内;
     其次研究了给定疲劳寿命下层合板疲劳强度间的相互联系。采用疲劳强度比描述任意铺角单向板与纵、横向板间疲劳强度的联系,并分析知疲劳强度比随材料疲劳寿命增加而递减、随铺设角度增加而先递减后递增;通过分析刚度退化规律来反映层合板与纵、横向板间疲劳强度的联系,并详细分析了以纤维影响为主和以基体影响为主的层合板的刚度退化的不同模式。再结合复合材料疲劳寿命曲线方程后,构建一套利用纵、横向板疲劳寿命预测任意铺设单向板、层合板疲劳寿命的方法。算例结果表明该方法预测的疲劳寿命值与试验值相吻合;
     再次研究了复合材料静强度和其疲劳寿命分散性来源的特征,二者的共性是均受材料内部的初始缺陷影响,不同点是不同的加载方式引起不同特征的损伤。结合一个材料疲劳寿命曲线方程,且依据材料在等置信度等存活疲劳寿命曲线中任一点处的疲劳强度与疲劳寿命的失效概率相等的统计规律,构建了一个基于复合材料静强度概率分布描述任意载荷下其疲劳寿命概率分布的模型。5组算例结果表明模型值与试验值比较吻合。
     接着研究了复合材料剩余强度的衰减规律,即随加载次数增加,其衰减速率先较大,再变慢,后再次增大至材料断裂,由此提出一个两参数宏观模型对其进行描述。在进一步分析剩余强度衰减特点后得两参数与层合板的铺设角度、加载水平等成正比,而与层合板疲劳寿命成反比。并以此模型为基础推导了复合材料静强度分散性与剩余强度分散性间的联系。10组算例结果表明该模型合理描述了复合材料剩余强度的衰减规律。
     最后研究了复合材料缺口件剩余强度的演化规律,即随加载次数增加,其剩余强度先单调递增,达到最大值后,剩余强度再单调递减,降至最大外加载荷时材料断裂,则寿命前期内材料剩余强度大于其静强度,分析原因是不同加载方式造成缺口根部应力集中的变化规律不同,本文构建一个宏观模型对其进行描述,算例表明该模型能对复合材料缺口件剩余强度演化规律合理描述。
Composite material has been widely used in aircraft structures because of its excellent mechanical characteristics. It is an inevitable path to increase the design allowable strain or the design allowed strength of composite for strengthening the aircraft property and reducing the use cost. Then, the fatigue trouble will be gradually exposed in structures, which had been concealed by the higher design allowable strength. And the anti fatigue design will be the focus on structure design for aircraft. However, the research on fatigue behavior of composite is still primary and imperfect, now. There are very difference between the fatigue theoretical value and experimental result for laminate. It is necessary and valuable to research deeply the fatigue behavior of composite. The major content and achievements in this dissertation are as follows.
     The stiffness degradation rule of laminate has been studied, and then a macro phenomenal model has been presented to describe the rule, which has been defined by the residual stiffness of laminate. The change characteristic of stiffness degradation rate is from quick to slow and to quick again in the whole fatigue life for laminate. To analyze the characteristics of stiffness degradation and the function characteristics of model, it can be obtained that the relation of model parameters is linear and the parameters value get bigger with the decrease of loading or the increase of static strength and fatigue life. A series fatigue experimental data of laminate were used to verify the model, and the results showed that the predicted life is in good agreement with the experimental ones.
     The relation of fatigue strengths among different laminates has been studied. Then, a fatigue strength ratio has been employed to describe the relation between arbitrary angle ply fatigue strength and longitudinal or transverse ply fatigue strength. To analyze the characteristics of fatigue strength ratio, it is obtained that the ratio gets bigger with the increasing of fatigue life, and changes with the increasing of ply angle from decreasing to increasing. The relation between arbitrary laminate fatigue strength and longitudinal or transverse ply fatigue strength has been deeply studied by analyzing stiffness degradation of laminate. And there are two stiffness degradation modes in laminate. One is mainly controlled by fibre property and the other is mainly controlled by matrix property. Then, a method to predict the fatigue life of unidirectional ply or arbitrary laminate by the fatigue life of longitudinal or transverse ply has been presented. The verifying results showed that the predicted life is in good agreement with the experimental ones.
