用户名: 密码: 验证码:
气液降膜流动的计算传递学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究内容分为两部分,第一部分为第二至第四章,主要对气液两相传热及传质过程进行模拟与实验研究,包括液膜蒸发、冷凝过程以及新型换热板结构对降膜传热的影响;第二部分为第五至第七章,采用多尺度计算理论预测填料塔内部的液相分布行为,并建立了完善的液相分布模型。
     在降膜蒸发器以及海水淡化等设备中,气液两相流动过程以及传热传质过程一直是人们关注的焦点。为此,本文首先采用VOF方法建立了二维气液两相分层流动的CFD模型,引入影响液膜流动的表面张力源相和气液界面剪应力源相,并考虑相界面处由于发生蒸发或冷凝所导致的水蒸气浓度变化和传热量的变化。根据模拟结果讨论了气液相温度、流率、气相水蒸气浓度以及壁面热通量对传热系数以及相界面处显热、潜热的影响。模拟结果显示,液膜传热系数在进口附近显著减小,在相界面处潜热为主要的传热方式,冷凝过程由于冷凝放热的影响进一步限制了显热传热过程。
     液相流动行为能够显著地影响传热及传质过程。为此,本文提出了一种新型换热板结构,并通过实验对比研究了翅片板、平板和粗糙板三种结构对降膜传热过程的影响。实验结果表明,翅片板能够显著改善液膜分布,同时翅片板上的翅片和小孔结构增大了液相再混合以及湍流程度,进一步提高其传热性能。
     本文第二部分采用微观CFD模拟和宏观计算相结合的多尺度研究方法,分析并预测规整填料塔内的液相分布行为。首先根据规整填料片的结构特征,提炼出具有代表性并重复出现的填料最小特征单元,通过对液相在特征单元模型的流动行为进行CFD模拟分析,建立了新型规整填料宏观液相分布模型,并利用微观模拟结果统计得到其模型参数,进而预测得到了整个填料塔的液相分布行为。此外,本文又进一步完善了该液相分布模型,考虑填料表面开孔的影响,使该模型能够适用于开孔填料上液相流动行为的计算,并考虑了逆流气相对模型参数的影响。该多尺度方法摒弃了前人需要通过实验回归模型参数的做法,并且计算量较小,这为今后大规模填料塔的结构优化设计提供了一种较好的方法和途径,具有广泛的工业应用前景。
The thesis is composed by two parts. Theoretical simulation and experiments onthe falling film heat and mass transfer process are discussed in chapter2-4, whichincludes the evaporation, condensation and the effects of plate structure on liquid filmflow. In chapter5-7, A novel liquid distribution model is established and multi-scaletheory is applied to predict the liquid distribution in packed column.
     The gas-liquid two phases flow behavior and heat and mass transfercharacteristics have always been the focus of attention in falling-film evaporators anddesalting plates. Therefore, a two-dimensional two-phase flow CFD model using thevolume of fluid (VOF) method is presented to investigate the transport phenomena.Two important momentum source terms, surface tension and interface stress shear,areconsidered. Moreover, the change of water vapor concentration and heat transfercapacity around the interface have also been described by adding the heat and masstransfer source term in the model. Based on the simulated results, the influence of twophase temperatures, flow rates, water vapor concentration and wall flux on heattransfer coefficients, latent and sensible heat have been discussed. The simulationresults show that the heat transfer coefficients near the inlet decrease rapidly, and thelatent heat is the major mode of heat transfer in the interface. Moreover, the heatreleased from condensation process further restricts the increase of sensible heat.
     The heat and mass transfer process is significantly influenced by liquid film flowbehavior. For this, a novel heat transfer plate structure is proposed, and the heattransfer coefficients on three different plates have been investigated, the structures ofwhich are flat, coarse and oriented baffled plate, respectively. The experimentalresults indicate better liquid distribution and increased remixed and turbulence degreeon oriented baffled plate, which improve the heat transfer performance.
     In section2, multi-scale method which consists of microcosmic CFD simulationand macrocosmic calculation is applied to predict the liquid distribution in structuredpacking column. The minimum representative units reappearing in structured packingis proposed and liquid film flow on the units is also been simulated to obtain themodel parameters. Based on the parameters and established liquid distribution model,the fluid mechanics behavior in packed column is obtained. Furthermore, a refinedmodel is developed to take the condition of liquid film flowing on structured packing with holes into consideration, as well as the influence of counter-current flow of gasphase. This multi-scale method doesn’t need complex computation and anyexperimental data to regress model parameters. Therefore, it provides a new approachfor the design and optimization of the large-scale packing column, and has broadfuture in industrial applications.
