用户名: 密码: 验证码:
FRP夹心桥面板桥梁静动态响应的数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强复合材料(Fiber Reinforced Polymer,简称FRP)是近年来在桥梁工程中开始应用的新型结构材料,它具有轻质、高强、耐腐蚀等显著特点。FRP夹心桥面板是最具应用前景的结构型式之一,它既可应用于老桥中损毁桥面板的更换修复,也可作为新建桥梁的桥面体系。由于FRP夹心桥面板是一种新型结构构件,对它在桥梁结构中的静、动力特性等还有很多急需了解的问题。
     荷载在桥面上的横向分布及荷载作用下桥梁的动力响应是桥梁设计中需要考虑的重要内容,世界各国在进行桥梁设计时普遍采用荷载横向分布系数和动力系数来考虑其影响因素。研究人员针对传统桥面板的荷载横向分布系数及动力系数的取值进行了深入广泛的研究(包括试验研究和理论研究)。FRP桥面板的一些性能(例如质量、刚度和阻尼性能等)和传统的混凝土或钢桥面板有很大的不同,这可能导致采用FRP桥面板桥梁的性能和采用传统桥面板桥梁性能的差异。但是研究人员对采用FRP桥面板的桥梁的特性还少有研究。因此,本论文采用数值分析方法对FRP桥面板桥梁的荷载横向分布情况及桥梁的动力响应进行了比较详细的研究。
     由于FRP夹心板复杂的几何构型,给采用有限元技术对FRP桥面板桥梁的整体模拟带来了困难,本文将FRP正弦夹心桥面板等效为正交各向异性实心板,分析结果与试验数据吻合良好,证明是一种对采用FRP夹心板的桥梁结构进行整体有限元分析的有效方法;利用等效模型,本文首先对堪萨斯州钢梁桥更换为FRP桥面板后的桥梁进行了整桥分析,其荷载横向分布情况与现场实验吻合良好,作者进一步研究了具有一般性的FRP桥面板钢梁桥和FRP桥面板预应力混凝土梁桥的荷载横向分布系数;考虑车-桥耦合系统,作者利用自编的MATLAB计算程序研究了FRP桥面板体系的动力性能,分别考察了FRP桥面板简支板桥、FRP桥面板钢梁桥和FRP桥面板预应力混凝土梁桥在三轴卡车荷载作用下的动力响应,得到了其在路面粗糙度、行车速度等影响下的动力特性;在对梁式桥所进行的静力及动力分析中作者均考虑了FRP桥面板与支承梁部分组合与完全组合两种构造情况,并与其它条件相同但采用混凝土桥面板的桥梁进行了对比分析,得到了一些有价值的研究结论。本文的研究为FRP桥面板在桥梁工程中更好的得到应用提供了理论基础。
Fiber reinforced polymer (FRP) is a new structural material which is gaining popularity in the bridge community in recent years. It has shown superior properties such as high strength-to-weight ratio and corrosion resistance, etc. The FRP sandwich hollow panel is one of the FRP systems and has been proposed for applications in bridge construction with a good prospect. It can be applied for old bridge repair and replacement of damaged decks, and it can also be used in new bridge deck systems. Because the FRP bridge deck is a new structural component, there is a growing need to understand the behavior of FRP deck bridges such as the static and the dynamic response of bridges with a FRP deck.
     The load distribution throughout the bridge deck and the vehicle-induced impact on bridges are of primary importance in the design of bridges. The loads distribution factor and the dynamic impact factor have been used world wide in bridge design, and extensive research (including experimental and theoretical) has been conducted to determine these factors for bridges with conventional decks. The characteristics of the FRP decks (such as mass, stiffness and damping) are significantly different from those of the traditional concrete and steel decks, which could result in different performance of FRP deck bridges from the traditional bridges. However, the distinctive performance of bridges with FRP decks has rarely been studied. For this reason, some detailed numerical analyses are used in the present study to investigate the load distribution and the dynamic response of FRP deck bridges.