     The characteristic of dispersion source of static strength and fatigue life in composite laminates had been studied. It is concluded that the inner original defects are the common and major reason of causing the random distribution of static strength and fatigue life. And the difference between the static strength dispersion and the fatigue life dispersion derives from the different loading mode. Based on a S-N curve model and the statistical rule, which the failure probabilities between the static strength and the fatigue life in the uniform confidence level and the same survival S-N curves of material are same, a model that is used to describe the distributions of fatigue life of laminate, based on their distributions of static strength, is set up. Five kinds of verifying results show that the predicted values are in good agreement with the experimental ones.
     The degradation rule of the residual strength about composite laminates has been studied. The degradation ratio changes with the increasing of fatigue life from increasing to decreasing and to increasing again, until material fracturing. And a two- parameters model has been presented to describe this rule. To analyze deeply the characteristics of residual strength degradation, it can be obtained that the model parameters are proportional to the sequence angle and loading and are inverse proportional to the fatigue life. According to the model, the quantitative relationship between static strength dispersion and residual strength dispersion has been derived. The experimental data of ten kinds of laminate are employed to verify this model, and the results show that the model describes the degradation rule of residual strength fairly well.
     The residual strength degradation rule of notched laminate has been analyzed. It is concluded that the residual strength increases with the increasing of cycle number and then decreases when the residual strength arrives the maximum value. When the residual strength decreases to the maximum cycle loading, the notched laminate occurs to fracture. The different charge rule of stress concentration at the notch root, which derived from the cycle loading, is the major reason of causing that the residual strength is bigger than the static strength at the beginning period of fatigue life of notched laminate. And then, a model that is used to describe the rule is set up. The verifying results show that the model can describe the residual strength degradation rule of notched laminate fairly well.
引文
[1]Е.Л.Толстоброц,Т.Н.Юродеию.王禺权(译),周维金(校).复合材料在民用飞机结构中的应用.西飞科技, 1993, (3): 41~48.
    [2]Е.Л.Толстоброц,Т.Н.Юродеию.王禺权(译),周维金(校).复合材料在民用飞机结构中的应用(续完).西飞科技, 1993,(4): 45~50.
    [3]牛春匀(美).西安飞机工业公司(译).飞机复合材料结构设计与制造.西安:西北工业大学出版社, 1995.
    [4] P Donald, H Thomas, K Edward. The evolution of U.S. military aircraft structures technology. AIAA-96-1571-CP, 1996.
    [5]陈绍杰.复合材料与民用航空.高科技纤维与应用, 2002,27(1): 1~8.
    [6]张丽华,范玉青.复合材料在飞机上的应用评述.航空制造技术, 2006,(3): 64~66.
    [7]余寿文,王建祥.大飞机研制中的若干复合材料力学问题.力学与实践, 2007,29(5): 1~6.
    [8]杨乃宾.新一代大型客机复合材料结构.航空学报, 2008,29(3): 596~604.
    [9] ACEE Composites Project Office. NASA/aircraft industry standard specification for graphite fiber/toughened thermoset resin composite material. NASA RP 1142, 1985.
    [10]中国航空研究院.复合材料结构设计手册.北京:航空工业出版社, 2001.
    [11]杨乃宾,章怡宁.复合材料飞机结构设计.北京:航空工业出版社, 2002.
    [12] W W Stinchcomb, C B Bakis. Fatigue behavior of composite materials. In: Fatigue of composite materials(K L Reifsnider ed.). 1990: 105~180.
    [13] G P Sendeckyj. Life prediction for resin-matrix composite materials. In: Fatigue of composite materials(K L Reifsnider ed.). 1990: 431~483.
    [14] D S Saunders, G Clark. Fatigue damage in composite laminates. Materials Forum, 1993, 17: 309~331.
    [15] A Fatemi, L Yang. Cumulative fatigue damage and life prediction theories,a survey of the state of the art for homogeneous materials. International Journal of Fatigue, 1998, 20(1): 9~34.
    [16] J Degrieck, W V Paepegem. Fatigue damage modeling of fibre-reinforced composite materials: Review. Applied Mechanics Reviews, 2001, 54(4): 279~300.
    [17] M J Salkind. Fatigue of composites. Composite Materials: Testing and Design(Second conference),ASTM STP 497. 1972: 143~169.
    [18] M J Owen.‘Fatigue damage in Glass-Fiber-Reinforced Plastics’,‘Fatigue damage in Carbon-Fiber-Reinforced Plastics’. Fatigue and Fracture(L J Boutman ed.), New York, Academic Press. 1974.