引文
[1] Nikou M R K, Ehsani M R. Turbulence Models Application on CFDSimulation of Hydrodynamics, Heat and Mass Transfer in a StructuredPacking. Int. Commu. in Heat and Mass Transfer,2008,35:1211-1219.
    [2] Chen J B, Liu C J, Yuan X G, et al. CFD Simulation of Flow and MassTransfer in Structured Packing Distillation Columns. Chin. J. Chem. Eng.,2009,17:381-388.
    [3] Migita H, Soga K, Mori Y H. Gas Absorption in a Wetted-Wire Column.AIChE J.,2005,51:2190-2198.
    [4] Xi Z H, Zhao L, Liu Z Y. New Falling Film Reactor for MeltPolycondensation Process. Macromolecular Symposia,2007,259:10-16.
    [5] Tsay Y L, Lin T F. Evaporation of a Heated Falling Liquid Film into a LaminarGas Stream. Experimental Thermal and Fluid Science,1995,11:61-71.
    [6] Bojnourd F M, Fanaei M A, Zohreie H. Dynamic Simulation of Multi-EffectFalling Film Evaporator: Milk Power Production Plant.6th InternationalChemical Engineering Congress&Exhibition,2009.
    [7] Chu K J, Dukler A E. Statistic Characteristics of Thin Wavy Films: Part II.Study of the Substrate and Its Wave Structure. AIChE J.,1974,20:695-706.
    [8] Frederic K W, Dukler A E. Insight into the Hydrodynamic of Free FallingWavy Films. AIChE J.,1989,35:187-195.
    [9]刘秋生,汪洋,纪岩.蒸发相变与界面流动耦合机理研究.工程热物理学报,2010,31:1751-1754.
    [10] Storch T, Philipp C, Gross.U. Zero Shear-Stress Experiments of Falling FilmEvaporation Inside a Vertical Tube.5th European Thermal-SciencesConference,2008.
    [11] Chyu M C, Bergles A E. An Analytical and Experimental Study ofFalling-Film Evaporation on a Horizontal Tube. J. Heat Transf.,1987,109:983-990.
    [12] Liu Z H, Zhu Q Z, Chen Y M. Evaporation Heat Transfer of Falling WaterFilm on a Horizontal Tube Bundle. Heat Transfer Asian Research,2002,31:42-54.
    [13] Mohamed A M I. Experimental Study of Heat Transfer and FlowCharacteristics of Liquid Falling Film on a Horizontal Fluted Tube. Heat MassTransfer,2010,46:841-849.
    [14] Louahlia-Gualous H, Omari L E, Panday P K, et al. Experimental Analysis ofthe Local Heat Transfer Coefficient of Falling Film Evaporation with andwithout Co-Current Air Flow Velocity. Heat Mass Transfer,2005,41:1066-1076.
    [15] Fujita Y, Tsuteui M. Evaporation Heat Transfer of Falling Films on HorizontalTube, Part2, Experimental Study. Heat Transfer Jap. Res.,1995,24:17-31.
    [16] Parken W H. Heat Transfer to Thin Films on Horizontal Tubes[D]. PhDRutgers University,1975.
    [17] Mitrovic J. Influence of Tube Spacing and Flow Rate on Heat Transfer from aHorizontal Tube to a Falling Liquid Film. Proceedings of the EighthInternational Heat transfer Conference, San Francisco,1986.
    [18] Zhang J T, Wang B X, Peng X F, et al. Study on Heat Transfer for FallingLiquid Film Flow with Consideration of Interfacial Evaporation. Chin. J.Chem. Eng.,2001,9:145-149.
    [19] Wang B X, Zhang J T, Peng X F. The Effect of Interfacial Evaporation on Heatand Mass Transfer of Falling Liquid Film. Science in China (Series E),2001,44:123-130.
    [20]蒋翔,朱冬生,吴治将, et al.立式蒸发式冷凝器传热传质的CFD模拟.高效化学工程学报,2009,23:566-571.
    [21] Raach H, Mitrovic J. Seawater Falling Film Evaporation on Vertical Plateswith Turbulence Wires. Desalination,2005,183:307-316.
    [22] Raach H, Somasundaram S. Numerical Investigation on Heat Transfer inFalling Film around Turbulence Wires.5th European Thermal-SciencesConference, The Netherlands,2008.
