用户名: 密码: 验证码:
长寿命沥青路面损伤行为及其结构寿命合理匹配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长寿命沥青路面的实质就是路面在设计使用寿命期间不会发生结构性破坏,路面的损坏仅发生在路面的上层,维修时不需要进行结构性处理,只需将表层混合料铣刨,并换成等厚度的新混合料即可,维修十分方便;其理念应该是通过对沥青路面结构的优化,合理设置路面各结构层的位置和层厚,从而延长沥青路面使用寿命,使其成为长寿命和较低维修成本的路面结构。而我国近些年来随着道路荷载的不断增加,特别是重载交通对我国的沥青路面提出了新的挑战。按传统的路面设计体系和设计标准设计的路面通常不到设计年限就出现了损坏,经常需要进行大修,由此造成交通的拥挤或堵塞,给高速公路、城市间的重要干道造成极大的压力。因此,为了提高高速公路沥青路面的整体质量,减少路面的维修,提升公路路面服务水平,降低原材料消耗,节约能源资源,提高公路的经济社会效益,并为沥青路面结构设计提供一定的理论参考。本文在对我国现行沥青路面结构分析的基础上,对影响长寿命沥青路面结构性能的参数指标、损伤破坏形式进行研究;应用有限元方法分析了长寿命沥青路面的结构响应及其损伤行为,并应用多尺度模拟方法进一步从材料角度分析研究沥青混合料的损伤演化行为。结合国内外长寿命沥青路面设计思想提出了沥青路面结构寿命匹配设计理念,并按照结构寿命匹配设计理念来研究优化我国沥青路面结构,从而使其满足长寿命路面要求。
     首先从沥青路面结构类型及损失破坏形式分析出发,分析研究了影响沥青路面损伤的指标和参数,提出了长寿命沥青路面的主要损伤破坏形式。沥青混合料动态模量参数是长寿命沥青路面结构设计中非常关键材料设计参数,在对一些先进的沥青混合料动态模量预测模型比较的基础上,利用沥青混合料动态模量试验实测数据对动态模量预测模型进行了验证,并提出了合适的动态模量预测模型。对沥青路面疲劳预估模型进行了比较验证,通过应用材料连续损伤原理确定了长寿命沥青路面设计的理论基础-沥青混合料的疲劳极限。
     针对传统弹性层状体系理论路面设计的路面响应通常在弹性层静载条件、圆形作用面积、均匀荷载分布及线性材料特征基础上用静载方法来计算与实际路面受力状态不符的问题,结合有限元方法,采用了瞬时轮载的隐式-动态分析原理,并考虑动态荷载对路面响应的影响来研究不同轮载、不同温度及不同速度下的路面响应,并研究了不同沥青路面结构的应力应变行为,同时分析了长寿命沥青路面的损伤行为。分析表明:厚沥青层路面结构具有较好抗损伤能力,其车辙损伤要小于较薄沥青层结构,在一定程度上,沥青层厚度的增加,对沥青混合料车辙损伤并没有大的影响;Top-Down裂缝不是始于路表面而是发生在沥青结构层里面的浅深处,且最有可能始于胶浆结合力较弱或路面温度较高的时候,也即对车辙敏感的混合料同样也对裂缝敏感,而在低温时出现Top-Down裂缝的可能性较小,甚至不会出现;轮胎-路面接触应力的均匀分布假设低估了临近路表面的路面破坏潜力,尤其是在高温时。
     应用细观力学多尺度模拟理论从沥青混合料材料角度分析了其损伤行为,对进一步理解长寿命沥青路面中的主要破坏形式Top-Down裂缝损伤成因具有一定的理论价值。最后结合我国沥青路面结构实际状况,用结构寿命匹配理念对我国沥青路面结构进行分析,认为半刚性基层沥青路面通过各结构层寿命的合理匹配,通过更换材料、改变厚度及变化层位等方法的优化,能够达到长寿命路面要求。
     本文取得的主要研究成果将为改善我国沥青路面结构设计、提高沥青路面整体质量,从而延长沥青路面使用寿命奠定坚实的理论基础。
The essence of long life asphalt pavement is that the pavement would not occur structural destroy during the design service life of a pavement. The upper layer of the pavement is the only part that would damage, so pavement maintenance will be more effective as it only need to renew the destroyed upper layer of the pavement without structural repaired treatment. The theory of long life asphalt pavement should depend on the optimization of asphalt pavement structure, layers location and thickness to extend the life of asphalt pavement and reduce the maintenance cost. In recent years, the asphalt pavements of our country face with the challenge of the increasing pavement loading, especially the heavy loading traffic. Basic on traditional design system of pavement structure, the pavement would be destroyed before the design service period and need major repair. It leads to traffic jam and increases the traffic pressure of the highway and urban arterial road. In order to enhance the total quality of the highway asphalt pavement, reduce the pavement maintenance, upgrade the pavement service, cut down the consumption of material, save the energy, increase the economy and society efficiency and make contribution to the asphalt pavement structure design theory. This paper, basic on the analysis of asphalt pavement structure of our country, research on the parameter indexes and forms of damage and failure which effect the life of long life asphalt pavement, the structure response and the damage behavior of long life asphalt pavement by applying FEM, damage evolvement of asphalt mixture by multiscale modeling method from material science point of view. Combining with the idea of long life asphalt pavement at home and abroad, it raises the asphalt pavement life matching theory, optimize the asphalt pavement structure of our country by this theory and make it meets the requirement of long life asphalt pavement.