    [19] W W Stinchcomb, K L Reifsnider. Fatigue damage mechanisms in composite materials. Fatigue Mechanisms, ASTM STP 675. 1975: 762~787.
    [20] H T Hahn. Fatigue behavior and life prediction of composite laminates. Composite Materials: Testing and Design(Fifth conference), ASTM STP 674. 1979: 383~417.
    [21] K L Reifsnider, E G Henneke, W W Stinchcomb, et al. Damage mechanics and NDE ofcomposite laminates. In: Mechanics of Composite Materials, Recent Advances(Z.Hashin and C.T.Herakovich ed.). New York: Pergamon Press, 1983, 399~420.
    [22] Z Hashin, A Rotem. A fatigue failure criterion for fiber-reinforced materials. Journal of Composite Materials, 1973, 7: 448~464.
    [23] A Rotem, Z Hashin. Fatigue failure of angle ply laminates. AIAA Journal, 1975, 14(7): 868~872.
    [24] Z Hashin. Fatigue failure criteria for combined cyclic stress. International Journal of Fracture, 1981, 17(2): 101~109.
    [25] Z Hashin. Fatigue failure criteria for unidirectional fiber composites. ASME Journal of Applied Mechanics, 1981, 48(12): 846~852.
    [26] K L Reifsnider. The critical element model: A modeling philosophy. Engineering Fracture Mechanics, 1986, 25(5/6): 739~749.
    [27] R Talreja. Fatigue of composite material. Lancaster, Pennsylvania, Technomic Publishing Company. 1987.
    [28] R Talreja.陈荣(译).纤维复合材料的疲劳.复合材料的结构与性能(邹祖讳主编吴人洁等译).北京:科学出版社, 1999: 513~525.
    [29] A L Highsmith, K L Reifsnider. Stiffness reduction mechanisms in composite laminates. In: Damage in composite Materials(K L Reifsnider ed.). ASTM STP 775, 1982: 103~117.
    [30] P S Stief. Parabolic shear-lag analysis of [0/90]S laminate. Appendix to Cambridge University Engineering Department Technical Report, CUED/C/MATS/TR 105, 1984.
    [31]黄志强. [0/903]S合复合材料层合板的特征损伤状态研究.武汉科技交通大学学报, 1999, 23(1): 24~27.
    [32] S G Lim, C S Hong. Prediction of transverse cracking and stiffness reduction in cross-ply laminated composites. Journal of Composite Materials, 1989, 23: 695~713.
    [33] S G Lim, C S Hong. Effect of transverse cracks on the thermo-mechanical properties of cross-ply laminated composites. Composites Science and Technology, 1989, 34(2): 145~162.
    [34] L Y Xu, R D Division. Study on the characteristic curve of stiff degradation caused by transverse matrix cracking in multidirectional composite laminates. Journal of Composite Materials, 1996, 30(7): 820~838.
    [35] X X Diao, L Ye, Y W Mai. Fatigue life prediction of composite laminates using a stress redistribution function. Journal of Reinforced Plastics Composites, 1996, 15: 249~265.
    [36] X X Diao, L Ye, Y W Mai. Statistical fatigue life prediction of cross-ply composite laminates. Journal of Composites Materials, 1997, 31(14): 1443~1460.
    [37] R Talreja. Stiffness properties of composite laminates with matrix cracking and interior delamination. Engineering of Fracture Mechanics, 1986, 25: 751~762.
    [38] R Talreja. Transverse cracking and stiffness reduction in composite laminate. Journal of Composite Materials, 1985, 19(4): 355~375.
    [39] Y Q Jiang. The stiffness reduction of composite laminates due to fatigue damage. In: Proceedings of ICCM8. Honolulu: ICCM, 1991: 1~6.
    [40]蒋咏秋,胥晓鹏,宋吉强.分层损伤导致层合复合材料刚度下降.见:中国航空学会编,全国复合材料学术会议文集.北京:中国航空学会, 1988, 450~456.
    [41]蒋咏秋.复合材料的刚度下降及寿命估算.见:中国机械工程学会、中国力学学会编.第三届全国疲劳学术交流会文集.北京:中国机械工程学会, 1986,1~8.
    [42] Z Hashin. Analysis of stiffness reduction of cracked cross-ply laminates. Engineering fracture mechanics, 1986, 25(5/6): 771~778.
