用户名: 密码: 验证码:
油田定向井随钻信号检测及处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油田定向井钻探过程中需要及时准确地测量出钻具所处井眼方向参数,也要了解已完钻的井眼轨迹,因此随钻信号的检测与处理成为衡量定向井水平的一个重要因素。
     传统的钻孔测斜仪采用偏重块和罗盘磁针,现代则采用灵敏度和精度很高的加速度计以及防振性能好的磁通门。把新型传感器和计算机技术相结合,出现了多种单、多点和连续测斜仪器。而把井下记录与实时传输相结合的MWD系统,既能实现实时检测,又保证了随钻测量资料的高质量,所以以MWD系统为主的无线随钻测斜技术代表着定向井未来的发展方向。
     随着石油勘探开发的不断深入,地层结构越来越复杂,深井、超深井和高温、高压井等特殊复杂井变得越来越多。因为油田定向井随钻测量参数主要为磁通门与加速度传感信号,为了提高随钻信号检测精度,建立了磁通门传感器数学模型与加速度传感器数学模型,并对随钻测量误差进行了分析。
     随钻测量传感器受诸如温度、湿度、电源波动等环境因素的影响,致使其测量准确度大大下降,造成测量精度不高、稳定性差等问题,因此需要对其进行补偿,故开展了磁通门传感器、加速度传感器输出信号的硬件补偿、线性补偿以及非线性补偿,形成了一套综合补偿方案。
     随钻传感信号硬件补偿和线性补偿具有一定效果,但由于大部分的传感器本身就是非线性的,而且在测量过程中又受到各种环境因素的干扰,所以采用小波神经网络对距离传感器信号进行了非线性补偿,建立了利用BP算法训练小波对传感器信号进行非线性补偿的算法,取得了比线性补偿更好的效果;之后,根据动态神经网络思想,构造了用于随钻测量信号补偿的Elman神经网络,进一步提高了随钻信号补偿精度,并达到了较高的运算速度。再后,又提出了基于遗传Elman神经网络的补偿方案,经过GA-Elman神经网络补偿后的井斜方位与实测井斜方位相比有了很大的改善,基本接近理论值;最后,基于蚁群算法,根据自适应思想,在Elman神经网络的基础上,提出了一种自适应蚁群Elman神经网络对随钻测量信号的补偿方案,使得补偿误差进一步减小
     基于协同设计思想开展了油田定向井随钻测量系统的设计,采用嵌入式设计提高了实时性;采用在线系统的编程技术,缩短了开发时间,节省了开发成本;采用模块化设计,便于扩展与通信。经测试,所设计的随钻测量系统精度高于油田在用的随钻测斜系统,提高了定向井钻井水平,且系统的稳定性、实时性、准确性和安全性均相应提高。
     目前,绝大多数的无线随钻测量系统都是采用泥浆脉冲传输方式,因而信号的传输速度是关键因素。然而,钻井液中含有粘土、岩屑、重晶石粉等固相物质,并且其中存在着的游离状态的气体往往形成气泡,从而增加了信号传输速度问题的复杂性。为此,基于泥浆脉冲传输速度的计算模型,分析了钻井液脉冲的传输速度是随着钻井液密度的关系,以及与含气量的关系;分析了固体、液体之间密度和压缩性的差异对传输速度的影响,以及正、负脉冲的传输速度的变化。
The hole direction parameters of drilling tool must be measured promptly and accurately during the process of directional drilling in oilfield, and the hole trajectory while completion is also needed, so that Measurement While Drilling signal detection and process become an important factor of weighing directional drilling level.
     Centrifugal weight and magnetic compass are adopted in the traditional inclinometers, while accelerometer with high sensibility and precision, and the fluxgate sensor with high anti-vibration are used in modern times. Single/multiple point and continuous inclinometers are developed by combining new type sensors with computer technology. MWD(Measurement While Drilling) system, combining downhole logging with real-time transmission, which can make sure real-time detection and high quality measurement material, mainly in Wireless measurement while drilling technology will become the development direction of directional well in the future.