     Base on types of asphalt pavement and destruction forms, indexes and parameters which infused the deterioration of asphalt pavement were analyzed. According to the result, several forms of long life asphalt pavement destructions were put forward. A suitable model for dynamic modulus prediction was proposed to determine the design parameters of long life asphalt pavement; this model was base on the comparison and analysis among several advanced prediction models and on the verification of prediction model using test data from a dynamic modulus experiment of asphalt mixtures. The asphalt pavement fatigue prediction model was validated by comparing. The fatigue limit of asphalt pavement was determined based on the elastic-viscoelastic theory of asphalt mixture.
     In traditional pavement design, base on the theory of elastic layered system the calculated results were different from an actual pavement in condition of elastic layered static load, in the shape of action area, in the load distribution and in the assuming of material characteristic. The stress-strain behavior of different types of asphalt pavement were analyzed and the damage mechanism of long life asphalt pavement was analyzed at the same time, using transient loaded implicit-dynamic FEM and the pavement response of dynamic load in different load states, different temperatures and different speeds were considered. The result indicated that thick layer asphalt pavement possessed better damage tolerant, whose rutting depth was less than thin layer asphalt pavement. To some extent, with the increasing of pavement thickness, the thickness of pavement could play less important role in the properties of rutting. Top-down crack was not generated in the surface of a pavement but in the shallow layer of a pavement structure, and the most favor states for Top-down crack was when the mixture possessed weak bonding and in high temperature. According to the result, a mixture that was sensitive to rutting also sensitive to cracking. But it was not possible for Top-down crack be generated at low temperature, or event none. The assuming that the tire-pavement contact stress was uniform distribution could lead to a result that underestimated the damage of pavement in shallow layer, especially in high temperature.
     The theory of multi-scale simulate method of micromechanics was applied to analyze the damage behavior of asphalt mixture, which could help comprehending the cause of Top-down crack that was the main damage form of the long life asphalt pavement. In the last part of the study, the typical asphalt pavement structure in China was optimization analyzed basing on the idea of matching of structure life. It was considered that asphalt pavement on semi-rigid base could fulfilled the requirements of long life pavement by reasonable matching the service lives of each layer by optimizing materials and thickness.
     The major results obtained in the research would lay a solid theoretical foundation for asphalt pavement design, improve the overall quality of asphalt pavement and extend its life.