     Due to the geometrical complexity of the FRP sandwich panel configuration, finite element modeling and analysis for an entire bridge can be very complicated, if not impossible. The present study reduces FRP sinusoidal core sandwich panel to a solid orthotropic plate using the equivalent properties derived, the results obtained from the analysis with the simplified model were compared with those from the tests and a good correlation was achieved, so it was verified to be an effective method in investigating the performance of entire bridges with FRP deck; Using the equivalent model, at first the present study analyzed a steel girder bridge after the original deck was replaced with a FRP deck in Kansas. The load distributions obtained from the analysis were compared with those from the field tests and a good correlation was achieved. And then, some detailed finite element analyses were used to further investigate the load distribution of FRP bridge deck systems, a steel multi-girder bridge and a concrete multi-girder bridge were studied. By integrating the bridge and vehicle systems into a bridge-vehicle coupled system based on deformation compatibility, the present study using the developed MATLAB software this paper studied the dynamic performance of bridges with FRP decks, and investigated the dynamic response of a simple support slab FRP bridge, a steel multi-girder bridge with FRP deck, and a prestressed concrete multi-girder bridge with FRP deck. The dynamic response of bridges caused by a 3-axle truck was obtained considering the influence of road roughness as well as vehicle velocity. For both the static analyses and the dynamic analyses of FRP girder bridges, the author considered two composite actions which were FRP deck partially composite or FRP deck fully composite between the deck and girders. The performance of bridges was compared between the FRP and the corresponding concrete deck bridges, and some valuable research conclusions were obtained. This study provides some helpful rationale for the better application of FRP deck in the bridge community.
引文
(1) 邸小坛,高小旺,徐有邻.土建结构工程的安全性与耐久性(第一版).北京:中国建筑工业出版社,2003.1-6
    (2) 冯鹏.新型FRP空心桥面板的设计开发与受力性能研究[博士学位论文].北京:清华大学,2004
    (3) 冯鹏,叶列平.FRP夹心桥面板及新型FRP组合桥面板.中国公路学会桥梁和结构工程学会2002年全国桥梁学术会议论文集.海口:人民交通出版社,2002年10月.723-731
    (4) Transportation Research Board . TR News, Special Issue on Highway Bridges: Progress and Prospects. Jan-Feb,1998. No. 194
    (5) Ehlen, M. A. Life-Cycle Costs of Fiber-Reinforced-Polymer Bridge Decks. Journal of Material in Civil Engineering, ASCE, 1999, 11(3):224-230
    (6) New York State Department of Transportation Structures Division & U.S. Department of Transportation Federal Highway Administration. Fiber reinforced polymer bridge decks of New York. 2003
    (7) Zhou, Aixi, Coleman, J. T., Lesko, J. J. et al. Structural analysis of FRP bridge deck system from adhesively bonded pultrusion. Proceedings of the International Conference on FRP Composites in Civil Engineering, Hong Kong. Elsevier Science Ltd.2001:1413-1420
    (8) 冯鹏.FRP在结构工程中的应用(Applications of FRP in Structure ngineering).学术报告,2003
    (9) 冯鹏,叶列平.FRP 材料及结构在桥梁工程中的新应用.《第十五届全国桥梁学术会议论文集》,上海:同济大学出版社,2002 年 12 月.555-560
    (10) Temeles, A. B. Field and Laboratory Tests of a Proposed Bridge Deck Panel Fabricated from Pultruded Fiber-Reinforced Polymer Components. [Master’s Thesis]. Virgnia Polytechnic Institute and State University, 2001
    (11) Plunkett, J. D. Fiber-Reinforced Polymer Honeycomb Short Span Bridge for RapidInstallation. IDEA Project Final Report, Contract NCHRP-96-IDO30, IDEA Program, Transportation Research Board, National Research Council. 1997