     With the development of petroleum exploration and production, the geology status has become more complicated, the number of deep well, ultra-deep well, high-temperature well, high-pressure well and so on, will become more and more. The main parameters of MWD of directional well in oilfield are accelerometer and fluxgate sensor signals, in order to improve the detection precision of measurement will drilling signal, the mathematic models of fluxgate and accelerometer are established, and the measurement while drilling error is analyzed.
     The sensors of measurement while drilling are affected by the environmental factors, such as temperature, humidity, power supply fluctuation, which enormously induce the measurement veracity, so that the measurement precision is not high and the stability is not good, must be compensated. Hardware compensation, linear compensation and nonlinear compensation for fluxgate and accelerometer signals are formed to a synthesized compensation scheme.
     Hardware compensation and linear compensation for sensor signals of measurement while drilling have some effect, but most of sensors are nonlinear, which are affected by the environmental factors in the process of measurement. Range sensor is compensated nonlinearly by wavelet neural network, nonlinear compensation algorithm for sensor signals is established, BP algorithm training wavelet, which has a better effect than linear compensation. Then, based on the idea of dynamic, the neural Elman neural network is constructed for measurement of drilling signal compensation, which further improves the precision and has a highly operation speed. And the compensation scheme based on genetic Elman neural network is also presented, after using GA-Elman neural network, the inclination and azimuth have improved a lot compared to the actual values, approaching theoretical values approximately. At last, based on ant colony algorithm, adaptive idea, and Elman neural network, a compensation scheme is presented of adaptive ant colony Elman neural network for measurement while drilling signals, which induced the compensation error to a greater extent.
     Based on the cooperative design idea, Measurement While Drilling system of directional well in oilfield is designed, in which embedded design is applied to improve the real-time performance, the In System Programming technology is applied to shorten system developing time and declines the development cost, model design is applied to expand and communicate conveniently. This measurement while drilling system has a higher precision then the system in the oilfield at present, which improves the drilling level of directional well, and the stability, real-time performance, accuracy and security are also improved to some extent.
     At present, the mud pulse signal transmission method was applied to the most of wireless measurement while drilling system, so the key factor of wireless MWD system is the transmission speed. The drilling fluids is mainly composed by clay, rock debris, barite powder, and bubble produced by air existing in free state. Therefore signal transmission speed become even more complex. The computing model of mud pluse signal transmission speed considers the relation with drilling fluid density and gas content. It also considers the influence of density and contraction difference between the solid and liquid, and the transmission speed variation of positive pulse or positive pulse.
引文
[1]高德利.油气钻井技术展望[J].石油大学学报(自然科学版),2003,(01):29-32.
    [2]庄东志,司兆伟,杨鸿等.随钻测井技术及其在冀东油田的应用[J].复杂油气藏,2010,3(3):44-46.
    [3]MG Lee. Singlechip'adaptation Styles in Testing Field [J]. Computer and Education,2001,36(2):167-196.
    [4]张绍槐.钻井录井信息与随钻测量信息的集成和发展[J].录井工程,2008,19(4):26~31.
    [5]时鹏程.随钻测井技术在我国石油勘探开发中的应用[J].测井技术,2002,26(6):441-445.
    [6]James Stolpa. Study on the Safety Inspecting System of the Rock's Project[J]. Architecture and Safe,2002, (7):101-185.
    [7]Allen F, Tooms P, Conran G. Extend-Reach Drilling:Breaking the 10-km Barrier[J]. Oilfield Review,1997,9(4):32-47.
    [8]丁永浩,李舟波,马宏宇.随钻测井技术的发展[J].世界地质,2004,23(3):270-273.
    [9]谢川.一种基于磁强计和倾角传感器的钻井测斜仪[J].仪器仪表学报,2010,31(10):2357~2362.
    [10]李政.数字测斜系统的设计与实现[D].武汉科技大学,2009.
    [11]B.H.Walker, M.B.Friedman. Three-Dimensional Force and Deflection Analysis of a Variable Cross Section Drill String[J]. Journal of Pressure Vessel Technology, 1997:367-373.
    [12]孙慧卿,郭志友.传感器的误差补偿技术[J].传感技术学报,2004,(1):90~92.
    [13]范新南,苏丽媛,郭建甲.多传感器信息融合综述[J].河海大学常州分校学报,2005,19(1):1-4.