    [43] Z Hashin. Analysis of cracked laminates: a variational approach. Mechanics of materials, 1985, 4: 121~136.
    [44] T Fujii, H Kawakami, Y Morita. Fatigue degradation and life prediction of glass fabric composite under tension/torsion biaxial loadings. Journal of Reinforced Plastics and Composites, 1996,15: 183~195.
    [45] L Ye. On fatigue damage accumulation and material degradation in composite materials. Composites Science and Technology, 1989, 36: 339~350.
    [46] T K O’Brien. Characterization of delamination onset and growth in a composite laminate. In: Damage in Composite Materials(K L Reifsnider ed.). ASTM STP 775, 1982: 103~117.
    [47] A M Poursartip, F P Ashby, W R Beaumont. The fatigue damage mechanics of a carbon fiber composite laminate: I-development of the model. Composites Science and Technology, 1986, 25(2): 193~218.
    [48] J N Yang, L J Lee, D Y Sheu. Modulus reduction and fatigue damage of matrix dominated composite laminates. Composite Structures, 1992, 21: 91~100.
    [49] J N Yang, D L Jones, S H Yang, et al. A stiffness degradation model for graphite/epoxy laminates. Journal of Composite Materials, 1990, 24: 753~769.
    [50] W F Wu, L J Lee, S T Choi. A study of fatigue damage and fatigue life of composite laminates. Journal of Composite Materials, 1996, 30(1): 123~137.
    [51] W Hwang, K S Han. Fatigue modulus concept in composite materials. Composites Science and Technology, 1989, 36(4): 339~350.
    [52] A T Echtermeyer, B Engh, L Buene. Lifetime and Young’s modulus changes of glass/phenolic and glass/polyester composites under fatigue. Composites, 1995, 26(1):10~16.
    [53] S Subramanian, K L Reifsnider, W W Stinchcomb. A cumulative damage model to predict the fatigue life of composite laminates including the effect of a fibre-matrix interphase. International Journal of Fatigue, 1995, 17(5): 343~351.
    [54] D Q Zhang, B I Sandor. Damage evaluation in composite materials using thermographic stress analysis. In: Advances in Fatigue Lifetime Predictive Techniques(M R Mitchell and R W Landgraf Ed.). ASTM STP 1122, 1992: 341~353.
    [55] H A Whitworth. Modeling stiffness reduction of graphite/epoxy composite laminates. Journal of Composite Materials, 1987, 21: 362~372.
    [56] L Bangyan, L B Lessard. Fatigue and Damage-Tolerance Analysis of Composite Laminates: Stiffness Loss, Damage-Modeling, and Life Prediction. Composites Science and Technology, 1994, 51: 43~51.
    [57] T P Philippidis, A P Vassilopoulos. Fatigue of composite laminates under off-axis loading. International Journal of Fatigue, 1999, 22(3): 253~262.
    [58]郭卫国,张开达.复合材料层板在疲劳加载下的剩余刚度.见:中国航空学会编.第五届全国疲劳学术会议论文集.北京:中国航空学会出版, 1991, 26~29.
    [59]李海涛,杜善义,冯培锋.复合材料层合板疲劳寿命预测.见:中国航空学会编.第五届全国疲劳学术会议论文集.北京:中国航空学会出版, 1991, 22~25.
    [60] L J Broutman, S Sahu. A new theory to predict cumulative fatigue damage in fiberglass reinforced plastics. Composite materials: testing and design(Second conference), ASTMSTP 497. 1972, 170~188.
    [61] A Charewicz, I M Daniel. Damage mechanisms and accumulation in graphite/epoxy laminates. In: Composite Materials: Fatigue and Fracture(H T Hahn Eds.), ASTM STP 907. 1986: 274~297.
    [62] T Adam, R F Dickson, G Fernando, et al. The fatigue behaviour of Kevlar/Carbon hybred composites. ImechE Conference Publications(Institute of Mechanical Engineers). 1986, Vol.2: 329~335.
    [63] J R Schaff, B D Davidson. Life prediction methodology for composite structures, Part I: Constant amplitude and two-stress level fatigue. Journal of Composite materials, 1997, 31(2): 128~157.
    [64] K L Reifsnider. Damage and damage mechanisms. In: Fatigue of composite materials (K L Reifsnider Editor), Elsevier, Amsterdam. 1991: 11~77.