    (12) Heidengren, C. R. Regal Crossing. Civil Engineering Magazine, ASCE, 2003. 73
    (7):http://www.pubs.asce.org/ceonline/ceonline03/0703feat.html
    (13) Stone, D., Nanni, A., Myers, J. Field and Laboratory Performance of FRP Bridge Panels. In Proc. International Conference Composites in Construction (CCC2001). Porto, Portugal: A A BALKEMA Publishers, 2001. 701-706
    (14) Chiewanichakorn, M., Aref, A. J., Alampalli, S. An Analytical Study of an FRP Deck on a Truss Bridge. In: Proc. 15th Engineering Mechanics Division Conference (EM2002). Columbia University, NY, USA: ASCE, 1998.2-5
    (15) Lee, J., Hollaway, L., Thorne, A., et al. The structural characteristic of a polymer composite cellular box beam in bending. Construction and Building Materials, 1995, 9(6): 333-340
    (16) Zetterberg, T., Astrom, B. T., Backlund, J., et al. On Design of Joints between Composite Profiles for Bridge Deck Applications. Composite Structures, 2001, 51:83-91
    (17) Sotiropoulos, S. N. Performance of FRP components and connections for bridge deck systems: [Ph. D. Thesis]. Morgantown, USA: West Virginia University, 1995
    (18) Lopez-Anido R., Troutman, D. L., Busel, J. P. Fabrication and Installation of Modular FRP Composite Bridge Deck. In: Proc. International Composites EXPO’98. Nashville, Tennessee, USA, 1998. Session 4-A
    (19) Wu, Z. H. Prestressed FRP tubular deck system: [MS Thesis]. Raleigh, USA: North Carolina State University, 2003
    (20) Brown, R. T., Zureick, A. H. Lightweight Composite Truss Section Decking. Marine Structures, 2001, 14(1-2):114-132
    (21) Williams, B., Shehata, E., Rizkalla, S. H. Filament-Wound Glass Fiber Reinforced Polymer Bridge Deck Modules. J. Composites for Construction, ASCE, 2003, 7(3): 266-273
    (22) Kumar, P. Chandrashekhara K. Nanni A. Structural Performance of a FRP Deck. Construction and Building Materials, 2004, 18(1):35-47
    (23) Kitane, Y., Aref, A. J., Lee, G. C. Static and fatigue testing of hybridfiber-reinforced polymer-concrete bridge superstructure. J. Composites for Construction, ASCE, 2004, 8(2): 182-190
    (24) 滕锦光等.FRP加固混凝土结构(第一版).北京:中国建筑工业出版社,2005
    (25) L.Lam and J.G.Teng. Ultimate Condition of Fiber Reinforced Polymer-Confined Concrete. J. Compos. for Constr.,2004.Vol.8:539-548
    (26) J.G.Teng and L.Lam. Dehavior and Modeling of Fiber Reinforced Polymer-Confined Concrete. J. Struct. Engrg.,2004.Vol.130:1713-1723
    (27) 汤国栋,汤羽,冯广占.中国GRP/COM桥梁的研究与实践.成都科技大学学报,1995(6):69-80
    (28) 邹祖讳.复合材料的结构与性能.材料科学与技术丛书(第 13 卷).吴人洁等译.北京:科学出版社,1999
    (29) Demers, C. E. Fatigue strength degradation of E-glass FRP composites and carbon FRP composites. Construction and Building Materials. 1998. Vol.12(5):311-318
    (30) Karbhari, V. M. Durability of FRP composites in Civil Infrastructure - Myth or Reality. Proceedings of the International Conference on FRP Composites in Civil Engineering, Hong Kong. Elsevier Science Ltd.2001:1489-1496
    (31) Sen, R. Durability of advanced composites in a marine environment. Proceedings of the International Conference on FRP Composites in Civil Engineering, Hong Kong. Elsevier Science Ltd.2001:1509-1516
    (32) David, E., Neuner, J. D. Environmental durability studies for FRP systems: definition of normal conditions of use of FRP for structural strengthening applications. Proceedings of the International Conference on FRP Composites in Civil Engineering, Hong Kong. Elsevier Science Ltd.2001:1551-1558