    [14]高德利.钻井科技发展的历史回顾现状分析与建议[J].石油科技论坛,2004,(02):29~39.
    [15]刘向东,吴芝路,关柏利.油井有线测斜仪的设计[J].哈尔滨理工大学学报,1999,4(03):92~94.
    [16]王若.随钻测井技术发展史[J].石油仪器,2001,15(02):5-7,15.
    [17]桂德洙.浅谈钻井测斜仪[J].石油钻采工艺,1999,21(05):45-49.
    [18]汤国起,肖圣泗.钻孔测斜技术的现状与开发应用前景[J].探矿工程,1999, (S1):235-238.
    [19]李番军.连续测斜仪研究[D].哈尔滨工业大学,2006.
    [20]王文军.DGT-1自动测斜仪的研究开发[D].吉林大学,2005.
    [21]阚玲玲.基于单片机的高精度随钻测斜仪系统开发[D].大庆石油学院,2007.
    [22]Desbrandes R. Status report:MWD Technology [J]. Petroleum Engineer International,1988,60(10):48-54.
    [23]Hearn F. Formation evaluation MWD enters new capability realm [J]. World Oil, 1994,215(11):75-81.
    [24]孙明光.现代钻井和完井技术基础知识手册[M].北京:石油工业出版社,2002.
    [25]王骏.连续测斜仪在石油测井领域的应用及发展[J].舰船科学技术,2003,25(03):47~49.
    [26]蔡文军,王平,翟军威,等.机械式无线随钻测斜仪及其应用[J].石油钻探技术,2005,33(01):39-40.
    [27]邱成军,卜丹,平占彪.定向井轨迹的单片机单/多点测量系统[J].哈尔滨理工大学学报,2004,9(02):97-99.
    [28]张春熹,高爽.自主式光纤陀螺油井测斜仪[J].仪表技术与传感器,2006,(11):9-11.
    [29]蔡文军,王平.机械式无线随钻测斜仪结构原理及性能特点[J].石油机械,2005,33(9):49~50.
    [30]嵇海旭,于鹏,梁秀娟.传感器的非线性补偿研究[J].机械制造,2009,47(542):41~42
    [31]高敏.采用数据融合技术提高霍尔电流传感器测量精度的研究[D].华东大学,2009.
    [32]Brown T, Burke T, Kletzky A, et al. In-time Data Delivery[J].油田新技术,2000, 41(4):34-35.
    [33]ShangMing Zhu. Study and Application of Position Sensitive Detector PSD[J].Technology of the Instrument and Sensor,1995, (02):39-40.
    [34]Yiping Wang, Anmin Li, Yiping Cui. Application of single chip processor in an interrogating system for fiber Bragg grating sensors with a fiber Fabry-Perot wavelength filter[J]. Chinese Optics Letters,2005,3(S1):120-121.
    [35]章学静,李金平,卢孟夏;基于FPGA的无线遥测颅内压监护仪的研制[J].微计算机信息,2008,24(10-1):239~241.
    [36]Murphy D P. Advances in MWD and formation evaluation for 2001 [J]. World Oil, 2001,5:64-78.
    [37]杨兴琴.随钻数据传输新技术[J].石油仪器,2004,18(6):26~27.
    [38]孙东奎,董绍华.钻井液水力通信通道传输信号的时频特性分析[J].石油机械,2008,36(4):42-44.
    [39]刘新平.DSP控制连续波信号发生器机理与风洞模拟试验研究[D].中国石油大学,2009.
    [40]罗礼华,赵文龙,于润桥.石油钻杆长度超声测量系统[J].工业仪表与自动化装置,2008(5):71-74.
    [41]Halliburton, LWD/MWD services, www.myhalliburton.com,2002,12.
    [42]Anonymous. New tool extends MWD to underbalanced wells [J]. Drilling Contractor. March/April 2005 issue:24-25.
    [43]杜勇,胡建斌,李艳萍等.声波传输测试技术在油田的应用[J].测控技术,2005,24(11):76~78.
    [44]张辛耘,王敬农,郭彦军.随钻测井技术进展和发展趋势[J].测井技术,2006,30(1):10-15.