    [65]顾怡,姚卫星.疲劳加载下纤维复合材料的剩余强度.复合材料学报,1999, 16(3): 98~102.
    [66] G Caprino, R Teti, I de Iorio. Predicting residual strength of pre-fatigued glass fibre-reinforced plastic laminates through acoustic emission monitoring. Composites: Part B, 2005, 36: 365~371.
    [67] T Hahn. Fatigue behaviour and life prediction of composite laminates. AFML-TR-78-43, 1978.
    [68] P C Chou, R Croman. Residual strength in fatigue based on the strength life equal rank assumption. Journal of Composite materials, 1978, 12(2): 127~194.
    [69] P C Chou, R Croman. Degradation and sudden-death models of fatigue of Graphite/Epoxy composites. Composite Materials: Testing and Design (Fifth conference), ASTM STP 674. 1979: 431~454.
    [70] W X Yao, N Himmel. A New Cumulative Fatigue Damage Model for Fiber-Reinforced Plastics. Composites Science and Technology, 2000, 60(1): 59~64.
    [71] J N Yang, M D Liu. Residual strength degradation model and theory of periodic proof tests for Graphite/Epoxy laminates. Journal of Composite Materials, 1977, 11(4): 176~203.
    [72] J N Yang. Fatigue and residual strength degradation for Graphite/Epoxy composites under tension-compression cyclic loading. Journal of Composite Materials, 1978, 12(1): 19~39.
    [73] Z Hashin. Cumulative damage theory for composite materials: residual life and residual strength methods. Composites Science and Technology, 1985, 23(1): 1~19.
    [74] W Hwang, K S Han. Fatigue of composite, fatigue modulus concept and life prediction. Journal of Composite Materials, 1986, 20(2): 155~165.
    [75]韩京燮,黄云峰.复合材料疲劳寿命的预测.复合材料学报, 1987, 4(1): 16~24.
    [76] K S Han, W Hwang. Fatigue life prediction and failure mechanisms of composite materials. Advanced Composite Materials, 1992, 2(1): 29~50.
    [77] A Poursartip, M F Ashby, P W R Beaumont. The Fatigue Damage Mechanics of a Carbon Fibre Composite Laminate: I-Development of the Model. Composites Science and technology, 1986, 25(2): 193~218.
    [78] A Poursartip, P W R Beaumont. The Fatigue Damage Mechanics of a Carbon Fiber Composite Laminate: II-Life Prediction. Composites Science and technology, 1986, 25(2): 283~299.
    [79] A Plumtree, G Shen. Prediction of fatigue damage development in unidirectional long fibre composites. Polymers and Polymer Composites, 1994, 2(2): 83~90.
    [80] F Mandell, Urs Meier. Fatigue crack propagation in 0/90 E-glass/epoxy composites. In: Fatigue of Composite Materials(Reifsnider K L ed.). ASTM STP 569, 1975: 28~44.
    [81] N Gathercole, H Reiter, T Adam, et al. Life prediction for fatigue of T800/5245 carbon-fibre composites: I. constant-amplitude loading. International Journal of Fatigue, 1994, 16: 523~532.
    [82] T Adam, N Gathercole, H Reiter, et al. Life prediction for fatigue of T800/5245 carbon-fibre composites: II. variable-amplitude loading. International Journal of Fatigue, 1994, 16: 533~547.
    [83] N Otani, D Y Song. Fatigue life prediction of composite under two-stage loading. Journal of Materials Science, 1997, 32: 775~760.
    [84]轩福贞,孙树勋,汤红卫,等.复合材料层板疲劳损伤的有效能耗分析法.复合材料学报, 1997, 14(3): 115~124.
    [85] D F Sims, V H Brogdon. Fatigue behavior of composites under different loading modes. Reifsnider K L, Lauraitis K N, editors. Fatigue of filamentary composite materials, ASTM STP 636. 1977, 185~205.
    [86] Awerbuch Jonathan, Hahn H T. Off-axis fatigue of graphite/epoxy composite. Fatigue of fibrous composite materials, ASTM STP 723. 1981, 243~273.
    [87] M H R Jen, C H Lee. Strength and life in thermoplastic composite laminates under static and fatigue loads. Part II: formulation. International journal of fatigue.1998, 20(9): 617~629.
    [88] H E Kadi, F Ellyin. Effect of stress ratio on the fatigue of unidirectional glass fibre/epoxy composite laminae. Composites, 1994, 25(10): 917~924.
