用户名: 密码: 验证码:
面向KDP晶体材料可延性加工的力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸二氢钾(KDP)晶体是一种优质非线性光学晶体,具有较大的电光及非线性光学系数、高的激光损伤阈值、低的光学吸收系数、良好的光学均匀性等特点。大口径高质量的KDP晶体是目前唯一可用于惯性约束核聚变(ICF)、强激光武器等光路系统中的激光倍频、电光调制和光电开关器件的非线性光学材料,在高新技术和国防尖端技术领域具有重要的应用前景。但是,KDP晶体具有各向异性、软脆、易潮解等特点使其成为极难加工材料,而高精度高表面完整性的加工要求使精密和超精密加工技术面临新的挑战。针对目前人们对KDP晶体精密和超精密加工困难的科学本质认识有限,本文以延性加工为目标,系统的研究了KDP晶体的纳米力学行为、弹塑性变形、断裂韧性、微裂纹扩展、动态摩擦学特性、材料去除机理,以及结合KDP晶体材料特性的延性加工理论分析和试验验证。针对上述问题进行了一些探索性的研究工作,主要内容与学术贡献如下:
     通过纳米压痕技术对比研究了KDP晶体三个典型晶面的纳米力学特性。应用MPSR模型和应变梯度理论能够很好的解释和说明KDP晶体纳米压痕尺寸效应现象是一种载荷和压痕深度的非线性比例阻尼现象,并且非线性程度和试件的表面加工残余应力密切相关。指出滑移是KDP晶体产生塑性变形的主要模式,塑性变形初始是pop-in现象发生的原因,卸载曲线末端发生变化是由于压头和KDP晶体表面的粘附作用所致。进一步分析结果表明,KDP晶体(001)晶面、二倍频晶面和三倍频晶面纳米硬度和弹性模量随压痕方向变化呈现周期性。这是由晶面结构和压头形状对称性及压头下等效剪切应力随晶向变化决定的。(001)晶面、二倍频晶面和三倍频晶面硬度和弹性模量周期分别为90°、120°和120°。此外,(001)晶面硬度各向异性程度为46.2%,弹性模量各向异性程度为63.9%;二倍频晶面的纳米硬度各向异性程度为32.9%,弹性模量各向异性程度为75.6%;三倍频晶面硬度各向异性程度为36.3%,弹性模量各向异性程度为51.2%。
     借助划痕测试手段,研究了KDP晶体材料的去除过程和摩擦学特性。结果表明,KDP晶体去除过程可分为如下4个阶段:弹塑性变形,塑性耕犁,微切屑生成和表面损伤。由于KDP晶体具有软脆特性,弹塑性变形阶段和塑性耕犁阶段的界限区分并不明显,并且变形机理受晶向影响强烈。(001)晶面、二倍频晶面和三倍频晶面划痕摩擦系数变化周期分别为90°,180°和180°,各向异性程度分别为50%,43.8%和43.8%。(001)晶面摩擦系数变化范围为0.09±0.01~0.18±0.01;二倍频晶面摩擦系数变化范围为0.09±0.02~0.16±0.01;二倍频晶面摩擦系数变化范围为0.09±0.02~0.16±0.02。同时,研究了单颗粒划痕对KDP晶体表面和亚表面产生的加工损伤,分析了各向异性对微裂纹产生的影响,探讨了晶体表面和亚表面损伤行为及形成机理。
     重点研究了KDP晶体不同晶面的压痕断裂特征。研究发现KDP晶体在进行低载压痕断裂韧性测试时三个常用典型晶面的裂纹长度和压痕载荷均呈现P/c1.5=常数的关系,且断裂韧性值对载荷增加依赖性不大。(001)晶面、二倍频晶面和三倍频晶面的断裂韧性值受晶向影响较大,各向异性程度分别为63.8%,64.3%和34.1%。断裂韧性值的范围分别为0.096~0.265 MPa·m0.5,0.096~0.269 MPa·m0.5和0.122~0.185 MPa·m0.5。
     结合上述KDP材料力学行为的研究结果和理论分析,以磨削加工为例,理论上给出了KDP晶体不同晶面的最佳磨削方向和临界延性域切削深度,得到KDP晶体(001)晶面最佳磨削方向为平行于[100]或[010]晶向,最大延性域切削深度为0.22±0.05μm;二倍频晶面最佳磨削方向为和[110]晶向成135°方向,最大延性域切削深度为0.52±0.06μm;三倍频晶面最佳磨削方向为平行于[100]晶向,最大延性域切削深度为0.23±0.05μm。使用两种平面磨床进行了KDP晶体延性加工试验验证和分析,得到了磨削方向对表面质量影响规律,为KDP晶体超精密加工技术研究提供了理论依据。
Potassium Dihydrogen Phosphate (KH2PO4, KDP) is a nonlinear optical crystal material with larger opto-electronic and nonlinear optical coefficient, higher laser induced damage threshold, lower linear absorption coefficient, and better optical homogeneity, etc. Only KDP crystal with large aperature and high quality can be applied in the ICF and high power laser weapon as laser frequency multiplier, electro-optic modulator and photoelectric switches. Furthermore, it has very important position in the field of high technology and the leading technology of national defense. However, KDP crystal is an extremely difficult-to-machine material due to the nature of anisotropy, softness, brittleness, easy deliquescence, and so on. Perfect surface quality and surface integrality of KDP crystal part make ultraprecision machining technologies encounter a challenge. Thus it is distinctly significant to understand the ultrasmooth surface processing technology of KDP crystal. In this work, mechanical behaviors at the nanoscale, elastic-plastic deformation, fracture toughness, micro cracks growth, dynamic friction characteristics, materials removal mechanism, and ductile-regime machining technology of KDP crystal are systematically studied and estimated. The results and the main contributions of this study are followed as:
     Mechanical behaviors on the different crystal planes of KDP crystals at the nanoscale are investigated using nanoindentation approaches. Indentation size effect of KDP crystal is analyzed in detail in terms of strain gradient theory and the modified proportional specimen resistance (MPSR) model, and the results show that indentation size effect of KDP crystal is a nonlinear proportional specimen resistance phenomena between the load and indentation depth and the nonlinear amplitude of them is influnced greatly by the surface reisdual stress of processed sample. In addition slip, the initiation of which appears to cause pop-in events, is concluded to be the major mode of plastic deformation, and the variation of unloading curve end is the contribution of the adehesion between the tip and the contact surface. Moreover, the nanohardness and elastic modulus of the (001) plane, the doubler plane and the tripler plane were varied periodically with crystallographic orientations, which is correlated to the symmetry of the crystal structure, the tip shape, and the variation of the effective resolved shear stress under the tip. The periods of nanohardness and elastic modulus on the (001) plane, the doubler plane and the tripler plane are 90°,120°and 120°, respectively. The relative anisotropy of nanohardnes is 46.2%,32.9% and 36.3%, respectively.
     Material removal process of KDP crystal is investigated using scratching technology. In the nanoscratch test, the deformation and removing process of the crystal materials consist of four parts, namely elastic-plastic deformation, the ploughing, micro chips formation, and surface damage. The difference between the elastic-plastic stage and the plowing stage is not very clear due to the soft and brittle nature of KDP crystal, and the material deformation greatly depends on the crystallographic orientations. Furthermore, the periods of the coefficients of friction on the (001) plane, the doubler plane and the tripler plane are 90°,180°and 180°, and their relative anisotropy are 50%,43.8% and 43.8%, respectively. The friction coefficient of the (001) plane is in the range of 0.09±0.01 to 0.18±0.01; the friction coefficient of the doubler plane is in the range of 0.09±0.02 to 0.16±0.01; the friction coefficient of the tripler plane is in the range of 0.09±0.02 to 0.16±0.02. Meanwhile, the effect of the anisotropy on surface/subsurface damage also was studied in micro scratching test.
     The characteristics of the fracture toughness of different crystal planes are measured with micro indentation technique. The relation between the crack length and indentation load for the measured crystal planes is P/c1.5=constant and the effect of the indentation load on the fracture toughness values is no apparent. The fracture toughness dramatically depends on the crystallographic orientation for the (001) pane, the doubler plane and the tripler plane, their relative anisotropy are 63.8%,64.3% and 34.1%, and their fracture toughness values are in the range of 0.096 to 0.265 MPa·m0.5,0.096 to 0.269 MPa·m0.5 and 0.122 to 0.185 MPa·m0.5, respectively.
     According to mechanical behaviors of KDP crystal obtained above, the critical ductile depth of cut and optimum machining direction on different crystal plane are given. The maximum ductile depth of cut on the (001) plane is 0.22±0.05μm in which its direction is paralleled to [100] or [010]; the maximum ductile depth of cut on the doubler plane is 0.53±0.06μm in which the angle between its direction and [110] is 135°; the maximum ductile depth of cut on the tripler plane is 0.23±0.05μm in which its direction is paralleled to [100]. The relation between the processed surface quality and grinding directions is clarified and validated experimentally with two kinds of surface grinders, which provides a theoretical reference for ultraprecision machining technology of KDP crystal.
引文
[1]Nikogosyan. D N. Nonlinear Optical Crystals:A Complete Survey [M]. New York:Springer Press, 2005.