    [45]Desbrandes R, Bourgoyne A T Jr, Carter J A. MWD Transmission Data Rates Can be Optimized[J]. Petroleum Engineer International, June 1987:46-52.
    [46]Yin Guanghong. A review of Baosteel's development of steel for oil and natural gas[J]. Baosteel Technical Research,2008,2 (2):3-10.
    [47]刘修善,杨春国,涂玉林,高炳堂,侯绪田.我国电磁随钻测量技术研究进展[J].石油钻采工艺,2008,(05).
    [48]杨震.非均匀复杂地层随钻电磁波测井响应研究[D]中国石油大学,2009
    [49]刘宇,李东福,路永乐等.基于固态振动角速率传感器的方位测量及仿真[J].系统仿真学报,2010,22(02):542~545.
    [50]Wallace R. Gardner.High Data Rate MWD Mud Pulse Telemetry [R]. U.S. Department of Energy's Natural Gas Conference, Texas,1997.
    [51]刘新平,房军,金有海.随钻测井数据传输技术应用现状及展望[J].测井技术,2008,32(3):249~253.
    [52]卢春华,张涛,李海东.泥浆脉冲随钻测量系统研究[J].地质科技情报(增刊),2005,24(7):30~32.
    [53]张涛,鄢泰宁,卢春华.无线随钻测量系统的工作原理与应用现状[J].西部探矿工程,2005(2):126-128.
    [54]蔡文军,王平,祝远征,等.机械式无线随钻测斜仪设计方案及关键技术[J].石油学报,2006,27(02):103-106.
    [55]谢子殿,朱秀.基于磁通门与重力加速度传感器的钻井测斜仪[J].传感器技 术,2004,23(07):30~33.
    [56]管志川,陈炜卿,都振川.考虑测地数据影响的定向井测斜计算修正方法[J].天然气工业,2006,26(10):86~88.
    [57]张玉波.随钻测斜仪中传感器补偿及信号处理技术研究[D].大庆石油学院,2007.
    [58]郭爱煌,傅君眉.基于地球重力场和磁场测量的测斜技术[J].仪器仪表学报,2001,22(04):400~403.
    [59]陈庭根,管志川.钻井工程理论与技术[M].山东:石油大学出版社,2000,172~173.
    [60]乐识非.陀螺罗盘定向测量中工具面角计算方法探讨[J].西安石油学院学报(自然科学版),2001,16(04):68~72.
    [61]大港油田科技丛书编委会.大港油田科技丛书13钻井工程技术(中)[M].北京:石油工业出版社,1999,112~113.
    [62]D Gebre-Egziabher, G H Elkaim, J D Powell, et al. A gyrofree quaternion-based attitude determination system suitable for implementation using low-cost sensors [A]. Proceedings of the IEEE PLANS Proceedings of the IEEE PLANS[C]. San Diego, California:IEEE,2000,185-192.
    [63]张学孚.磁通门技术[M].北京:国防工业出版社,1995.123~152.
    [64]付鑫生,刘塞立,周静.磁通门测量原理与方法[J].测井技术,1995,19(2):109-116.
    [65]朱兆才.数字化磁通门磁力仪的原理和应用[M].北京:当代中国出版社,2004.25~47.
    [66]J.Piil-Henriksen. Digital detection and feedback fluxgate magnetometer [J]. Measurement Science and Technology,1996,7:897-903.
    [67]郝爱云,王文军,杨军强等.基于石英饶性伺服加速度计测斜仪的研究与应用[J].仪表技术与传感器,2006,(7):13~18.
    [68]贾建援,仇原鹰,甄明.石英挠性加速度计抗恶劣环境能力的分析[J].西安电子科技大学学报,1996,23(4):483~490.
    [69]郭爱煌,傅君眉.基于地球重力场和磁场测量的测斜技术[J].仪器仪表学报,2001,22(4):400~402.
    [70]翁孟超,杨志强,宣仲义.微型磁通门传感器的制备与测试研究进展[J].仪器仪表学报,2008(6):9~11.
    [71]Won-Youl Choi,Jong-Oh Kim. Two-axis micro fluxgate sensor on single chip[J] Microsystem Technologies,2006,12, (4).