    [89] A Plumtree, G X Cheng. A fatigue damage parameter for off-axis unidirectional fibre-reinforced composites. International journal of fatigue. 1999, 21: 849~856.
    [90] J Petermann, A Plumtree. A unified fatigue failure criterion for unidirectional laminates. Composites: Part A. 2001, 32: 107~118.
    [91] M Shokrieh Mahmood, F Taheri-Behrooz. A unified fatigue life model based on energy method. Composite Structures. 2006, 75: 444~450.
    [92] A Varvani-Farahani, H Haftchenari, M Panbechi. A fatigue damage parameter for life assessment of off-axis unidirectional GRP composites. Journal of Composite Materials. 2006, 40(18): 1659~1670.
    [93] Z Fawaz, F Ellyin. Fatigue failure model for fibre-reinforced materials under general loading conditions. Journal of Composite Materials, 1994, 28(15): 1432~1451.
    [94] M Kawai, S Yajima, A Hachinohe, et al. Off-axis fatigue behavior of unidirectional carbon fiber-reinforced composites at room and high temperatures. Journal of Composite Materials, 2001, 35(7): 545~576.
    [95] M Kawai, S Yajima, A Hachinohe, et al. High-temperature off-axis fatigue behaviour of unidirectional carbon-fibre-reinforced composites with different resin matrices. Composites Science and Technology. 2001, 61: 1285~1302.
    [96] M Kawai, A Hachinohe, K Takumida, et al. Off-axis fatigue behaviour and its damage mechanics modeling for unidirectional fibre-metal hybrid composite: GLARE 2. Composites: Part A. 2001, 32: 13~23.
    [97] M Kawai. A phenomenological model for off-axis fatigue behavior of unidirectional polymer matrix composites under different stress ratios. Composite Part A. 2004, 35: 955~963.
    [98] M Kawai, H Suda. Effects of non-negative mean stress on the off-axis fatigue behavior of unidirectional Carbon/Epoxy composites at room temperature. Journal of Composite Materials, 2004, 38(10): 833~854.
    [99] M Kawai, K Kato. Effects of R-ratio on the off-axis fatigue behavior of unidirectional hybrid GFRP/Al laminates at room temperature. International journal of fatigue. 2006, 28: 1226~1238.
    [100] M Shokrieh Mahmood, B Lessard Larry. Progressive fatigue damage modeling of composite materials, Part I: Modeling. Journal of Composite Materials, 2000, 34(13): 1056~1080.
    [101] M Shokrieh Mahmood, B Lessard Larry. Progressive fatigue damage modeling of composite materials, Part II: Material characterization and model verification. Journal of Composite Materials, 2000, 34(13): 1081~1116.
    [102]徐颖,温卫东,崔海涛.复合材料层合板疲劳逐渐累积损伤寿命预测方法.航空动力学报. 2007, 22(4): 602~607.
    [103]徐颖,温卫东,崔海涛.复合材料层合板冲击后压-压疲劳寿命预测方法.复合材料学报. 2007, 24(2): 159~167.
    [104] M H R Jen, C H Lee. Strength and life in thermoplastic composite laminates under static and fatigue loads. Part I: experimental. International journal of fatigue.1998, 20(9): 605~615.
    [105]董兴建,李亚智,孟光.复合材料层压板疲劳寿命预测方法.上海交通大学学报. 2004, 38(10): 1748~1752.
    [106] B D Coleman. On the strength of classical fibres and fibre bundles. Journal of the Mechanics and Physics of Solids, 1958, 7(1): 60~70.
    [107] J C Halpin, et al. Time dependent static strength and reliability for composites. Journal of Composite Materials, 1970, 4(10): 462~474.
    [108] J C Halpin, et al. Characterization of composite for the purpose of reliability evaluation. Air Force Materials Laboratory Technical Report AFML-TR-72-289, 1972.
    [109] R V Wolff, G H Lemon. Reliability prediction for adhesive bonds. Air Force Materials Laboratory Technical Report AFML-TR-72-21, 1972.
    [110] H T Hahn, R Y Kim. Proof Testing of composites materials. Journal of Composite Materials, 1975, 9(7): 297~311.
    [111] K K Phani. Evaluation of single-fibre strength distribution from fibre bundle strength. Journal of Materials Science, 1988, 23: 941~945.