    (33) Toutanji, H. A. Durability characteristics of concrete columns confined with advanced composite material. Composite Structure. 1999. Vol.44(2-3):155-161
    (34) 杨允表,    .复合材料在桥梁工程中的应用.桥梁建筑.1997(4):1-4
    (35) Hollaway, L. C. The Evolution of and the Way Forward for Advanced Polymer Composites in the Civil Infrastructure. Proceedings of the International Conferenceon FRP Composites in Civil Engineering, Hong Kong. Elsevier Science Ltd.2001:27-40
    (36) Berthelot, J. M. Composite Materials: Mechanical Behavior and Structural Analysis, Translated by Cole J M. New York: Springer-Verlag, 1999:85-120
    (37) 沃丁柱,李顺林,王兴业等编.复合材料大全.北京:化学工业出版社,2000.474-526
    (38) Eduljee, R. F., McCullough, R. L. 复合材料的弹性性能.张帆译.邹祖讳主编.材料科学与技术丛书(第13 卷).北京:科学出版社, 1999.320-401
    (39) 沈观林.复合材料力学(第一版).北京:清华大学出版社, 1996.77-126
    (40) Berthelot, J. M. Composite Materials: Mechanical Behavior and Structural Analysis. Translated by Cole J M. New York: Springer-Verlag, 1999:267-391
    (41) 曾庆敦.复合材料的细观破坏机制与强度(第一版).北京:科学出版社,2002.1-10
    (42) Gsell, D.,Motavalli, M. Indoor cable-stayed GFRP bridge at EMPA, Switzerland. In: El-Badry, Dunaszegi L, eds. Proc. 4th International Conference on Advanced Composite Materials in Bridges and Structures. Calgary, Alberta, Canada: CSCE, 2004
    (43) Maeda, K., Ikeda, T., Nakamura, H., et al. Feasibility of ultra long-span suspension bridges made of all plastics. In: Proc. IABSE Symposium. Melbourne, Australia: IABSE, 2002
    (44) Zhou, A., Keller, T. Connections of Fiber Reinforced Polymer Bridge Decks. In: Proc. IABSE Symposium. Shanghai, China: IABSE, 2004
    (45) 宋娟.路面平整度影响下车桥耦合系统的振动主动控制[硕士学位论文].济南:山东大学,2001
    (46) 李国豪.桥梁结构稳定与振动(第二版).北京:中国铁道出版社,1992
    (47) 谭国辉.桥梁与车辆相互作用的系统模拟.土木工程学报.1996,29(3):34-42
    (48) Federal Highway Administration. Current practices in FRP composites technology FRP bridge decks and superstructures: deck and superstructure suppliers. FHWA Website, 2004: http://www.fhwa.dot.gov/bridge/frp/decksupl.htm
    (49) New York State Department of Transportation, In-Service Performance of an FRPSuperstructure,Special Report 141,March 2004
    (50) Oghumu, S. Finite Element Modeling Approach and Performance Evaluation of Fiber Reinforced Polymer Sandwich Bridge Panels. [Master’s Thesis]. Louisiana State University, 2005
    (51) Davalos, J. F. et al. Modeling and Characterization of Fiber-Reinforced Plastic Honeycomb Sandwich Panels. Journal of Composite Structures. 2001. Vol.52(3-4):441-452
    (52) Qiao, P., Wang, J and Hu, G. On the Mechanics of Composite Sinusoidal Honeycomb Cores. A Collection of Technical papers. 2003:2397-2405
    (53) Kalny, O. Structural Performance of Fiber-Reinforced Polymer Honeycomb Sandwich Panels for Bridge Applications. [Master’s Thesis]. Kansas State University, Manhattan, Kansas.2003
    (54) [PPT]简支梁桥内力计算.http://civil.fzu.edu.cn/bridge/liangqiao.ppt
    (55) [PPT]组合结构桥梁设计新理念.http://www.cquc.edu.cn/jpkc/data
    (56) Schreiner, J., Barker, M. Lateral Distribution in Kansas DOT Steel Girder Bridge with FRP Deck. Kansas Department of Transportation (2005), Report No. KS-04-4
    (57) Huang, D. Z., Wang, T. L. Vibration of highway steel bridges with longitudinal grades. Computers and Structures, 1998, 69: 235-245
    (58) Liu, C. H., Huang, D. Z., Wang, T. L. Analytical dynamic impact study based on correlated road roughness. Computers and Structures, 2002, 80:1639-1650
    (59) Standard Specifications for Highway Bridges (1996). 14th Ed., American Association of State Highway and Transportation Officials, Washington, D.C.