    [2]Yoreo J J D, Burnham A K, Whitman P K. Developing KH2PO4 and KD2PO4 crystals for the world's most powerful laser [J]. International Materials Reviews,2002,47(3):113-152.
    [3]Mozer A. Plane silicon wafer technology [J]. Eur. Semiconductor,2000,4:29-30.
    [4]Cao W D, Lu X P, Conrad H. Whisker formation and the mechanism of superplastic deformation [J]. Acta Materialia,1996,44(2):697-706.
    [5]Pei Z J. A study on surface grinding of 300 mm silicon wafers [J]. International Journal of Machine Tools & Manufacture,2002,42:385-395.
    [6]Yan J, Yoshino M, Kuriagawa T, et al. On the ductile machining of silicon for micro electro-mechanical systems (MEMS), opto-electronic and optical applications [J]. Materials Science and Engineering A,2001,297(1-2):230-234.
    [7]Yan J, Syoji K, Tamaki J. Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon [J]. Wear,2003,255(7-12):1380-1387.
    [8]Namba Y, Saeki M, Sasaki T. Ultra-precision grinding of KTP crystals for optical surfaces [J]. Journal of the Japan Society of Precision Engineering,1994,28(1):39-40.
    [9]Nakasuji T, Kodera S, Hara S, et al. Diamond Turning of Brittle Materials for Optical Components [J]. CIRP Annals-Manufacturing Technology,1990,39(1):89-92.
    [10]Namba Y, Yoshida T, Yoshida S, et al. Surfaces of Calcium Fluoride Single Crystals Ground with an Ultra-Precision Surface Grinder [J]. CIRP Annals-Manufacturing Technology,2005,54(1): 503-506.
    [11]Hawley-Fedder R A, Geraghty P, Locke S N, et al. NIF Pockels cell and frequency conversion crystals [J]. Proceedings of SPIE,2004,5341:121-126.
    [12]Maunier C, Bouchut P, Bouillet S, et al. Growth and characterization of large KDP crystals for high power lasers [J]. Optical Materials,2007,30(1):88-90.
    [13]Li G, Su G, Zhuang X, et al. Rapid growth of KDP crystal with new additive [J]. Journal of Crystal Growth,2004,269(2-4):443-447.
    [14]Li G, Xue L, Su G, et al. Study on the growth and characterization of KDP-type crystals [J]. Journal of Crystal Growth,2005,274(3-4):555-562.
    [15]Sasaki T, Yokotani A. Growth of large KDP crystals for laser fusion experiments [J]. Journal of Crystal Growth,1990,99(1-4, Part 2):820-826.
    [16]王波,房昌水,王圣来.KDP/DKDP晶体生长的研究进展[J].人工晶体学报,2007,37(2):247-252.
    [17]Zaitseva N, Carman L, Smolsky I, et al. The effect of impurities and supersaturation on the rapid growth of KDP crystals [J]. Journal of Crystal Growth,1999,204(4):512-524.
    [18]Zaitseva N P, Rashkovich L N, Bogatyreva S V. Stability of KH2PO4 and K(H,D)2PO4 solutions at fast crystal growth rates [J]. Journal of Crystal Growth,1995,148(3):276-282.
    [19]张克从,王希敏.非线性光学晶体材料科学[M].北京:科学出版社,1996.
    [20]Ichikawa M, Amasaki D, Gustafsson T, et al. Structural parameters determining the transition temperature of tetragonal KH2PO4-type crystals [J]. Physical Review B,2001,64(10):100101.
    [21]Guin C H, Katrich M D, Savinkov A I, et al. Plastic strain and dislocation structure of the KDP group crystals [J]. Kristall und Technik,1980,15(4):479-488.
    [22]俞宽新,赵启大,何士雅等.KDP二维声电光器件[J].激光杂志,1999,20(3):51-52.
    [23]钟维烈.铁电体物理学[M].北京:科学出版社,1996.
    [24]Salo V I, Atroschenko L V, Garnov S V, et al. Structure, impurity composition, and laser damage threshold of the subsurface layers in KDP and KD*P single crystals [J]. Proceedings of SPIE,1996, 2714:197-201.
    [25]Campbell J H, Maney R T, Atherton L J, et al. Large-Aperture, High-Damage-Thershold Optics for Beamlet, UCRL-LR-105821-95-1 [R], Lawrence Livermore National Laboratory, Livermore, USA, 1996.
    [26]朱健强.神光Ⅱ高功率激光实验装置研制[J].中国科学院院刊,2005,20(1):42-44.