    [112] R Hill, E U Okoroafor. Weibull statistics of fibre bundle failure using mechanical and acoustic emission testing: the influence of interfibre friction. Composites, 1995, 26: 699~705.
    [113] T S Creasy. A method of extracting Weibull survival model parameters from filament bundle load/strain data. Composites Science and Technology, 2000, 60: 825~832.
    [114] B Moser, L Weber, A Rossoll, et al. The influence of non-linear elasticity on the determination of Weibull parameters using the fibre bundle tensile test. Composites: Part A, 2003, 34: 907~912.
    [115]杨乃宾,傅惠民.单向碳/环氧复合材料拉-拉疲劳寿命分布.复合材料学报. 1986, 3(2): 95~98.
    [116] N B Yang, H M Fu. Tension-tension fatigue behavior and life distribution of unidirectional Graphite/Epoxy composite. Journal of Reinforced Plastics and Composites. 1986, 5(6): 209~215.
    [117] J N Yang, L Jones Douglas. Statistical fatigue of Graphite/Epoxy angle-ply laminates in shear. Journal of Composite Materials, 1978, 12(10): 371~389.
    [118] J N Yang, R K Miller, C T Sun. Effect of high load on statistical fatigue of unnotched Graphite/Epoxy laminates. Journal of Composite materials, 1980, 14(4): 82~94.
    [119] S L Donaldson, R Y Kim. Life Prediction of Glass/Vinylester and Glass/Polyester Composites Under Fatigue Loading, Proceedings of the 10th International Conference on Composite Materials(A Poursartip and K Street ed.), Vol. 1, Fatigue and Fracture, Woodhead Publishing Limited, 1995 I-557-I-584.
    [120] J N Yang. Reliability prediction and cost optimization for composites including periodic proof tests in service. ASTM STP 617, 1977 March, 272~294.
    [121] N H Tai, C C M Ma, S H Wu. Fatigue behaviour of carbon fibre/PEEK laminate composites. Composites, 1995, 26(8): 551~559.
    [122] G Caprino. Predicting fatigue life of composite laminates subjected to tension-tension fatigue. Journal of Composite Materials, 2000, 34(16): 1334~1355.
    [123] H Mao, S Mahadevan. Fatigue damage modeling of composite materials. Composite Structures, 2002, 58: 405~410.
    [124] S Subramanian, K L Reifsnider, W W Stinchcomb. A cumulative damage model to predict the fatigue life of composite laminates including the effect of a fiber-matrix interphase. International Journal of Fatigue, 1995, 17(5): 343~351.
    [125] Jayantha A Epaarachchi, D Clausen Philip. A new cumulative fatigue damage model for glassfibre reinforced plastic composites under step/discrete loading. Composites: Part A, 2005, 36: 1236~1245.
    [126] W B Hwang, K S Han. Fatigue of composite materials-damage model and life prediction. In: Composite materials fatigue and fracture, ASTM STP 1012. 1989, 87~102.
    [127]顾怡,姚卫星.疲劳加载下纤维复合材料的剩余强度.复合材料学报, 1999, 16(3): 98~102.
    [128]翟洪军,姚卫星.纤维增强树脂基复合材料的疲劳剩余刚度研究进展.力学进展, 2002, 32(1): 69~80.
    [129]徐建新,冯振宇.常幅疲劳载荷下复合材料层合板刚度退化试验研究.机械科学与技术, 2005, 24(9):1069~1070.
    [130] R Kumar, R Talreja. Fatigue damage evolution in woven fabric composites. 41st AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conferences and Exhibit, Atlanta, 2002.
    [131] W J A Bonnee. NLR investigation of polyester composite materials. In: C W Kensche, editor. Fatigue of materials and components for wind turbine rotor blades. German Aerospace Establishment, European Commission-EUR 16684, 39~70.
    [132] M S Found, M Quaresimin. Two-level loading of woven carbon fibre reinforced laminates. Fatigue Fracture Engineering Mater, 2003, 26: 17~26.
    [133]吴富强.纤维增强复合材料疲劳寿命预测研究.南京:南京航空航天大学航空宇航学院,2005.
    [134] A D’Amore, G Caprino, P Stupak, et al. Effect of stress ratio on the flexural fatigue behaviour of continuous strand mat reinforced plastics. Science and Engineering of Composite Materials, 1996, 5(1): 1~8.
    [135] G Caprino, A D’Amore. Flexural fatigue behaviour of random continuous-fibre-reinforced thermoplastic composites. Composite Science and Technology, 1998, 58(6): 957~965.