    [23] Weise F, Scholl S. Evaporation of Pure Liquids With Increased Viscosity in aFalling Film Evaporator. Heat Mass Transfer,2009,45:1037-1046.
    [24] Adib T A, Heyd B, Vasseur J. Experimental Results and Modeling of BoilingHeat Transfer Coefficients in Falling Film Evaporator Usable for EvaporatorDesign. Chem.Eng. Proc.,2009,48:961-968.
    [25] Dhir V K. Numerical Simulations of Pool-Boiling Heat Transfer. AIChE J.,2001,47:813-834.
    [26] Dhir V K. Mechanistic Prediction of Nucleate Boiling HeatTransfer-Achievable or a Hopeless Task? J. Heat Trans.,2006,128:1-12.
    [27] Mohamed A B, Orfi J, Debissi C, et al. Condensation of Water Vapor in aVertical Channel by Mixed Convection of Humid Air in the Presence of aLiquid Film Flowing Down. Desalination,2007,204:471-481.
    [28] Koh J C Y, Sparrow E M, Hartnett J P. The Two Phase Boundary Layer inLaminar Film Condensation. Int. J. Heat Mass Transfer,1961,2:69-82.
    [29] Minkowycz W J, Sparrow E M. Condensation Heat Transfer in the Presence ofNoncondensables, Interfacial Resistance, Superheating, Variable Propertiesand Diffusion. Int. J. Heat and Mass Transfer,1966,9:1125-1144.
    [30] Sparrow E M, Minkowycz W J. Forced Convection Condensation in Presenceof Noncondensables and Interfacial Resistance. Int. J. Heat and Mass Transfer,1967,10:1829-1845.
    [31] Araki H, Kataoka Y, Murase M. Measurement of Condensation Heat TransferCoefficient inside a Vertical Tube in the Presence of Noncondensable Gas. J.Nucl. Sci. Technol.,1995,32:517-526.
    [32] Dehbi A, Guentay S. A Model for the Performance of a Vertical TubeCondenser in the Presence of Noncondensable Gases. Nucl. Eng. Desi.,1997,177:41-52.
    [33] No H C, Park H S. Non-Iterative Condensation Modeling for SteamCondensation With Non-Condensable Gas in a Vertical Tube. Int. J. Heat andMass Transfer,2002,45:845-854.
    [34] Revankar S T, Pollock D. Laminar Film Condensation in a Vertical Tube in thePresence of Noncondensable Gas. Applied Mathematical Modelling,2005,29:341-359.
    [35] Martín-valdepeňas J M, Jiménez M A, Martín-Fuertes F, et al. Comparison ofFilm Condensation Models in Presence of Non-Condensable GasesImplemented in a CFD Code. Heat Mass Transfer,2005,41:961-976.
    [36] Siow E C, Ormiston S J, Soliman H M. A Two-Phase Model for Laminar FilmCondensation from Steam-Air Mixtures in Vertical Parallel-Plate Channels.Heat and Mass Transfer,2004,40:365-375.
    [37] Siow E C, Ormiston S J, Soliman H M. Two-Phase Modelling of LaminarFilm Condensation from Vapor-Gas Mixtures Indeclining Parallel-PlateChannels. International Journal of Thermal Sciences,2007,16:458-466.
    [38] Kuhn S Z, Schrock V E, Peterson P E. An Investigation of Condensation fromSteam-Gas Mixtures Flowing Downward Inside a Vertical Tube. Nucl. Eng.Des.,1997,177:53-69.
    [39] Orfi J, Laplante M, Marmouch H, et al. Experimental and Theoretica l Study ofa Humidification-Dehumidification Water Desalination System Using SolarEnergy. Desalination,2004,168:151-159.
    [40] Xiong R H, Wang S C, Wang Z, et al. Experimental Investigation of a VerticalTubular Desalination Unit Using Humidification-Dehumidification Process.Chin. J. Chem. Eng.,2005,13:324-328.
    [41] Liu J, Aizawa H, Yoshino H. CFD Prediction of Surface Condensation onWalls and Its Experimental Validation. Building and Environment,2004,39:905-911.
    [42] Kanga Y T, Honga H, Lee Y S. Experimental Correlation of Falling FilmCondensation on Enhanced Tubes with HFC134a; Low-Fin and Turbo-CTubes. Int. J. Refri.,2007,30:805-811.
    [43] Chung B J, Kim M C, Ahmadinejad M. Film-Wise and Drop-WiseCondensation of Steam on Short Inclined Plates. J. Mecha. Sci. Technol.,2008,22:127-133.