    [27]Yu H, Jing F, Wei X, et al. Status of prototype of SG-Ⅲ high-power solid-state laser [J]. Proceedings of SPIE,2008,7131:713112-1-713112-6.
    [28]Hendricks C D. Laser program annual report 1983, No. UCRL-50021-83 [R], Lawrence Livermore National Laboratory, Livermore, USA,1984.
    [29]Negres R A, Kucheyev S O, DeMange P, et al. Decomposition of KH2PO4 crystals during laser-induced breakdown [J]. Applied Physics Letters,2005,86(17):171107-1-171107-3.
    [30]杨力.先进光学制造技术[M].北京:科学出版社,2001.
    [31]Dornfeld D, Lee D E. Precision Manufacturing [M]. New York:Springer Press,2008.
    [32]Ahearne E, Byrne G. Ultraprecision grinding technologies in silicon semiconductor processing [J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2004,218(3):253-267.
    [33]Leung T P, Lee W B, Lu X M. Diamond turning of silicon substrates in ductile-regime [J]. Journal of Materials Processing Technology,1998,73(1-3):42-48.
    [34]Chao C L, Ma K J, Liu D S, et al. Ductile behaviour in single-point diamond-turning of single-crystal silicon[J]. Journal of Materials Processing Technology,2002,127(2):187-190.
    [35]Mamalis A G, Kundrak J, Gyani K, et al. On the precision grinding of advanced ceramics [J]. International Journal of Advanced Manufacturing Technology,2002,20(4):255-258.
    [36]Hou Z-B, Komanduri R. Magnetic Field Assisted Finishing of Ceramics---Part Ⅲ:On the Thermal Aspects of Magnetic Abrasive Finishing (MAF) of Ceramic Rollers [J]. Journal of Tribology,1998, 120(4):660-667.
    [37]Izman S, Venkatesh V C. Gelling of chips during vertical surface diamond grinding of BK7 glass [J]. Journal of Materials Processing Technology,2007,185(1-3):178-183.
    [38]Lambropoulos J C, Fang T, Funkenbusch P D, et al. Surface microroughness of optical glasses under deterministic microgrinding [J]. Applied Optics,1996,35(22):4448-4462.
    [39]Fang F Z, Chen L J. Ultra-Precision Cutting for ZKN7 Glass [J]. CIRP Annals-Manufacturing Technology,2000,49(1):17-20.
    [40]King K F, Tabor D. The strength properties and frictional behavior of brittle solids [J]. Proceedings of the Royal Society of London A,1954,223(1153):225-238.
    [41]Bifano T G, Ductile-Regime Grinding of Brittle Materials [D].North Carolina:North Carolina State University, Raleigh,1988.
    [42]Fuchs B A, Hed P P, Baker P C. Fine diamond turning of KDP crystals [J]. Applied Optics,1986, 25(11):1733-1735.
    [43]Sanger G M, Baker P C. Laser Program Annual Report. The diamond turning of glass, UCID-18498 [R], Livermore:Lawrence Livermore National Laboratory, USA,1980.
    [44]Lahaye P, Chomont C, Dumont P, et al. Using a design of experiment method to improve KDP crystal machining process [J]. Proceedings of SPIE,1999,3739:388-394.
    [45]Yoshiharu N, Masanori K, Masahiro N. Single Point Diamond Turning of KDP Inorganic Nonlinear Optical Crystals for Laser Fusion [J]. Journal of the Japan Society of Precision Engineering,1998, 64(10):1487-1491.
    [46]Xu Q, Wang J, Li W, et al. Defects of KDP crystal fabricated by single-point diamond turning [J]. Proceedings of SPIE,1999,3862:236-239.
    [47]Hou J, Zhang J, Chen J, et al. Surface quality of large KDP crystal fabricated by single-point diamond turning [J]. Proceedings of SPIE,2006,6149:61492M1-61492M3.
    [48]Chen M J, Liang Y C, Wang J H, et al. Research on influence of crystal KDP anisotropy on critical condition of brittle-ductile transition in ultra-precision cutting [J]. Materials Science Forum,2006, 315-316:725-730.
    [49]Zhao Q L, Wang Y L, Yu G, et al. Investigation of anisotropic mechanisms in ultra-precision diamond machining of KDP crystal [J]. Journal of Materials Processing Technology,2009,209(8): 4169-4177.
    [50]Yoshiharu N, Kunio Y, Hidetsugu Y, et al. Ultraprecision grinding of optical materials for high-power lasers [J]. Proceedings of SPIE,1998,3244:320-330.
    [51]Yoshiharu N, Masanori K. Ultraprecision grinding of potassium dihydrogen phosphate crystals for getting optical surfaces [J]. Proceedings of SPIE,1999,3578:692-693.