    (60) Standard Plans for Highway Bridge Superstructures (1982). U.S. Department of Transportation, Federal Highway Administration
    (61) Ghosn, M., Moses, F., and Gobieski, J. Evaluation of steel bridges using in-service testing. Transp. Res. Rec. 1072, Transportation Research Board, 1986, Washington, D.C.,71–78
    (62) 田杰.铁路曲线梁桥车桥耦合振动分析[博士学位论文].北京:北方交通大学,2002
    (63) 李守诚、杜栩、王浩.公路桥梁车辆振动的实验研究现状.林业科技情报.1997年第4期:57-58
    (64) 张庆,史家钧,胡振东.车辆-桥梁耦合作用分析.力学季刊.2003,24(4):577-584
    (65) 沈锐利.高速铁路梁式桥竖向振动分析方法研究.桥梁建设.1996 年第 2 期:46-49
    (66) Dodds, C. J., Robson, J. D. The description of road surface roughness. J. Sound Vib 1973, 31(2):175–183
    (67) 李小珍,强士中.列车-桥梁耦合振动研究的现状与发展趋势.铁道学报.2002,24(5):112-120
    (68) 李小珍,马文彬,强士中.车桥系统耦合振动分析的数值解法.振动与冲击.2002,21(3):21-25
    (69) 林梅,肖盛燮.桥梁车辆振动分析理论评述.重庆交通学院学报.1998,17(3):1-9
    (70) 满洪高,袁向荣.车桥耦合振动问题的历史进程与研究现状.铁道工程学报.2001 年 6 月:26-29
    (71) 肖新标,沈火明.3 种车桥耦合振动分析模型的比较研究.西南交通大学学报.2004,39(2):172-175
    (72) 丁建华,李冀龙,高农.车流作用下简支桥梁的随机振动分析.哈尔滨建筑大学学报.1997,30(2):109-114
    (73) 杨岳民,潘家英,程庆国.车桥耦合振动方程的分组迭代求解.中国铁道科学.1996,17(4):69-79
    (74) 单德山,李乔.车桥耦合振动分析的数值方法.重庆交通学院学报.1999,18(3):14-20
    (75) 陈炎,黄小清,马友发.车桥系统的耦合振动.应用数学和力学.2004,25(4):354-358
    (76) 崔玉萍,杨党旗.钢-混凝土组合梁桥结构的振动特性测试与计算分析.公路.2002 年 9 月:13-16
    (77) 宁晓骏,刘振宇,叶燎原.桥梁的车振研究.昆明理工大学学报.2000,25(4):56-58
    (78) 李小珍,蔡婧,强士中.芜湖长江大桥斜拉桥的车桥耦合振动分析.铁道学报.2001,23(2):70-75
    (79) 林玉森,王海良,王纯玉.一种车桥耦合振动的求解方法.石家庄铁道学院学报.2002,15(2):23-26
    (80) Chu, K. H., Garg, V K., Dhar, C. L. Railway2B ridge Impact: Simplified T rain and B ridge Model [ J ]. Journal of the Structural Division, A SCE, 1979, 105 (9) : 1823—1844
    (81) Chu, K. H., Garg, V. K., Wiriyachai, A. Dynamic Interaction of Railway Train and Bridges [J]. Vehicle System Dynamics, 1980, 9 (4) : 207—236
    (82) Wiriyachai, A., Chu, K. H., Garg, V. K. Bridge Impact due to W heel and T rack Irregularities [J]. Journal of Engineering Mechanics Division , 1982, 108 (4) : 648—666
    (83) Bhatti, M. H. Vertical and Lateral Dynamic response of Railway Bridges due to nonlinear Vehicle and T rack Irregularities [D ]. [Ph. D. Thesis]. Illinois Institute of Technology, Chicago, Illinois, 1982
    (84) Wang, T. L. Impact and Fatigue in Open deck Steel Truss and Ballasted Prestressed Concrete Railway Bridges[D ]. [Ph. D. Thesis]. Illinois Institute of Techno logy, Chicago, Illinois, 1984
    (85) Chu, K. H., Garg, V. K., Wang, T. L. Impact in Railway Prestressed Concrete Bridges[J ]. Journal of Structural Engineering, 1986, 112 (5) : 1036—1051
    (86) ISO 8068: (1995). Mechanical Vibration –Road Surface Profiles-Reporting of Measured Data, 1995, TC108/SC2, ISO, Switzerland
    (87) American Association of State Highway and Transportation Officials (AASHTO) (2004).LRFD Bridge Design Specifications, Washington, DC.