    [44] Li C, Cheung S C P, Yeoh G H, et al. Influence of Drag Forces on a Swarm ofBubbles in Isothermal Bubbly Flow Conditions.7thInternational Conferenceon CFD in the Minerals and Process Industries,2009.
    [45] Cheung S C P, Yeoh G H, Tu J Y. On the Numerical Study of IsothermalVertical Bubbly Flow Using Two Population Balance Approaches. Chem. Eng.Sci.,2007,62:4659-4674.
    [46] Drosos E I P, Paras S V, Karabelas A J. Counter-Current Gas-Liquid Flow in aVertical Narrow Channel-Liquid Film Characteristics and FloodingPhenomena. Int. J. Multiphase Flow,2006,32:51-81.
    [47] Xu H B, Mao Z S. Experimental Investigation of Pressure Drop Hysteresis ina Cocurrent Gas-Liquid Up flow Packed Bed. Chin. J. Proc. Eng.,2001,1:239-242.
    [48] Bharathan D, Wallis G B, Richter H J. Air-Water Counter-Current Two-PhaseFlow. EPRI Rep,1979.
    [49] Asali J C, Hanratty T J, Andreussi P. Interfacial Drag and Film Height forVertical Annular Flow. AIChE J.,1985,31:895-902.
    [50] Hurlburt E T, Newell T A. Prediction of the Circumferential Film ThicknessDistribution in Horizontal Annular Gas-Liquid Flow. Int. J. Multiphase Flow,2000,122:1-7.
    [51] Wallis G B. One-Dimensional Two-Phase Flow. New York: McGraw-Hill,1969.
    [52] Stephan M, Mayinger F. Experimental and Analytical Study of CountercurrentFlow Limitation in Vertical Gas/Liquid Flows. Chem. Eng. Technol.,1992,15:51-62.
    [53] Vijayan M, Jayanti S, Balakrishnan A R. Experimental Study of Air-WaterCountercurrent Annular Flow under Post-Flooding Conditions. Int. J.Multiphase Flow,2002,28:51-67.
    [54] Akanksha, Pant K K, Srivastava V K. Gas Absorption with or withoutChemical Reaction in a Falling Liquid Film. Polymer-Plastics Techno. Eng.,2007,46:957-964.
    [55] Henstock W H, Hanratty T J. The Interfacial Drag and the Height of the WallLayer in Annular Flows. AIChE J.,1976,22:990-1000.
    [56] Woerlee G F, Berends J, Olujic Z, et al. Acomprehensive Model for thePressure Drop in Vertical Pipes and Packed Columns. Chem. Eng. J.,2001,84:367-379.
    [57] Zapke A, Kroger D G. Countercurrent Gas-Liquid Flow in Inclined andVertical Ducts I: Flow Patterns, Pressure Drop Characteristics and Flooding.Int. J. Multiphase Flow,2000,26:1439-1455.
    [58] White F M. Viscous Fluid Flow,2nd ed. New York: McGraw-Hill,1977.
    [59] Hewitt G F, Whalley P B,"The Correlation of Liquid Entrained Fraction andEntrainment Rate in Annular Two-Phase Flow," UKAEA ReportAERE-91871978.
    [60] Riazi M R. Effect of Interfacial Drag on Gas Absorption with ChemicalReaction in a Vertical Tube. AIChE J.,1986,32:696-699.
    [61] Ergun S. Fluid flow through packed columns. Chem. Eng. Prog.,1952,48:89-94.
    [62]阎维平,叶学民,李洪涛.液体薄膜流的流动和传热特性.华北电力大学学报,2005,32:59-65.
    [63] Kabov O A, Chinnov F A. Heat Transfer from a Local Heat Source toSubcooled Liquid Film. High temperature,2001,3:703-713.
    [64] Kapitza P L, Kapitza S P. Wave Flow of Thin Layers of a Viscous Fluid. ZhEksp Teor Fiz,1949,19:105-120.
    [65]张锋,耿皎,马少玲, et al. Marangonl效应对降膜加热流动的影响.化工学报,2005,56:1606-1611.
    [66]张锋,耿皎,赵贤广, et al.红外热像法研究降膜流动.化工进展,2006,25:1188-1192.
    [67]张锋,耿皎,王宝荣, et al.固体平壁上受热降膜分布模型.化工学报,2005,56:1837-1842.