引文
[1]公路沥青路面设计规范[S]. JTG D50-2006.人民交通出版社,2006
    [2]公路沥青路面施工技术规范[S]. JTG F40-2004.人民交通出版社,2004
    [3]沈金安.国外沥青路面设计方法总汇[M].人民交通出版社,2004
    [4]沈金安,李福普等.高速公路沥青路面早期损坏分析与防治对策[M].人民交通出版社,2004
    [5]沙庆林.高速公路沥青路面早期破坏现象及预防[M].人民交通出版社,2003
    [6]沈金安.如何解决路面结构设计中存在的问题[R].第二届全国公路科技创新高层论坛,2004
    [7] Newcomb DE, Buncher M, Huddleston IJ. Concepts of Perpetual Pavements[J]. Transportation Research Circular No. 503,Washington (DC),TRB,National Research Council,2001. p. 1–44
    [8] APA. Perpetual pavements–A synthesis, Asphalt Pavement Alliance Order No. APA 101, Lanham, MD; 2002
    [9] Ferne B.“Long-life Pavements– a European Study by ELLPAG”[J]. International Journal of Pavement Engineering, Vol. 7, No. 2, pp 91-100
    [10] Nunn ME,Brown A,Weston D,et al. Design of Long-Life Flexible Pavements for Heavy Traffic[R]. TRL Report 250, Transport Research Laboratory, Crowthorne, UK; 1997
    [11] ERES Consultants Division. Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures[R]. Final Report NCHRP 1-37A, Champaign, IL. 2004
    [12] Bushmeyer B. The Quest for Long-Life Asphalt Pavement[J]. Better Roads, Februrary ,2002
    [13] Cheneviere P,Ramdas V. Cost Benefit Analysis Aspects Related to Long-Life Pavements[J]. International Journal of Pavement Engineering,Vol. 7, No. 2, June 2006, pp 125-152
    [14] Perpetual Bituminous Pavements. Transportation Research Circular 503, Transportation Research Board, National Research Council, December 2001
    [15] Timm D.H,Newcomb D.E. Perpetual Pavement Design for Flexible Pavements in The US[J]. International Journal of Pavement Engineering,Vol. 7, No. 2, 2006, pp 111-119
    [16]孟书涛.沥青路面合理结构的研究(D).东南大学博士学位论文,2005
    [17] Donna Harmelink , Tim Aschenbrener.Extent of Top-down Cracking in Colorado[R].Report No.CDOT-DTD-R-2003-7
    [18] Rolt J. Long-Life Pavements. TRL Limited, United Kingdom, PA3736, 2001
    [19] Scullion T. Perpetual Pavements in Texas: State of The Practice[R]. Report 0-4822-1, Texas Department of Transportation, Texas Transportation Institute, May 2006
    [20] St. Martin J,Harvey J.T,Long F,et al. Long-Life Rehabilitation Design and Construction[J]. Transportation Research Circular, Number 503, 2001, pp 50-65
    [21] Powell W.D,Potter J.F,Mayhew H.C,et al. The Structual Design of Bituminous Roads[R]. TRRL Report No.LR 1132,Transport and Road Research Laboratory,Crowthorne,England,1984
    [22] Nunn M,Ferne B.W. Design and Assessment of Long-Life Flexible Pavements[J]. Transportation Research Circular,Number 503,2001, pp 32-49
    [23] Corte′Jean-Francois. Development and Uses of Hard Grade Asphalt and of High Modulus Asphalt Mixes in France[J]. Transportation Research Circular No. 503. Washington (DC): TRB, National Research Council; 2003. p. 12–30
    [24] Jim St , Martin , John T , et al. Long-Life Rehabilitation Design and Construction:I-710 Freeway, Long Beach. California. Transportation Research Circular, Number 503, 2001, pp 50-65
    [25] Harvey J,Monismith C,Horonjeff R,et al. Long-Life AC Pavements: A Discussion of Design and Construction Criteria Based on California Experience. International Symposium on Design and Construction of Long Lasting Asphalt Pavements: Proceedings, National Center for Asphalt Technology, 2004, pp 285-333