    (88) Shekar, V., Samer, H. Petro and Hota, V. S. Construction of Fiber-Reinforced Plastic Modular Decks for Highway Bridges. Transportation Research Record 1813, Paper No. 02-3678
    (89) Oconnor, J. S. New York’s Experience with FRP Bridge Decks. 46th International SAMPE Symposium, May 6-10,2001
    (90) Bakis, C. E., Bank, L. C., Brown, V. L., et al. Fiber-Reinforced Polymer Composites for Construction—State-of-the-Art Review. American Society of 150th Anniversary Civil Engineers Paper. 2002
    (91) Martin Marietta Composites: DuraSpan Fiber-Reinforced Polymer Bridge Deck Systems. A Collection of Technical papers
    (92) Zhang, Y., Cai, C. S., Shi, X. M., et al. Vehicle Induced Dynamic Performance Of a FRP Versus Concrete Slab Bridge.J. of Bridge Engineering, ASCE, July/August 2006, 11(4):410-419
    (93) Oghumu, S., Cai, C. S., and Zhang, Y. Finite Element Modeling and Performance Evaluation for the Development of FRP Bridge Panels. The joint /ASME/ASCE/SES Engineering Mechanics and Materials Conference, June 2005, Baton Rouge, Louisiana.
    (94) American Association of State Highway and Transportation Officials (AASHTO) 2002,Standard Specification for highway bridges, Washington, DC.
    (95) Wang, T.L., Huang, D.Z., Shahaway, M. Dynamic response of multigirder bridges. Journal of Structural Engineering, ASCE, 1992, 118(8):2222-2238
    (96) Wang, T. L., Huang, D.Z., Shahaway, M. Dynamic behavior of slant-lagged rigid frame highway bridge. Journal of Structural Engineering, ASCE, 1994, 120(3):885-902
    (97) Huang, D. Z., Wang, T. L., Shahaway, M. Dynamic behavior of horizontally curved I-girder bridges. Journal of Computers and Structures, 1992, 57(4):703-714
    (98) Huang, D. Z., Wang, T.L., Shahaway, M. Impact studies of multigirder Concrete bridges. Journal of Structural Engineering, ASCE, 1993, 119(8):387-402
    (99) Eom, J., and Andrzej, S. N. Live Load Distribution for Steel Girder Bridges. Journal of Bridge Engineering, ASCE, 2001, Novermber/December, 489-497
    (100) Kim, S. J., and Nowak, A. S. Load distribution and impact factors for I-girder bridges. J. Bridge Engrg., ASCE, 1997, 2(3): 97–104
    (101) Nowak, A. S., Eom, J., and Sanli, A. Control of live load on bridges. Transp. Res. Rec. 1696, Transportation Research Board, Washington, D.C., 2000, 136–143
    (102) Nowak, A. S., Eom, J., Sanli, A., et al. Verification of girder distribution factorsfor short-span steel girder bridges by field testing. Transp. Res. Rec. 1688, Transportation Research Board, Washington, D.C., 1999, 62–75
    (103) Schultz, J. L., Commander, B., Goble, G. G., et al. Efficient field testing and load rating of short and medium span bridges. Struct. Engrg. Rev., 1995, 7(3):181–194
    (104) Tarhini, K. M., and Frederick, G. R. Wheel load distribution in I-girder highway bridges. J. Struct. Engrg., ASCE, 1992,118(5): 1285–1294
    (105) Zokaie, T., Osterkamp, T. A., and Imbsen, R. A. Distribution of wheel loads on highway bridges. Nat. Cooperative Hwy. Res. Program Rep. 12-26, Transportation Research Board, Washington, D.C. 1991
    (106) Davalos, J. F.; Qiao, P. Computational approach for analysis and optimal design of FRP beams. Computers and Structures, 1999, 70(2):169-193