    [68] Zhang F, Zhang Z B, Geng J. Study on Shrinkage Characteristics of HeatedFalling Liquid Films. AIChE J.,2005,51:2899-2907.
    [69] Zhang F, Zhao X G, Geng J, et al. A New Insight into Marangoni Effect inNon-Isothermal Falling Liquid Films. Experimental Thermal and FluidScience,2007,31:361-365.
    [70]赵贤广,张志柄.受热降膜Marangoni效应临界状态表征.化工时刊,2010,24:1-6.
    [71] Séamus M O S, Anthony J R. Numerical Investigation of Bobble-InducedMarangoni Convection. Interdisciplinary Transport Phenomena,2009,1161:304-320.
    [72] Zhu M, Liu C J, Zhang W W, et al. Transport Phenomenon of Falling LiquidFilm Flow on Plate with Rectangular Holes. Ind. Eng. Chem. Res.,2010,49:11724-11731.
    [73] Zhang F, Zhao X G, Wu Y T, et al. Characterization of Marangoui Effect inNon-Isothermal Falling Liquid Films of Binary Mixtures. Int. J. Therm. Sci,2008,47:1454-1463.
    [74]赵贤广,张锋,彭壕, et al.电解质溶液的受热降膜传热与Marangoni效应.化学工程,2007,35:17-20.
    [75] Miladinova S, Lebon G. Effects of Nonuniform Heating and Thermocapillarityin Evaporating Films Falling Down an Inclined Plate. Acta. Mech.,2005,174:33-49.
    [76] Trevelyan P M J, Kaijjadasis S. Dynamics of a Reactive Falling Film at LargePeclet Numbers. I. Long-Wave Approximation. Phys. Fluids.,2004,16:3191-3208.
    [77] Trevelyan P M J, Kalliadasis S. Dynamics of a reactive falling film at largePeclet numbers. II. Nonlinear waves far from criticality:integral-boundary-layer approximation. Phys. Fluids.,2004,16:3209-3226.
    [78] Carey V P. Liquid-Vapor Phase-Change Phenomena. London: Hemisphere,1992.
    [79] Stichlmair J L, Fair J R. Distillation Principles and Practices. New York:Wiley-VCH,1998.
    [80] Kister H Z. Distillation Design. New York: McGraw-Hill,1992.
    [81] Alkeseenko S V, Markovich D M, Evseev A R, et al. ExperimentalInvestigation of Liquid Distribution over Structured Packing. AIChE J.,2008,54:1424-1430.
    [82] Nicolaiewsky E M A, Tavares F W, Rajagopal K, et al. Liquid Film Flow andArea Generation in Structured Packing Columns. Powder Technology,1999,104:84-94.
    [83] Nicolaiewsky E M A, FAIR J R. Liquid Flow over Textured Surfaces. I.Contact Angles. Ind. Eng. Chem. Res.,1999,38:284-291.
    [84] Szulczewska B, Zbicinski I, Gorak I. Liquid Flow on Structured Packing: CFDSimulation and Experimental Study. Chem. Eng. Technol.,2003,26:580-584.
    [85] Rao A V R, Kumar R K, Sankarshana T, et al. Interfacial Area for ConcurrentGas-Liquid Upflow Through Packed Bed. Can. J. Chem. Eng.,2010,88:929-935.
    [86] Pavlenko A N, Pecherkin N I, Chekhovich V Y, et al. Separation of Mixturesand Distribution of Liquid on a Structured Packing in a Large-Scale Model ofa Distillation Column. Theor. Found. Chem. Eng.,2006,40:329-338.
    [87]朱明.气液降膜流动与传质的基础研究[D].天津:天津大学,2011.
    [88] Billet R, Schultes M. Modelling of Pressure Drop in Packed Columns.Chem.Eng.Technol.,1991,14:89-95.
    [89] Billet R, Schultes M. Predicting Mass Transfer in Packed Columns. Chem.Eng. Technol.,1993,16:1-9.
    [90] Billet R, Schultes M. Prediction of Mass Transfer Columns with Dumped andArranged Packings, Updated Summary of the Calculation Method of Billetand Schultes. Trans. Icheme,1999,77:498-504.
    [91] Rocha J A, Bravo J L, Fair J R. Distillation Columns Containing StructuredPackings a Comprehensive Model for Their Performance.2. Mass TransferMode. Ind. Eng. Chem. Res.,1996,35:1660-1667.