    [26] Scullion T. Perpetual Pavements in Texas: State of The Practice[R]. Report 0-4822-1, Texas Department of Transportation, Texas Transportation Institute,May 2006
    [27] Harvey J,Monismith C,Horonjeff R.,et al. Long-Life AC Pavements: A Discussion of Design and Construction Criteria Based on California Experience[J]. International Symposium on Design and Construction of Long Lasting Asphalt Pavements: Proceedings, National Center for Asphalt Technology, 2004, pp 285-333
    [28] Lubinda F,Walubita,Tom Scullion,et al. Texas Perpetual Pavements: Modulus Characterization of the Rut-Resistant HMA Mixes. Transportation Research Board 2008 Annual Meeting, CD-ROM
    [29] Perpetual Bituminous Pavements. Transportation Research Circular 503, Transportation Research Board,National Research Council,December 2001
    [30] Kuennen T. Perpetual Pavement, Two Years Later[J]. Better Roads,March 2004
    [31]王宏畅.半刚性基层沥青路面两阶段设计方法研究[D].东南大学博士学位论文,2005
    [32]姚祖康.对我国沥青路面现行设计指标的评述[J].公路,2003
    [33]张肖宁.沥青混合料抵抗反射裂缝能力的评价方法研究[J].华南理工大学学报,2001
    [34]李峰,孙立军,胡晓.长寿命沥青路面设计方法与实践综述[J].公路,,2005(7):122-126
    [35]陈泽松,李海华.广梧高速公路试验路段路面结构组合设计[J].公路,2005
    [36]陈小庭,孙立军,李峰.长寿命沥青混凝土路面结构特点与设计研究[J].公路,2005
    [37]赵殿鹏,王大明,邱安帮.长寿命沥青路面的分析与探讨[J].辽宁交通高等专科学校学报,2006(2),16~17
    [38]彭文俊.长寿命沥青路面抗疲劳层性能研究[D].东南大学硕士学位论文,2005
    [39]冯治安,王选仓,李国胜.长寿命路面典型结构研究、设计与施工技术[M].人民交通出版社,2007
    [40]赵晓晴.高速公路长寿命路面典型结构技术研究[D].长安大学硕士学位论文,2005
    [41]王德密.长寿命沥青路面设计方法研究[D].长安大学硕士学位论文,2008
    [42]曾宇彤,陈湘华,王端宜.美国永久性路面结构[J].中外公路,2003
    [43]潘艳珠.长寿命水泥混凝土路面相关问题研究[D].华南理工大学博士学位论文,2008
    [44]袁谱,王端宜.长寿命沥青路面结构参数变化的三维有限元分析[J].广东公路交通,2006(2)
    [45]谭炯.重载交通长寿命沥青路面结构及材料设计研究[D].长沙理工大学硕士学位论文,2008
    [46]邓学均.路基路面工程[M].人民交通出版社,2006
    [47]沈金安,等.高速公路沥青路面早期病害预防措施的研究[R].交通部公路研究所,2004
    [48]American Association of State Highway and Transporation Officials: Mechanistic- Empirical Pavement Design Guide, Interim Edition: A Manual of Practice. AASHTO, July 2008
    [49]姚祖康.对国外沥青路面设计指标的评述[J].公路,2003
    [50] Ferne B. Long-life Pavements– A European Study by ELLPAG[J]. International Journal of Pavement Engineering, Vol. 7, No. 2, pp 91-100
    [51]刘敬辉.预裂缝技术防止水泥稳定类基层沥青路面反射裂缝的研究[M].华南理工大学博士学位论文,2009
    [52]吴志军.半刚性基层沥青路面早期破坏结构与材料特性影响分析[D].浙江大学硕士学位论文,2007
    [53]姚祖康.对我国沥青路面现行设计指标的评述[J].公路,2003
    [54]孙海娟.高等级道路二灰碎石基层反射裂缝的成因及防治研究[D].同济大学硕士学位论文,2006
    [55]虞文锦.半刚性基层沥青路面的裂缝成因分析及处理研究[D].长安大学硕士学位论文,2006
    [56]任瑞波.具有柔性基层(级配碎石)的高等级公路半刚性沥青路面结构的研究[R].哈尔滨工业大学博士后出站报告,2003
    [57]何兆益,沈颖,黄卫等.具有碎石基层的半刚性沥青路面合理结构研究[J].岩土工程学报,1998,20(2):93-96
    [58]杨尚阳.加铺碎石过渡层减少路面反射裂缝研究[D].山东大学硕士学位论文,2006
    [59]董江涛.级配碎石过渡层沥青路面结构研究[D].长安大学硕士学位论文,2008
    [60]李福普,等.龙长高速公路路面结构专项设计[R].交通部公路科学研究所,2005
    [61]福建邵武高速公路设计文件[Z].福建省交通勘察设计院,2008
    [62]孙立军.沥青路面结构行为理论[M].同济大学出版社,2003
    [63]沈金安,李福普,陈景.高速公路沥青路面早期损坏分析与防治对策[M].人民交通出版社,2004
    [64]广东华路交通科技有限公司.广东省高速公路路面破损状况检测报告[R]. 2008
    [65] Hsu T.W,Tseng K.H. Effect of Rest Periods on Fatigue Response of Asphalt Concrete Mixtrues[J]. Journal of Transportation Engineering,ASCE,Vol 122,No.4,316-322
    [66] Monismith C.L. Analytically Based Asphalt Pavement Design and Rehabilitation[J]. Transportation Research Record 1354,Transportation Research Board,Washington D.C,pp.5-26,1992
    [67] Timm D.H,Newcomb D.E. Calibration of Flexible Pavement Performance Equations[J]. Transportation Research Record 1853,Transportation Research Board,Washington D.C,pp.134-142,2003