    [136] Caprino G., A D’Amore, F Facciolo. Fatigue sensitivity of random glass fibre reinforced plastics. Journal of Composite Materials, 1998, 32: 1203~1220.
    [137] U Prisco, G Caprino, G Giorleo. Influence of the flexibiliser content on the monotonic and fatigue behaviour of a polyester resin for composites. Composites Part A: Applied Science and Manufacturing, 2004,35(9): 1081~1089.
    [138]姚卫星,顾怡.结构可靠性设计.北京:航空工业出版社, 1997: 52~54.
    [139]姚卫星.结构疲劳寿命分析.北京:国防工业出版社, 2003: 63~66.
    [140] T P Philippidis, V A Passipoularidis. Residual strength after fatigue in composites: Theory vs. experiment. International Journal of Fatigue, 2007, 29: 2104~2116.
    [141] Doe-Msu. Wind turbine blade composite material fatigue database 1998-1999. Department of Chemical Engineering, Montana State University at Bozman, Montan 59717, USA.
    [142] A Haque, J Krishnagopalan, S Jeelani. Fatigue damage in laminated composites. Journal of Reinforced Plastics and Composites, 1993, 12(10): 1058~1069.
    [143] G R Kress, W W Stinchcomb. Fatigue response of notched Graphite/Epoxy laminates. Recent Advances in Composites in United States and Japan, ASTM STP 864, J R Vinson and M Taya Eds, 1985: 173~196.
    [144] R A Simonds, C E Bakis, W W Stinchcomb. Effects of matrix toughness on fatigue response of raphite fiber composite laminates. In: P A Lagace, editor. Composite materials: fatigue and fracture, 2nd ed. ASTM STP 1012. 1989: 5~18.
    [145] C E Bakis, R A Simonds, L W Vick, et al. Matrix toughness, long-term behavior, and damage tolerance of notched graphite fiber-reinforced composite materials. In: S P Garbo, editor. Composite materials: testing and design, 9th ed. ASTM STP 1059. 1990: 349~370.
    [146] R A Simonds, W W Stinchcomb. Response of notched AS4/PEEK laminates to tension/compression loading. In: G M Newaz, editor. Advances in thermoplastic matrix composite materials. ASTM STP 1044. 1989: 133~145.
    [147] C E Bakis, H R Yih, W W Stinchcomb, et al. Damage initiation and growth in notched laminates under reversed cyclic loading. In: P A Lagace, editor. Composite materials: fatigue and fracture. ASTM STP 1012. 1989: 66~83.
    [148] R E Swain, C E Bakis, K L Reifsnider. Effect of interleaves on the damage mechanisms and residual strength of notched composite laminates subjected to axial fatigue loading. In: Stinchcomb W W, Ashbaugh N E, editors. Composite materials: fatigue and fracture. ASTM STP 1156. 1993: 552~574.
    [149] C M Wang, C S Shin. Residual properties of notched [0/90]4S AS4/PEEK composite laminates after fatigue and re-consolidation. Composites: Part B. 2002, 33(1): 67~76.
    [150] C S Shin, C M Wang. A comparison of as-fatigue and re-consolidation residualproperties for notched quasi-isotropic [0/45/90/-45]2S and cross-ply [0/90]4S AS4/PEEK composite laminates. Composites: Part A. 2002, 33: 1519~1528.
    [151] M H R Jen, Y C Tseng, W H Lin. Thermo-mechanical fatigue of centrally notched and unnotched AS-4/PEEK APC-2 composite laminates. International Journal of Fatigue. 2006, 28(8): 901~909.
    [152] Puhui Chen, Zhen Shen, Jun Yang Wang. Prediction of the strength of notched fiber-dominated composite laminates. Composites Science and Technology. 2001, 61: 1311~1321.
    [153]王丹勇.层合板接头损伤失效与疲劳寿命研究.南京:南京航空航天大学能源与动力学院,2006.
    [154] S M Spearing, P W R Beaumont. Fatigue damage mechanics of composte materials I: experimental measurement of damage and post-fatigue properties. Composite Science and Technology, 1992, 44: 159~168.
    [155] Sung W. Choi, Eun-Jung Song, H. Thomas Hahn. Prediction of fatigue damage growth in notched composite laminates using an artificial neural network. Composite Science and Technology, 2003, 63: 661~675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700