    [92] Rocha J A, Bravo J L, Fair J R. Distillation Columns Containing StructuredPackings a Comprehensive Model for Their Performance1. Hydraulic Models.Ind. Eng. Chem. Res.,1993,32:641-651.
    [93] Olujic Z. Development of a Complete Simulation Model for Predicting theHydraulic and Separation Performance of Distillation Columns Equipped withStructured Packings. Chem. Biochem. Eng. Q,1997,11:31-46.
    [94] Olujic Z, Kamerbeek A B, de Graauw J. Corrugation Geometry Based Modelfor Efficiency of Structured Distillation Packing. Chem. Eng. Prog.,1999,38:683-695.
    [95] Iliuta I, Petre C F, Larachi F. Hydrodynamic Continuum Model for Two-PhaseFlow Structured-Packing-Containing Columns. Chem. Eng. Sci.,2004,59:879-888.
    [96] Tsai R E, Seibert A F, Eldridge R B, et al. A Dimensionless Model forPredicting the Mass-Transfer Area of Structured Packing. AIChE J.,2011,57:1173-1184.
    [97] Brunazzi E, Paglianti A. A mechanistic Pressure Drop Model for ColumnsContaining Structured Packings. AIChE J.,1997,43:317-327.
    [98] Olujic Z, Saraber P P, Behrens M, et al. Structurede PackingPerformance-Experimental Evaluation of Two Predictive Models. Ind. Eng.Chem. Res.,2000,39:1788-1796.
    [99] Graauw J d, Olujic Z, Berends J, et al. A Comprehensive Model for thePressure Drop in Vertical Pipes and Packed Columns. Chem. Eng. J.,2001,84:367-379.
    [100] Iliuta I. Mechanistic Model for Structured-Packing-Containing Columns:Irrigated Pressure Drop, Liquid Holdup, and Packing Fractional Wetted Area.Ing. Eng. Chem. Res.,2001,40:5140-5146.
    [101] Stoter F, Oluji Z, Graauw J D. Liquid Distribution Performance Modeling andEvaluation. AIChE Annual Meeting, Los Angeles,1991.
    [102] Olujic Z. Development of a Complete Simulation Model for Predicting theHydraulic and Separation Performance of Distillation Columns Equipped withStructured Packings. Chem. Biochem. Eng. Q.,1997,11:31-46.
    [103] Chuang K T, Nandakumar K, Shu Y, et al. Predicting Liquid Flow Profile inRandomly Packed Beds from Computer Simulation. AIChE J.,2001,47:1770-1779.
    [104] Chuang K T, Shu Y, Nandakumar K. Predicting Geometrical Properties ofRandom Packed BEDS from Computer Simulation. AIChE J.,1999,45:2286-2297.
    [105] Bravo J L, Rocha J A, Fair J R. Mass Transfer in Gauze Packings. Hydrocarb.Proc.,1985,64:91-95.
    [106] Hoek P J, Wesselingh J A, Zuiderweg F J. Small Scale and Large Scale LiquidMaldistribution in Packed Columns. Chem. Eng. Res. Des.,1986,64:431-449.
    [107] Stoter F, Oluji Z, de Graauw J. Measurement and Modeling of LiquidDistribution in Structured Packings. Chem. Eng. J.,1993,55:55-60.
    [108]徐崇嗣,楼建中,姜庆泉.金属板波纹填料液流分布的研究.化工学报,1986,402-411.
    [109]计建炳,董谊仁,徐崇嗣.金属板波纹填料液体分布修正模型.高效化学工程学报,1995,9:31-37.
    [110]高瑞昶,宋宝东,袁孝竞.气液两相逆流状态下金属板波纹填料塔内液体流动分布.化工学报,1999,50:94-100.
    [111]张红彦,王树楹,兰仁水.板波纹填料塔中的液体分布.化学工程,2002,30:11-14.
    [112]裘俊红,陈国标,许建炳.板波纹规整填料塔液体分布.化工学报,2003,54:646-652.
    [113]谷芳,刘春江,袁希钢, et al.板波纹规整填料液相分布模型.天津大学学报,2005,38:586-591.
    [114] Adisorn A, Amit C, Paitoon T, et al. Mathematical Modelling ofMass-Transfer and Hydrodynamics in CO2Absorbers Packed with StructuredPackings. Chem. Eng. Sci.,2003,58:4037-4053.
    [115] Adisorn A, Paitoon T. Mechanistic Model for Prediction of Structured PackingMass Transfer Performance in CO2Absorption with Chemical Reactions.Chem. Eng. Sci.,2000,55:3651-3663.