    [68] David Whiteoak.壳牌沥青手册(中文版)[Z].壳牌集团. 1995
    [69] Finn F,Saraf C.L,Kulkarni R,et al. Development of Pavement Structure Subsystems[J]. NCHRP Report 291,Transportation Research Board,Washington D.C,1986
    [70] Huang Y. H. Pavement Analysis and Design, 1st Edition. Prentice Hall, New Jersey, 1993
    [71] National Cooperative Highway Research Program 1-37A,Final Report. Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures. ARA, Inc., 2004
    [72] Schram S , Abdelrahman M. Improving Prediction Accuracy in Mechanistic-Empirical Pavement Design Guide[J]. Journal Transportation Research Record: Journal of the Transportation Research Board. 2006
    [73] Nunn M. Long-life Flexible Roads,Proceeding. 8th International Conference on Asphalt Pavements,Seattle,1997
    [74] Geoffrey Rowe,Robert Sauber,Frank Fee,et al. Development of Long-Life Overlays for Existing Pavement Infrastructure Projects with Surface Cracking in New Jersey[J]. Transportation Research Circular, Number 503, 2001, pp 96-107
    [75]张肖宁.沥青路面施工质量控制与保证[M].人民交通出版社,2009
    [76] Buttlar W.G.,Bozkurt D,Al-Khateeb G.,et al. Understanding Asphalt Mastic Behavior Through Micromechanics[J]. Transportation Research Record,TRB, 157-169,1999
    [77] Papagiannakis A.T , Abbas A , Masad E. Micromechanical Analysis of Viscoelastic Properties of Asphalt Concretes[J]. Transportation Research Record,1789, TRB, 113-120,2002
    [78] Dai Q,You Z. Micromechanical Finite Element Framework for Predicting Viscoelastic Properties of Asphalt Mixtures[J]. Materials and Structures , 41, 1025-1037,2007
    [79] Abbas A.M,Masad E,Papagiannakis T,et al. Modelling Asphalt Mastic Stiffness Using Discrete Element Analysis and Micromechanics-Based Modes[J]. International Jounal of Pavement Engineering, 6(2), 137-146,2005
    [80] Bari J,Witczak M.W. Development of A New Revised Version of the Witczak E* Predictive Model for Hot Mix Asphalt Mixtures[J]. Journal of the Association of Asphalt Paving Technologists, 75, 381-423,2006
    [81] Christensen Jr.D.W,Pellinen T,Bonaquist R. F. Hirsch Model for Estimating the Modulus of Asphalt Concrete[J]. Journal of the Association of Asphalt PavingTechnologists, 72, 97-121,2003
    [82] Kim Y.R,Little D.N. Linear Viscoelastic Analysis of Asphalt Mastics[J]. Journal of Materials in Civil Engineering, 122-132,2004
    [83]张肖宁等.沥青混合料动态模量参数[R].华南理工大学道路工程研究所. 2007
    [84]沙爱民等.无机结合料稳定类基层模量及衰变规律[R].长安大学,2007
    [85]张肖宁等.沥青层疲劳开裂预估模型研究报告[R].华南理工大学道路工程研究所. 2007
    [86] Perpetual Bituminous Pavements. TRB, National Research Council, Washington D.C,Transportation Research Board Circular No. 503, 2001
    [87] Monismith C.L,Epps J.A,Kasianchuk D.A,et al. Asphalt Mixture Behavior in Repeated Flexure. Report TE 70-5. Institute of Transportation and Traffic Engineering, University of California, Berkeley, 1970
    [88] Carpenter S.H,Ghuzlan K.A,Shihui Shen. A Fatigue Endurance Limit for Highway and Airport Pavements[J]. Transportation Research Board,CD-ROM,2003
    [89] Monismith C.L,McLean D.B. Structural Design Considerations[J]. Proceedings of the Association of Asphalt Paving Technologists, Vol. 41, 1972