    (107) Hayes, M. D. Characterization and Modeling of a Fiber-Reinforced Polymeric Composite Structural Beam and Bridge Structure for Use in the Tom’s Creek Bridge Rehabilitation Project. [ Master’s Thesis]. Virginia Polytechnic Institute and State University, Blacksburg, Virginia,1998
    (108) Xu, X. F., Qiao, P., and Davalos, J.F. On the Transverse Shear Stiffness of Composite Honeycomb Core with General Configuration. Journal of Engineering Mechanics, ASCE, 2001,127(11): 1144-1151
    (109) GangaRao, H.V.S., Thippeswamy, H.K., Shekar, V., et al. Development of glass fiber reinforced polmer composite bridge deck. SAMPE Journal, 1999,35(4):12-24
    (110) Hayes, M. D., Ohanehi, D., Lesko, J. J., et al. Performance of tube and plate fiberglass composite bridge deck. Journal of Composites for Construction, 2000, 4(2):48-55
    (111) McGhee, K. K., Barton, F. W., and McKeel, W. T. Optimum design of composite bridge deck panels. Advanced Composite Materials in Civil Engineering Structures, Proceedings of the Specialty Conference, ASCE, Las Vegas, Nevada, U.S., 1991:360-370
    (112) Zureick, A. Fiber-reinforced polymeric bridge decks. Proceedings of the National Seminar on Advanced Composite Material Bridges, FHWA. 1997
    (113) Potisuk, T. Finite Element Modeling of Reinforced Concrete Beams ExternallyStrengthened by FRP Composites. [Master’s Thesis]. Oregon State University, Corvallis, OR. 2000
    (114) Kachlakev, D.I. Retrofit of Historic Structures Using FRP Composites.Sixth Annual International Conference on Composites Engineering, Orlando, FL, 1999:387-388
    (115) Kim, T.W. 3D Finite Element Analysis of Fiber-Reinforced Polymer Strengthened Reinforced Concrete Bridge. [MS Thesis]. Oregon State University,Corvallis, OR. 2000
    (116) Jones, R. M. Mechanics of composite materials. 2nd edition, Taylor & Francis,1999
    (117) Grediac, M. A finite element study of the transverse shear in honeycomb cores. Int. J. Solids and Struct., 1993,30(13):1777–1788
    (118) Noor, A., Burton, W. S., and Bert, C. W. Computational models for sandwich panels and shells. Appl. Mech. Rev., 1996, 49(3):155–199
    (119) Shi, G., and Tong, P. Equivalent transverse shear stiffness of honeycomb cores. Int. J. Solids and Struct., 1995, 32(10):1383–1393
    (120) Wang, T. L., Huang, D. Z., and Shahawy, M. Dynamic Behavior of Continuous and Cantilever Thin-Walled Box Girder Bridges. Journal of Engineering, May,1996:67-75
    (121) Huang, D. Z., Wang, T. L., and Shahawy, M. Vibration of thin-walled box girder bridges excited by vehicles. J. Struct. Engrg., ASCE, 1995, 121(9):1330-1337
    (122) Huang, D. Z. Dynamic Analysis of Steel Curved Box Girder Bridges. Journal of Bridge Engineering, November/December 2001:506-513
    (123) Fenves, S. J., Veletsos, A. S., and Siess, C. P. Dynamic studies of bridges on the AASHTO test road. Report No 71. Washington, DC: Nat Academy of Sci-Nat Res Council, 1962
    (124) Wang, T. L. Ramp/bridge interface in railway prestressed concrete bridges. J. Struct. Eng., ASCE, 1990,116(6):1648–1659