    [116] Hodson J S, Fletcher J R, Porter K E. Fluid Mechanical Studies of StructuredDistillation Packings. In: IChemE Symp Ser Dist&Absp,1997,12:999-1007.
    [117] van Gulijk C. Using Computational Fluid Dynamics to Calculate TransversalDispersion in a Structured Packed Bed. Comput. Chem. Eng.,1998,22:767-770.
    [118] van Baten J M, Ellenberger, Krishna R. Radial and Axial Dispersion of theLiquid Phase Within a KATAPAK-S Structure: Experiments vs. CFDSimulations. Chem. Eng. Sci.,2001,56:813-821.
    [119] van Baten J M, Krishna R. Liquid-Phase Mass Transfer Within KATAPAK-SStructures Studied Using Computational Fluid Dynamics Simulations.Catalysis Today,2001,69:371-377.
    [120] van Baten J M, Krishna R. Gas and Liquid Phase M ass Transfer WithinKATAPAK-S (r) Structures Studied Using CFD Simulations. Chem. Eng. Sci.,2002,57:1531-1536.
    [121] Kloker M, Kenig E Y, Gorak A. On the Development of New ColumnInternals for Reactive Separations via Integration of CFD and ProcessSimulation. Catalysis Today,2003,79:479-485.
    [122] Kloker M, Kenig E Y, Piechoia R, et al. CFD-Based Study on Hydrodynamicsand Mass Transfer in Fixed Catalyst Beds. Chem. Eng. Technol.,2005,28:31-36.
    [123] Egorov Y, Menter F, Kloker M, et al. On the Combination of CFD andRate-Based Modelling in the Simulation of Reactive Separation Processes.Chem. Eng. Proc.,2005,44:631-644.
    [124] Zhang P. Experimental Studies and CFD Simulations of Fluid Flow and MassTransfer in a Structured Packed Column at Elevated Pressure[D]. Tianjin:Tianjin University,2002.
    [125] Zhang P, Liu C J, Yuan X G, et al. CFD Simulations of Liquid Phase Flow inStructured Packed Column. J. Chem. Ind. Eng.,2004,55:1369-1373.
    [126] Petre C F, Larachi F, Iliuta I, et al. Pressure Drop Through Structured Packings:Breakdown into the Contributing Mechanisms by CFD Modeling. Chem. Eng.Sci.,2003,53:163-177.
    [127] Larachi F, Petre C F, Iliuta I, et al. Tailoring the Pressure Drop of StructuredPackings through CFD Simulations. Chem. Eng. Proc.,2003,42:535-541.
    [128] Raynal L, Boyer C, Ballaguet J P. Liquid Holdup and Pressure DropDetermination in Structured Packing with CFD Simulations. Can. J. Chem.Eng.,2004,82:871-879.
    [129] Fernandesa J, Simoesa P C, Mota J P B, et al. Application of CFD in the studyof supercritical fluid extraction with structured packing: dry pressure dropcalculations. J. Supercrit. Fluids.,2008,47:17-24.
    [130] Fernandesa J, Lisboaa P F, Simoesa P C, et al. Application of CFD in theStudy of Supercritical Fluid Extraction with Structured Packing: Wet PressureDrop Calculations. J. Supercrit. Fluids.,2009,50:61-68.
    [131] Haghshenas F, Zivdar M, Rahimi R, et al. CFD Simulation of Mass TransferEfficiency and Pressure Drop in a Structured Packed Distillation Column.Chem. Eng. Technol.,2007,30:854-861.
    [132] Khosravi Nikou M R, Ehsani M R. Turbulence Models Application on CFDSimulatin of Hydrodynamics, Heat and Mass Transfer in a Structured Packing.Int. Commu. Heat and Mass Transfer,2008,35:1211-1219.
    [133] Gu F, Liu C J, Yuan X G, et al. CFD Simulation of Liquid Film Flow onInclined Plates. Chem. Eng. Technol.,2004,27:1099-1104.
    [134] Gao G H, Zhang L H, Li X G, et al. CFD Simulation of Film Flow andGas/Liquid Countercurrent Flow on Structured Packing. Trans. Tianjin Univ.,2011,17:194-198.
    [135] Valluri P, Matar O K, Hewitt G F, et al. Thin Film Flow over StructuredPackings at Moderate Reynolds Numbers. Chem. Eng. Sci.,2005,60:1965-1975.