    [52]Masanori K, Yoshiharu N. Optical surface generation of KDP inorganic nonlinear optical crystals by ultrtaprecision surface grinding [J]. The Japan Society for Precision Engineerin,1999,65(6): 888-892.
    [53]Fuchs B A. Polishing KDP and other soft water-soluble crystals [J]. Applied Optics,1979,18(8): 1125-1125.
    [54]Ramaswam.V, Divino M D. Apparatus for Polishing Water-Soluble Crystals [J]. Review of Scientific Instruments,1972,43(9):1294-&.
    [55]Yoshida K, Yoshida H, Nakai S, et al. Laser damage of optically polished KDP crystal [J]. Proceedings of SPIE,1991,1624::149-152.
    [56]Chatterjee S. Simple technique for polishing optical components made from KDP group of crystals [J]. Journal of Optics,2005,34(2):93-101.
    [57]Kordonski W I, Golini D. Fundamentals of magnetorheological fluid utilization in high precision finishing [J]. Journal of Intelligent Material Systems and Structures,1999,10(9):683-689.
    [58]Arrasmith S R, Kozhinova I A, Gregg L L, et al. Details of the polishing spot in magnetorheological finishing (MRF) [J]. Proceedings of SPIE,1999,3782:92-100.
    [59]Jacobs S D, Arrasmith S R. Development of New Magnetorheological Fluids for Polishing CaF2 and KDP [J]. LLE Review,1999,80:213-219.
    [60]马彦东,李圣怡,彭小强等.KDP晶体的磁流变抛光研究[J].航空精密制造技术,2007,43(4):9-12.
    [61]Xu Q, Wang J. Analysis of the influence of vacuum chucking on the distortion of the KDP crystal [J]. Proceedings of SPIE,2000,4231:464-468.
    [62]Kozlowski M R, Thomas I M, Edwards G J, et al. Influence of diamond turning and surface cleaning processes on the degradation of KDP crystal surfaces [J]. Proceedings of SPIE,1991,1561:59-69.
    [63]Wheeler E K, McWhirter J T, Whitman P K, et al. Scatter loss from environmental degradation of KDP crystals [J]. Proceedings of SPIE,2000,3902:451-459.
    [64]Rao K, Sirdeshmuckh D B. Microhardness of crystals with Potassium Dihydrogen Phosphate structure [J]. Indian Journal of Pure Applied Physics,1978,16:860-861.
    [65]Anbukumar S, Vasudevan S, Ramasamy P. Microhardness studies of ADP type crystals [J]. Journal of Materials Science Letters,1986,5(2):223-224.
    [66]Shaskol'skaya M P, Hai-kuin C, Katrich M D. Mechanical-properties and plastic-deformation of KDP, DKDP, ADP, and RDP crystals [J]. Inorganic Materials,1978,14(4):558-561.
    [67]Fang T, Lambropoulos J C. Microhardness and Indentation Fracture of Potassium Dihydrogen Phosphate (KDP) [J]. Journal of the American Ceramic Society,2002,85(1):174-178.
    [68]Rajesh N P, Kannan V, Santhana Raghavan P, et al. Optical and microhardness studies of KDP crystals grown from aqueous solutions with organic additives [J]. Materials Letters,2002,52(4-5): 326-328.
    [69]Podder J. The study of impurities effect on the growth and nucleation kinetics of potassium dihydrogen phosphate [J]. Journal of Crystal Growth,2002,237-239(Part 1):70-75.
    [70]Sengupta S, Sengupta S P. Microhardness studies in gel-grown ADP and KDP single crystals [J]. Bulletin of Materials Science,1992,15(4):333-338.
    [71]Kucheyev S O, Siekhaus W J, Land T A, et al. Mechanical response of KD2xH2(1-x)PO4 crystals during nanoindentation [J]. Applied Physics Letters,2004,84(13):2274-2276.
    [72]Zhang Q, Nano-indentation of cubic and tetragonal single crystals [D].New York:Univ. of Rochester, 2008.
    [73]王景贺,KDP晶体力学特性对超光滑表面形成的影响研究[D].哈尔滨:哈尔滨工业大学机电工程学院,2006.
    [74]Marion J E. Appropriate use of the strength parameter in solid-state slab laser design [J]. Journal of Applied Physics,1987,62(5):1595-1604.
    [75]Anstis G R, Chantikul P, Lawn B R, et al. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness:Ⅰ, Direct Crack Measurements [J]. Journal of the American Ceramic Society,1981,64(9):533-538.
    [76]Evans A G. Energies for Crack Propagation in Polycrystalline Mgo [J]. Philosophical Magazine, 1970,22(178):841-852.