    [90] Maupin G.W,Freeman J.R. Simple Procedure for Fatigue Characterization of Bituminous Concrete, Final Report No. FHWA-RD-76-102, Federal Highway Administration, Washington, DC, 1976
    [91] Prowell B. D,Brown E. R. Method of Determining Endurance Limit Using Beam Fatigue Tests. International Conference on Perpetual Pavement ,CD-ROM 2006
    [92]张肖宁.实验粘弹性原理[M].哈尔滨船舶工程学院出版社,1990
    [93] Schapery R.A. Correspondence Principles and a Generalized J-Integral for Large Deformation and Fracture Analysis of Viscoelastic Media[J]. International Journal of Fracture, 25(1), 1984, pp 95–223
    [94] Kim Y.R,Lee Y.C,Lee H. J. Correspondence Principle for Characterization ofAsphalt Concrete[J]. Journal of Materials in Civil Engineering,7(1), 1995, pp 59-68
    [95] Drakos C,Roque R,Birgisson B. Effects of Measured Tire Contact Stresses on Near Surface Rutting[J]. In Transportation Research Record: Journal of the Transportation Research Board, No. 1764, TRB, National Research Council, Washington, D.C., 2001, pp. 59–69
    [96] De Beer M,Fisher C,Jooste F.J. Evaluation of Non-Uniform Tyre Contact Stresses on Thin Asphalt Pavements. Proceedings(CD) of Ninth (9th) International Conference on Asphalt Pavements (ICAP 2002), Copenhagen, Denmark, August 17-22, 2002
    [97] Darestani M.Y,David P.T,Andreas N,et al. Dynamic Response of Concrete Pavements under Vehicular Loads[Z]. Proceedings IABSE Symposium - "Response to Tomorrow's Challenges in Structural Engineering", Budapest, Hungary, 2006, pp. 104–105
    [98] Gillespie T.D,Karimihas S.M,Cebon D,et al. Effects of Heavy-vehicle Characteristics on Pavement Response and Performance. In NCHRP Report 353, TRB, Washington D.C,1993
    [99] Cebon D. Road Damaging Effects of Dynamic Axle Loads. Proceedings of the International Symposium on Heavy Vehicles Weights and Dimensions, Kelowna, British Columbia, Canada, 1986, pp. 37–53
    [100] Yoo P.J,Al-Qadi I.L. Effect of Transient Dynamic Loading on Flexible Pavements. Presented at the 86 th Annual Meeting of the Transportation Research Board, Washington D.C, 2007
    [101]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].人民交通出版社. 2006
    [102]宋子康,蔡文安.材料力学[M].同济大学出版社. 1997
    [103]邵显智,邵敏华,毕玉峰,孙立军.沥青混合料泊松比的测试方法[J].同济大学学报(自然科学版). 2006 (11),1470~1474
    [104] Yoder E.J,Witczak M.W. Principles of pavement design. New York ,John Wiley & Sons. 1975
    [105]胡尚军,许志鸿,李淑明.沥青混合料泊松比测定研究介绍[J].公路与汽运,2007(1),89~93
    [106]庄茁.基于ABAQUS的有限元分析和应用[M].清华大学出版社,2009
    [107]谢贻权,何裕保.弹性和塑性力学中的有限元法[M].机械工业出版社,2006
    [108]高隆昌,杨元.数学建模基础理论[M].科学出版社,2007
    [109]廖公云,黄晓明. ABAQUS有限元在道路工程中的应用[M].东南大学出版社,2008
    [110]王金昌,陈页开. ABAQUS在土木工程中的应用[M].浙江大学出版社,2006
    [111]赵腾伦. ABAQUS6.6在机械工程中的应用[M].水利水电出版社,2007
    [112]陈惠发,余天庆.弹性与塑性力学[M].中国建筑工业出版社,2004
    [113]陆明万,张雄,葛东云.工程弹性力学与有限元法[M].清华大学出版社,2005
    [114]刘展. ABAQUS6.6基础教程与实例详解[M].水利水电出版社,2008
    [115] ARA Inc,ERES Division. Finite Element Procedures for Flexible Pavement Analysis[J]. NCHRP Final Document, Transportation Research Board , Washington D.C, Appendix RR. 2004
    [116]朱照宏,王秉纲,郭大智.路面力学计算[M].人民交通出版社,1985
    [117]夏永旭,王秉纲.道路结构力学计算[M].人民交通出版社,2003
    [118]黄仰贤.路面分析与设计[M].人民交通出版社,1998
    [119]朱照宏,许志鸿.柔性路面设计理论和方法[M].同济大学出版社,1987
    [120]孙立军.沥青路面结构行为理论[M].人民交通出版社,2005