    [136] Chen J B, Liu C J, Yuan X G, et al. Simulation of Flow and Mass Transfer inStructured Packing Distillation Columns. Chin. J. Chem. Eng.,2009,17:381-388.
    [137] Chen J B, Liu C J, Yuan X G, et al. Experimental Investigation of Single-phaseFlow in Structured Packing by LDV. Chin. J. Chem. Eng.,2007,15:821-827.
    [138] Haroun Y, Raynal L, Legendre D. Mass Transfer and Liquid Hold-UpDetermination in Structured Packing by CFD. Chem. Eng. Sci.,2012,75:342-348.
    [139] Mahr B, Mewes D. Two-Phase Flow in Structured Packings: Modeling andCalculation on a Macroscopic Scale. AIChE J.,2008,54:614-624.
    [140] Raynal L, Royon-Lebeaud A. A multi-scale approach for CFD calculations ofgas-liquid flow within large size column equipped with structured packing.Chemical Engineering Science,2007,62:7196-7204.
    [141] Vervloet D, Kamali M R, Gillissen J J J, et al. Intensification of Co-CurrentGas-Liquid Reactors Using Structured Catalytic Packings: A MultiscaleApproach. Catalysis Today,2009,147:138-143.
    [142] Mahr B, Mewes D. CFD Modelling and Calculation of Dynamic Two-PhaseFlow in Columns Equipped with Structured Packing. Chem. Eng. Res. Des.,2007,85:1112-1122.
    [143] Li X G, Gao G H, Zhang L H, et al. Multiscale Simulation and ExperiemntalStudy of Novel SiC Structured Packings. Ind. Eng. Chem. Res,2012,51:915-924.
    [144] LI J, Kwauk M. Multiscale Nature of Complex Fluid-Partical Systems. Ind.Eng. Chem. Res,2001,40:4227-4237.
    [145] LI J, Kwauk M. Exploring Complex Systems in Chemical Engineering-theMulti-Scale Methodology. Chem. Eng. Sci.,2003,58:521-535.
    [146] Wang W, Lu B, LI J. Choking and Flow Regime Transitions: Simulation by aMulti-Scale CFD Approach. Chem. Eng. Sci.,2007,62:814-819.
    [147] Wang W, Lu B, Zhang N, et al. A Review of Multiscale CFD for Gas-SolidCFB Modeling. Int. J. Multiphase Flow,2010,36:109-118.
    [148] Hirt C W, Nichols B D. Volume of Fluid (VOF) Method for the Dynamics ofFree Boundaries. J. Compu. Phys.,1982,39:201-225.
    [149] Jeon S S, Kim S J, Park G C. CFD Simulation of Condensing Vapor BubbleUsing VOF Model. World Academy of Science, Engineering and Technology,2009,60:209-215.
    [150] Handbook of FLUENT6.3. Canonsburg: ANSYS Inc.,1997.
    [151] Honig P. Principles of Sugar Technology.1. Amsterdam:1953.
    [152] Elioni M A, Nicolaiewsky, Fair J R. Liquid Flow Over Textured Surfaces.1.Contact Angles. Ind. Eng. Chem. Res.,1999,39:284-291.
    [153] Gu F, Liu C, Yuan X G, et al. Liquid distribution model for sheet corrugatedstructure packing. Journal of Tianjin University,2005,38:586-591.
    [154] Billet R, Schultes M. Fluid Dynamics and Mass Transfer in the Total CapacityRange of Packed Columns up the Flood Point. Chem. Eng. Technol.,1995,18:371-379.
    [155] Brunazzi E, Nardini G, Paglianti A, et al. Interfacial Area of Mellapak Packing:Absorption of1,1,1-Trichloroethane by Genosorb300. Chem. Eng. Technol.,1995,18:248-255.
    [156] Brito M H, von Stockar U, Bangerter A M, et al. Effective Mass-Transfer Areain a Pilot Plant Column Equipped with Structured Packings and with CeramicRings. Ind. Eng. Chem. Res.,1994,33:647-656.
    [157] Olujic Z, Kamerbeek A B, de Graauw J. A Corrugation Geometry BasedModel for Efficiency of Structured Distillation Packing. Chem. Eng. Proc.,1999,38:683-695.
    [158] Shi M G, Alfons M. Effective interfacial area in packed columns. Ger. Chem.Eng.,1985,8:87-96.
    [159]谷芳.规整填料流动与传质机理的计算流体力学研究[D].天津:天津大学,2005.
    [160]高有飞.孔板波纹填料流体力学性能.石油炼制与化工,2005,36:15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700