    [77]Shen J, Liu S, Yi K, et al. Subsurface damage in optical substrates [J]. Optik-International Journal for Light and Electron Optics,2005,116(6):288-294.
    [78]Kamimura T, Akamatsu S, Yamamoto M, et al. Enhancement of surface-damage resistance by removing subsurface damage in fused silica [J]. Proceedings of SPIE,2004,5273:244-249.
    [79]Zamponi C, Mannig U, Staab T E M, et al. Point defects as result of surface deformation on a GaAs wafer [J]. Applied Physics Letters,2003,83(20):4128-4130.
    [80]Wu H Z, Roberts S G, Mobus G, et al. Subsurface damage analysis by TEM and 3D FIB crack mapping in alumina and alumina/5vol.%SiC nanocomposites [J]. Acta Materialia,2003,51(1): 149-163.
    [81]Yin Q R, Zeng H R, Li G R, et al. Near-field acoustic microscopy of ferroelectrics and related materials [J]. Materials Science and Engineering B,2003,99(1-3):2-5.
    [82]Park H, Chan H M. A novel process for the generation of pristine sapphire surfaces [J]. Thin Solid Films,2002,422(1-2):135-140.
    [83]Coleman P G, Malik F, Uren M J, et al. Positron annihilation spectroscopy of laser-irradiated 4H-SiC [J]. Applied Surface Science,1999,149(1-4):144-147.
    [84]Hed P P, Edwards D F, Davis J B. Subsurface damage in optical materials:origin, measurement and removal, [R], Lawrence Livermore National Laboratory,1989.
    [85]Liu X, Zhang B. Grinding of nanostructural ceramic coatings:damage evaluation [J]. International Journal of Machine Tools and Manufacture,2003,43(2):161-167.
    [86]Tonshoff H K, Friemuth T. In-process dressing of fine diamond wheels for tool grinding [J]. Precision Engineering,2000,24(1):58-61.
    [87]Schinker M G, Doll W. Turning of optical glasses at room temperature [J]. Proceedings of SPIE, 1987,802:78-80.
    [88]Randi J A, Lambropoulos J C, Jacobs S D. Subsurface damage in some single crystalline optical materials [J]. Appl. Opt.,2005,44(12):2241-2249.
    [89]Lawn B, Wilshaw R. Indentation fracture: principles and applications [J]. Journal of Materials Science,1975,10(6):1049-1081.
    [90]Bifano T G, Dow T A, Scattergood R O. Ductile-Regime Grinding-A New Technology for Machining Brittle Materials [J]. Journal of Engineering for Industry-Transactions of the Asme,1991, 113(2):184-189.
    [91]Xu D, Xue D. Fast growth of KDP [J]. Journal of Crystal Growth,2008,310(7-9):2157-2161.
    [92]Xu D L, Xue D F, Ratajczak H Y. Morphology and structure studies of KDP and ADP crystallites in the water and ethanol solutions [J]. Journal of Molecular Structure,2005,740(1-3):37-45.
    [93]Hosford W F. The mechanics of crystals and textured polycrystals [M]. New York:Oxford University Press,1993.
    [94]Fu Y J, Gao Z S, Sun X, et al. Effects of anions on rapid growth and growth habit of KDP crystals [J]. Progress in Crystal Growth and Characterization of Materials,2000,40(1-4):211-220.
    [95]Oliver W C, Pharr G M. An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments [J]. Journal of Materials Research, 1992,7(6):1564-1583.
    [96]Pharr G M. Measurement of mechanical properties by ultra-low load indentation [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,1998, 253(1-2):151-159.
    [97]Pal T, Kar T. Studies of microhardness anisotropy and Young's modulus of nonlinear optical crystal L-arginine hydrochlorobromo monohydrate [J]. Materials Letters,2005,59(11):1400-1404.
    [98]Huang H, Wang B L, Wang Y, et al. Characteristics of silicon substrates fabricated using nanogrinding and chemo-mechanical-grinding [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008,479(1-2):373-379.
    [99]Zeng D, Jie W, Wang T, et al. Residual stress and strain in CdZnTe wafer examined by X-ray diffraction methods [J]. Applied Physics a-Materials Science & Processing,2007,86(2):257-260.
    [100]Kolemen U. Analysis of ISE in microhardness measurements of bulk MgB2 superconductors using different models [J]. Journal of Alloys and Compounds,2006,425(1-2):429-435.
    [101]Gong J H, Zhao Z, Guan Z D, et al. Load-dependence of Knoop hardness of Al2O3-TiC composites [J]. Journal of the European Ceramic Society,2000,20(12):1895-1900.