    [121] Al-Qadi I.L,Yoo P.J. Surface Tangential Contact Stresses Effect on Flexible Pavement Response[J]. Journal of Association of Asphalt Paving Technologists, Vol. 76,2007
    [122] Al-Qadi I.L,Elseifi M.A,Yoo P. J. Characterization of Pavement Damage Due to Different Tire Configurations[J]. Journal of the Association of Asphalt Pavement Technologists,Vol. 84, 2005
    [123] Bensalem A,Broen A.J,Nunn M.E,et al. Finite Element Modeling of Fully Flexible Pavements: Surface Cracking and Wheel Interaction. Proceedings ofthe 2nd International Symposium on 3D Finite Element for Pavement Analysis, Design and Research, West Virginia, pp. 103-121,2002
    [124]毕继红.工程弹塑性力学[M].天津大学出版社,2003
    [125] Searcy, C. R. A Multi-scale model for predicting damage evolution in heterogeneous viscoelastic media(D). Ph.D. Dissertation, Texas A&M University, College Station, USA, 2004
    [126]汪海年,郝培文.沥青混合料微细观结构的研究进展[J].长安大学学报(自然科学版),2008(5): 11-15
    [127]王端宜,张肖宁,王绍怀.用虚拟试验方法评价沥青混合料的级配类型[J].华南理工大学学报(自然科学版),2003, 31(2):48-51
    [128]王端宜.设计沥青路面及其方法的研究[D].华南理工大学2003
    [129]张洪武.弹性接触颗粒状周期性结构材料力学分析的均匀化方法--局部RVE分析[J].复合材料学报,2001(4):93-97
    [130] L.B. Wang,Myers L.A,Mohammad L.N,et al. A Micromechanics Study on Top-Down Cracking[J]. Transportation Research Board,CD-ROM,2003
    [131] Ferrari V.T,Granik A,Nadeau J.C. Advances in Doublet Mechanics. Springer,1997
    [132] Granik V.T,Ferrari M. Microstructural Mechanics of Granular Media[J]. Mechanics of Materials, Volume 15, pp301-332,1993
    [133] Guddati M.N,Feng Z,Kim Y. R. Towards a Micromechanics-Based Procedure to Characterize Fatigue Performance of Asphalt Concrete[J]. Transportation Research Record. 1789,Transportation Research Board,Washington, D.C,121–128,2002
    [134] Soares B.J,Freitas F,Allen D.H. Crack Modeling of Asphaltic Mixtures Considering Heterogeneity of the Material[J]. Paper Presented at 82nd Annual Meeting,Transportation Research Board,Washington, D.C,2003
    [135]陆新征,林旭川,叶列平多尺度有限元建模方法及其应用[J],华中科技大学学报(城市科学版),2008(4): 76-80.
    [136] Searcy C.R.A. Multi-Scale Model for Predicting Damage Evolution in Heterogeneous Viscoelastic Media(D). Ph.D. Dissertation, Texas A&MUniversity, academic city, USA, 2004
    [137] Yong-rak Kim. Mechanistic Fatigue Characterization and Damage Modeling of Asphalt Mixtures(D). Ph.D. Dissertation, Texas A&M University, academic city, USA, 2003
    [138] Williams J.J. Two Experiments for Measuring Specific Visco-Elastic Cohesive Zone Parameters[D]. Texas A&M University, academic city, USA, 2001
    [139]姚祖康.对国外沥青路面设计指标的评述[J].公路,2003(3). 18~25
    [140] The Austroads Mix Design Manual (Draft)[S]. Australian Road Researeh Board, 1995
    [141]严二虎.沥青路面柔性基层材料设计方法与应用技术研究[D].东南大学博士学位论文,2004
    [142] Fred Hugo. South African Pavement Engineering Experience[G].中国交通可持续发展论坛,2004
    [143] EAPA Statement on European Standards. Heavy Duty Pavements:The Arguments for Asphalt[R]. EAPA,2000
    [144]周庆桐等译.日本沥青路面规范[M].日本道路协会著,人民交通出版社,1980
    [145] Jean-Francois Corte′. Design of Pavement Structure: The French Technical Guide[J]. Transportation Research Board-75th Annual Meeting,1996
    [146]沙爱民半刚性基层的材料特性[J].中国公路学报,2009.(1):1~5
    [147]交通部重庆公路科学研究所.沥青混合料和半刚性基层材料疲劳特性的研究[R].交通部重庆公路科学研究所,1990
    [148]平树江,蒋亮,申爱琴等.半刚性材料作为长寿命沥青路面基层的适应性研究[J].公路交通科技,2009(4),29~32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700