    [72]汤小川.磁航向传感器信号处理技术研究[D].哈尔滨:哈尔滨工业大学, 2002.
    [73]谢子殿,朱秀.磁通门信号处理电路的设计与研究[J].黑龙江科技学院学报,2003,13(2):46-50.
    [74]Wang Binbo,Liao Changrong,Shi Xiangcong. Study on Magnetic Flux Leakage Model and Experimental Apparatus of Metal Magnetic Memory Testing[J]. Proceedings of the Third International Symposium on Test Automation & Instrumentation (Vol.4),2010:897-903.
    [75]Geyger W A. The ring core magnetometer-A new type of second-harmonic flux-gate. AIEE Trans. Communications and Electronics,1962
    [76]Primdahl F.A ferrite core flux-gate magnetometers. Danish Meterological Institute Geophysical Thesiss,1970.
    [77]Ripka P. Magnetic Sensors and Magnetometers[M],Ar-tech House,Boston,2001.
    [78]Brian. The Magnetometer Instrument on MESSENGER[J].Space Sci Rev (2007)131:417-450.
    [79]Glassmeier K-H. The Fluxgate Magnetometer of the BepiColombo Mercury Planetary Orbiter[J].Planet Space Sci. (2008),doi:10-1016/j.pss.2008·06·018
    [80]刘诗斌.微型智能磁航向系统研究[D].西安:西北工业大学,2001.
    [81]刘诗斌严家明孙希任.无人机航向测量的罗差修正研究[J].航空学报,2000,21(1):78-80
    [82]乔红兵,郭继坤.钻井测斜仪的误差分析[J].煤矿机械,2003,(8):41-43.
    [83]赵彦晓.压力传感器的热零点漂移补偿与非线性修正[D].河北:河北工业大学,2003.
    [84]Widrow B, Lehr M A.30yearsofadaptiveneuralnetworksPerCeptron, madline and backpropagation[J]. Proeeedings of the IEEE,1990,78(9):1415-1442.
    [85]SimonHaykin神经网络原理[M].北京:机械工业出版社,2004,109-175.
    [86]刘晔,邹建龙,王采堂.神经网络在传感器信号处理中的应用[J].计算机自动测量与控制,2000,8(5):63~66.
    [87]Sugie T, Ono T. An iterative learning control law for dynamic systems[J]. Automatica,1991,27(4):729.
    [88]Isidori A.Nonlinear Control Systems[M].3rd ED. Berlin:Springer-Verlag,1995.
    [89]刘天键,王劭伯,朱善安.基于神经网络的铂电阻温度传感器非线性校正方法[J].仪器仪表学报,2002,23(5):518-521.
    [90]彭玉华.小波变换与工程应用[M].北京:科学出版社,1999.
    [91]G.P.LIU. Nonlinear system identification using wavelet networks[J]. International Journal of Systems Science,2000,31(12):1531-1541
    [92]黄国建,王建华,芦国强.提高人工神经网络BP算法收敛速度的几种方法[J].华东船舶工业学院学报,1994,8(2):23-29.
    [93]赵永刚.人工神经网络中BP算法及其改进的思考[J].广州财经职业学院学报,2003,8(4),79~81.
    [94]刘建春,王正欧.一种小波神经网络的快速学习算法及其应用[J].天津大学学报,2001,34(4):455-458.
    [95]任俊玲,郭军.基于小波理论的神经网络模型构造[J].电脑开发与应用,2004,8(4),19~20.
    [96]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].比京:清华出版社,2005.7.
    [97]VENKATESAN P, ANITHA S. Application of a Radial Basis Function Neural Network for Diagnosis of Diabetes Mellitus[J].Current Science,2006,91(9): 1195-1199.
    [98]葛宏伟,梁艳春.进化Elman神经网络模型与非线性系统辨识[J].吉林大学学报:工学版,2005,35(5):511-519.
    [99]王秀芳,句莉莉,魏春明等.基于Elman神经网络的传感器补偿算法研究[J].科学技术与工程,2009,20(9):37-41.
    [100]吕纯,钱家忠,赵卫东等Elman与BP神经网络在矿井水源判别中的应用研究[J].系统工程理论与实践.