    [102]Pal T, Kar T. Vickers microhardness studies of L-arginine halide mixed crystals [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2003, 354(1-2):331-336.
    [103]Gong J H, Wu J J, Guan Z D. Examination of the indentation size effect in low-load Vickers hardness testing of ceramics [J]. Journal of the European Ceramic Society,1999,19(15):2625-2631.
    [104]Nix W D, Gao H J. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids,1998,46(3):411-425.
    [105]Lu G W, Sun X. Raman study of lattice vibration modes and growth mechanism of KDP single crystals [J]. Crystal Research and Technology,2002,37(1):93-99.
    [106]Swadener J G, George E P, Pharr G M. The correlation of the indentation size effect measured with indenters of various shapes [J]. Journal of the Mechanics and Physics of Solids,2002,50(4): 681-694.
    [107]Lin Y H, Chen T C, Yang P F, et al. Atomic-level simulations of nanoindentation-induced phase transformation in mono-crystalline silicon [J]. Applied Surface Science,2007,254(5):1415-1422.
    [108]Page T F, Oliver W C, Mchargue C J. The Deformation-Behavior of Ceramic Crystals Subjected to Very Low Load (Nano)Indentations [J]. Journal of Materials Research,1992,7(2):450-473.
    [109]Yan J W, Takahashi H, Gai X H, et al. Load effects on the phase transformation of single-crystal silicon during nanoindentation tests [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2006,423(1-2):19-23.
    [110]Zhang Z Y, Gao H, Jie W Q, et al. Chemical mechanical polishing and nanomechanics of semiconductor CdZnTe single crystals [J]. Semiconductor Science and Technology,2008,23(10):-
    [111]Kucheyev S O, Bradby J E, Williams J S, et al. Mechanical deformation of single-crystal ZnO [J]. Applied Physics Letters,2002,80(6):956-958.
    [112]Brookes C A, Oneill J B, Redfern B A W. Anisotropy in Hardness of Single Crystals [J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences,1971, 322(1548):73-88.
    [113]Sirdeshmukh D B, Sirdeshmukh L, Subhadra K G. Micro- and Macro-Properties of Solids [M]. New York:Springer Press,2006.
    [114]Daniels F W, Dunn C G. The Effect of Orientation on Knoop Hardness of Single Crystals of Zinc and Silicon Ferrite [J]. Transactions of the American Society for Metals,1949,41:419-442.
    [115]Brookes C A, Burand R P. The science of hardness testing and its research applications [M]. Ohio: American Society of Metals,1973.
    [116]Bowden F P, Brookes C A. Frictional Anisotropy in Nonmetallic Crystals [J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences,1966,295(1442):244-258.
    [117]Axen N, Kahlman L, Hutchings I M. Correlations between tangential force and damage mechanisms in the scratch testing of ceramics [J]. Tribology International,1997,30(7):467-474.
    [118]Bao Z X, Schmidt V H, Howell F L. Phase-Transitions in KH2PO4 and RbH2PO4 to 14 GPa Observed by Capacitance Change in a Diamond Anvil Cell [J]. Journal of Applied Physics,1991, 70(11):6804-6808.
    [119]Lafaye S, Troyon M. On the friction behaviour in nanoscratch testing [J]. Wear,2006,261(7-8): 905-913.
    [120]Gauthier C, Lafaye S, Schirrer R. Elastic recovery of a scratch in a polymeric surface:experiments and analysis [J]. Tribology International,2001,34(7):469-479.
    [121]Challen J M, Oxley P L B. Explanation of the Different Regimes of Friction and Wear Using Asperity Deformation Models [J]. Wear,1979,53(2):229-243.
    [122]Childs T H C. Sliding of Rigid Cones over Metals in High Adhesion Conditions [J]. International Journal of Mechanical Sciences,1970,12(5):393-403.
    [123]Moore D. The friction and lubrication of Elastomers [M]. London:Pergamon Press,1972.
    [124]Lafaye S. True solution of the ploughing friction coefficient with elastic recovery in the case of a conical tip with a blunted spherical extremity [J]. Wear,2008,264(7-8):550-554.
    [125]Fischer-Cripps A C. Introduction to contact mechanics [M]. New York:Springer Press,2007.
    [126]Mogilevsky P, Parthasarathy T A. Anisotropy in room temperature microhardness and indentation fracture of xenotime [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,454:227-238.
    [127]Mogilevsky P, Parthasarathy T A, Petry M D. Anisotropy in room temperature microhardness and fracture of CaWo(4) scheelite [J]. Acta Materialia,2004,52(19):5529-5537.