    (125) Wang, T. L., Garg, V. K., Chu, K. H. Railway bridge/vehicle interaction studies with a new vehicle model. J. Struct. Eng., ASCE, 1991,117(7):2099–2116
    (126) Wang, T. L., Huang, D. Z. Computer modeling analysis in bridgeevaluation-phase III, Final Report, Project No. FL/DOT/RMC/0542(3)-7851, Florida Dept. of Transp., 1993
    (127) Wang, T. L., Liu, C. Influence of heavy vehicles on highway bridges. Final Report, Project No. BC-379, Florida Dept. of Transp., 2000
    (128) Cai, C. S. Discussion on the AASHTO LRFD Load Distribution Factors for Slab-on-girder Bridges. Practice Periodical on Structural Design and Construction, ASCE, 2005,10(3):171-176
    (129) Arockiasamy, M., Amer, A., and Bell, N. Load distribution on highway bridges based on field test data: Phase II, Report submitted to Florida Dept. of Transportation, Florida Atlantic Univ., Boca Raton, Fla. 1997
    (130) Barker, M. G. Quantifying field-test behavior for rating steel girder bridges. J. Bridge Eng., 2001, 6(4):254–261
    (131) Barr, P., Eberhard, M. O., and Stanton, J. Live-load distribution factors in prestressed concrete girder bridges. J. Bridge Eng., 2001, 6(5):298–306
    (132) Cai, C. S., and Shahawy, M. Predicted and measured performance of prestressed concrete bridges. J. Bridge Eng., 2004, 9(1): 4–13
    (133) Cai, C. S., Shahawy, M., and Peterman, R. J. Effect of diaphragms on load distribution in prestressed concrete bridges. Transportation Research Record 1814, Transportation Research Board, National Research Council, Washington, D.C., 2002:47–54
    (134) Green, T. M., Yazdani, N., Spainhour, L., et al. Intermediate diaphragm and temperature effects on concrete bridge performance. Transportation Research Record 1814, Transportation Research Board, National Research Council, Washington, D.C., 2002:83–90
    (135) Kim, S., and Nowak, A. S. Load distribution and impact factors for I-girder bridges. J. Bridge Eng., 1997, 2(3):97–104
    (136) Mabsout, M. E., Tarhini, K. M., Frederick, G. R., et al. Effect of multilanes on wheel load distribution in steel girder bridges. J. Bridge Eng., 1999, 4(2): 99–106
    (137) Zokaie, T., Osterkamp, T. A., and Imbsen, R. A. Distribution of wheel load on highway bridges. National Cooperative Highway Research Program Report 12-26/1, Transportation Research Board, Washington, D.C. 1991
    (138) Cai, C. S. and Chen, S. R. Framework of vehicle-bridge-wind dynamic analysis. Journal of Wind Engineering and Industrial Dynamics, 2004,(7-8): 579-607
    (139) Cai, C. S., and Shahawy, M. Understanding Capacity Rating of Bridges from Load Tests. Practice Periodical on Structural Design and Construction, ASCE, 2003, 8(4):209-216
    (140) Samaan, M., Seneah, K. and Kennedy, J. B. Distribution Factors for Curved Continuous Composite Box-Girder Bridges. J. Bridge Eng., 2005, 10(6): 678–692
    (141) Sennah, K. M., and Kennedy, J. B. Load Distribution Factors for Composite Multicell Box Girder Bridges. J. Bridge Eng., 1999,4(1):71-78
    (142) Samaan, M., Seneah, K., and Kennedy, J. B. Positioning of Bearings for Curved Continuous Spread-box Girder Bridges. Can. J. Civ. Eng., 2002, 29:641–652

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700