    [101]党小超,郝占军.基于改进Elman神经网络的网络流量预测[J].计算机应用,2010,(10).
    [102]李鸿儒,顾树生一种递归神经网络的快速算法[[J].自动化学报,2004,30(4):516-522.
    [103]柳益君,谢俊元,李秉璋,叶飞跃.基于LM算法的企业资信网络评估模型研究[J].微计算机信息,2010,(06).
    [104]张欣.递归神经网络的并行LM算法[J].机械管理开发,2009,(S1)
    [105]李增,迟道才,于淼.基于遗传算法的改进Elman神经网络模型的降雨量预测[J].沈阳农业大学学报,2010,(01)
    [106]刘永霞,冯仲科,杜鹏志Elman动态递归神经网络在树木生长预测中的应用[J].北京林业大学学报,2007,(06).
    [107]L.M.Gambardella, M.Dorigo. Ant-Q:A reinforcement learning approach to the traveling salesman problem[C].Proceedings of the Twelfth International Conference on Machine Learning. PaloAlto, Morgan KaufmannPublishers,1995: 252-260.
    [108]M.Dorigo,L-M.Gambardella. Ant colony system:A cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1999,1(1):53-66.
    [109]张剑,李大卫.基于粒子群优化和两性二倍体的遗传算法及其应用[J]鞍山科技大学学报,2006,(04).
    [110]陈曦,王希诚.一种改进的多种群遗传算法[J]辽宁科技大学学报,2009,(02).
    [111]T.Stutzle,H.Hoos.MAX-MIN Ant system and local search for combinatorial optimization problems[C].2ND International Conference On Metaheuristics, 1997.
    [112]段海滨著.蚁群算法原理及其应用[M].北京:科学出版社,2005.
    [113]苏玉.蚁群算法的研究及其在路由选择方面的应用[D].中国优秀硕士学位论文全文数据库,2009
    [114]张巍玖.蚁群算法的研究及其在图像处理方面的应用[D].中国优秀硕士学位论文全文数据库,2009,(05)
    [115]王笑蓉.蚁群优化的理论模型及在生产调度中的应用研究[D]浙江大学,2003.
    [116]张纪会.自适应蚁群算法[J].控制理论与应用.2000,17(1):1-3.
    [117]Wu B,Shi ZZ.An ant colony algorithm based partition algorithm for TSP[J].Chinese Journal of Computers,2001,24(12):1328-1333.
    [118]朱庆保.蚁群优化算法的收敛性分析[J].控制与决策,2006,21(7).
    [119]高海昌,冯博琴,朱利.智能优化算法求解TSP问题[J].控制与决策.2006.21(3).
    [120]吕勇,赵光宙,苏凡军.基于蚁群算法的自适应动态路由算法[J].浙江大学学报,2005(10).
    [121]杨翡.定向钻井导航系统[D].黑龙江:大庆石油学院,2005.
    [122]刘匡晓.随钻测斜系统的数学模型分析及应用[J].石油仪器,1996,10(2):37-39.
    [123]谢子殿,朱秀.基于磁通门与重力加速度传感器的钻井测斜仪[J].传感器技术,2004,(7):30~33.
    [124]Atmel.8-bit Flash Microcontroller AT89C51ED2 [EB/OL]. http://www.atmel. com/literature,2006-11-3.
    [125]ISO/TS 16949-2002. AT89C51ED2 Qualification Package[S].
    [126]吴开杰,李刚.简化电路设计的高通过率、高精度ADC-AD974[J]国外电子元器件,2000,(11):25-27.
    [127]江树生.捷联惯性导航系统中陀螺仪信号的数据采集级处理技术研究[D].黑龙江:哈尔滨工程大学,2002.
    [128]杨兴琴,姜虻,赵滨伟.随钻数据传输新技术[J]石油仪器,2004,(06).
    [129]王智明,菅志军,李相方.连续波高速率泥浆脉冲器设计研究[J].石油天然气学报,2008,(02).
    [130]刘新平,房军,金有海.随钻测井数据传输技术应用现状及展望[J]测井技术,2008,(03).
    [131]李传伟,慕德俊,李安宗.一种泥浆脉冲压力传感器信号的融合算法[J].计算机科学,2008,(07).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700