    [128]Milman Y V, Chugunova S I. Mechanical properties, indentation and dynamic yield stress of ceramic targets [J]. International Journal of Impact Engineering,1999,23(1):629-638.
    [129]Cook R F, Pharr G M. Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics [J]. Journal of the American Ceramic Society,1990,73(4):787-817.
    [130]Niihara K, Morena R, Hasselman D P H. Evaluation of Klc of Brittle Solids by the Indentation Method with Low Crack-to-Indent Ratios [J]. Journal of Materials Science Letters,1982,1(1): 13-16.
    [131]Niihara K. A Fracture-Mechanics Analysis of Indentation-Induced Palmqvist Crack in Ceramics [J]. Journal of Materials Science Letters,1983,2(5):221-223.
    [132]Lawn B R, Evans A G, Marshall D B. Elastic-Plastic Indentation Damage in Ceramics-the Median-Radial Crack System [J]. Journal of the American Ceramic Society,1980,63(9-10): 574-581.
    [133]Laugier M T. New Formula for Indentation Toughness in Ceramics [J]. Journal of Materials Science Letters,1987,6(3):355-356.
    [134]Henshall J L, Rowcliffe D J, Edington J W. Fracture Toughness of Single-Crystal Silicon-Carbide [J]. Journal of the American Ceramic Society,1977,60(7-8):373-374.
    [135]Evans A G. Fracture toughness:the role of indentation techniques [J]. ASTM special technology publication,1979,678:112-135.
    [136]Zhang N, Zhang Q Y, Liu D J, et al. The mechanical testing of KDP crystal [J]. Proceedings of SPIE, 2008,7375:73756K1-73756K5.
    [137]Xu D L, Xue D F. Chemical bond analysis of the crystal growth of KDP and ADP [J]. Journal of Crystal Growth,2006,286(1):108-113.
    [138]David R L, ed. Handbook of Chemistry and Physics,90th Edition (Internet Version 2010) [M]. Boca Raton, FL:CRC Press/Taylor and Francis,2010.
    [139]Henshall J L, Brookes C A. The measurement of KIC in single crystal SiC using the indentation method [J]. Journal of Materials Science Letters,1985,4(6):783-786.
    [140]Joshi M S, Antony A V, Rao P M. Microhardness investigations on Potassium Dihydrogen Phosphate crystals [J]. Kristall und Technik,1980,15(6):743-746.
    [141]Sangwal K, Szurgot M, Karniewicz J, et al. On the selective etching of KDP crystals [J]. Journal of Crystal Growth,1982,58(1):261-266.
    [142]Quinn T F J. Physical analysis for tribology [M]. New York:Cambridge University Press,2005.
    [143]Cheung K S, Yip S. Brittle-Ductile Transition in Intrinsic Fracture-Behavior of Crystals [J]. Physical Review Letters,1990,65(22):2804-2807.
    [144]Ngoi B K A, Sreejith P S. Ductile Regime Finish Machining-A Review [J]. The International Journal of Advanced Manufacturing Technology,2000,16(8):547-550.
    [145]Zhong Z W. Ductile or partial ductile mode machining of brittle materials [J]. International Journal of Advanced Manufacturing Technology,2003,21(8):579-585.
    [146]Patten J, Gao W I, Yasuto K. Ductile regime nanomachining of single-crystal silicon carbide [J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme,2005,127(3): 522-532.
    [147]Sreejith P S, Ngoi B K A. Material removal mechanisms in precision machining of new materials [J]. International Journal of Machine Tools and Manufacture,2001,41(12):1831-1843.
    [148]Komanduri R. On Material Removal Mechanisms in Finishing of Advanced Ceramics and Glasses [J]. CIRP Annals-Manufacturing Technology,1996,45(1):509-514.
    [149]Stephenson D J, Sun X, Zervos C. A study on ELID ultra precision grinding of optical glass with acoustic emission [J]. International Journal of Machine Tools & Manufacture,2006,46(10): 1053-1063.
    [150]Lee E S. A study of the development of an ultraprecision grinding system for mirror-like grinding [J]. International Journal of Advanced Manufacturing Technology,2000,16(1):1-9.
    [151]Malkin S. Grinding technology:theory and applications of machining with abrasives [M]. New York: John Wiley & Sons Press,1989.
    [152]Matsui S. An Experimental-Study on the Grinding of Silicon Wafers-the Wafer Rotation Grinding Method.1. [J]. Bulletin of the Japan Society of Precision Engineering,1988,22(4):295-300.
    [153]Matsui S, Horiuchi T. Parallelism Improvement of Ground Silicon-Wafers [J]. Journal of Engineering for Industry-Transactions of the ASME,1991,113(1):25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700