用户名: 密码: 验证码:
青岛市环胶州湾污染控制单元主要污染物排放容量估算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着青岛市经济高速发展、人口持续增加,胶州湾沿岸化学污染物排海总量逐年增加,导致胶州湾海水水质日益恶化,而原有的浓度控制和目标总量控制制度已不能满足海洋环境的需求,实施污染物排海容量总量控制是改善海洋环境质量的重要措施。本论文针对目前我国总量控制方案缺乏可操作性的现状,在胶州湾主要化学污染物海洋环境容量和主要排污管理区分配容量研究工作的基础上,依据多目标非线性规划原理,估算了基于街道办(或镇)级行政区的环胶州湾控制单元的主要化学污染物排放容量,并初步提出了基于此控制单元的污染物排海总量控制方案,主要研究成果如下:
     (1)对研究区域内的自然条件、资源、社会和经济发展状况,特别是主要污染源及排放特征等进行全面深入的调查和分析基础上,基于街道办(或镇)级行政区划分污染控制单元,并系统分析了各控制单元的污染物排放特征。青岛市共179个污染控制单元,其中,从各控制单元COD排放通量来讲,四方区的阜新街道控制单元排放通量最高,年排放量为1321吨,其次为崂山区的中韩街道、四方区的嘉兴、兴隆路和海伦街道控制单元,排放量分别为830吨/年、712吨/年、706吨/年和684吨/年;从来源比例来讲,居民生活COD污染排放比例从1.7%到97.5%,其所占比例在50.0%以上的控制单元有57个,主要分布在团岛、麦岛、海泊河、李村河、墨水河等排污管理区;各控制单元的氨氮的污染源排放中,居民生活污染为主要来源,所占比例平均为57.0%,各控制单元中,居民生活污染氨氮排放比例从2.0%到98.6%,其所占比例在50.0%以上的控制单元有84个;总磷污染以面源污染来源为主,青岛市各控制单元面源总磷污染比例平均为60.5%,所占比例在50.0%以上的有104个控制单元。
     (2)以实现胶州湾海洋环境容量、排污管理区分配容量和控制单元排放容量最大为目标函数,以经济增长、污染物排放强度、环境投资等为约束条件建立了水污染物排放容量的优化分配模型,依据多目标非线性规划方法,估算了各控制单元的排放容量。结果表明,团岛排污管理区中,登州路控制单元的COD排放容量最大,约为361吨/年,占整个排污区约27%,其次为辽宁路和八大峡街道控制单元;海泊河排污管理区中,阜新路的COD排放容量最大,约为1321吨/年;李村河排污管理区中,中韩街道的COD排放容量最大,约为830吨/年,占整个排污区约32%,其次为水清沟和九水路街道控制单元;楼山河排污管理区中,楼山街道的COD排放容量最大,约为512吨/年,占整个排污区约26%,其次为兴华路和湘潭路街道控制单元;墨水河排污管理区中,通济街道的COD排放容量最大,约为174吨/年,占整个排污区的30%,其次为棘洪滩和上马街道控制单元;大沽河排污管理区中,蓝村镇的COD排放容量最大,约为486吨/年,占整个排污区约11%;洋河排污管理区中,红石崖街道的COD排放容量最大,约为516吨/年;镰湾河排污管理区中,辛安街道的COD排放容量最大,约为550吨/年。
     (3)根据各污染控制单元的排放容量和现状排放量以及污染物排放特征,初步提出了基于街道办(或镇)级行政区的环胶州湾控制单元的主要污染物的排海总量控制方案,主要包括削减量(率)和相应的污染控制措施等。在国家一类和海洋功能区划海水水质标准下,约79%的控制单元的COD排放量需要不同程度的削减,平均削减率为44.8%,主要分布在墨水河、大沽河、海泊河等排污管理区;约21%控制单元还有剩余COD排放容量,平均剩余率为69.8%,主要分布在团岛和镰湾河等排污管理区;在国家一类海水水质标准下约77%以上的控制单元的氨氮排放量需要不同程度的削减,平均削减率为45.6%,主要分布墨水河、大沽河、海泊河等排污管理区;约占23%的控制单元还有剩余的氨氮允许排放量,平均剩余率为74.4%,主要分布在团岛和镰湾河等排污管理区
     根据各排污单元各主要污染物的削减数量,提出污染物总量控制的相应措施。主要包括加快污水处理厂及其配套管网建设,提高污水处理率,提高企业污水排放标准以及发展生态农业,科学施用肥料,减少面源污染等。
     研究成果不仅可以为胶州湾排海污染物的减排方案制定提供必要的技术支撑,而且可以为“环湾保护、拥湾发展”战略的顺利实施以及胶州湾海洋生态环境保护、治理和改善以及青岛市社会经济的可持续发展提供科学基础。
With the rapid development of economy and the lasting increasement of population in Qingdao, more and more pollutants have been discharged into Jiaozhou Bay. However, the original concentration control and target total emission control systems are unable to meet the demand of the marine environment management. The implementation of capacity total emission control of pollutants is an important and effective measure to improve marine water quality. The capacity total emission control contains several steps, such as estimation of pollutant fluxes into the sea, calculation of marine environmental capacity and allocated capacity, optimization and allocation of capacity. Among them, the pollutant flux estimation is the base, and the calculation, allocation and optimization of capacity is the key of the research. Aimed at the optimization and allocation of capacity, a forefront and hotspot of this field, the research is carried out based on the study of marine environmental capacity and allocated capacity of Jiaozhou Bay. The allowable emission capacities of main chemical pollutions are calculated according to the principle of multi-target nonlinear programming and the scheme of total emission control is proposed. The main methods and results of research are showed as follows:
     (1) Based of the data of the nature, resources, society and economic development, as well as the major pollution sources and pollution discharge characters in the research regions, pollution control units (PCUs) are divided based on street or rural-town district were divided. Their discharging pollutant properties were also invetigated. In total 179 PCUs were divided in Qingdao. Among them, the COD discharging value of the Fuxin PCU in Sifang District is the highest and as high as 132 t·a-1, following Zhonghan PCU in Laoshan District, Jiaxing PCU, Xinglong PCU and Hailun PCU in Sifang District, the discharge value of COD respectively is 830 t·a-1, 712 t·a-1, 706 t·a-1and 684 t·a-1. In the source percent run, the percent of the domestic sewage is from 1.7% to 97.5%, and there are 57 PCUs are above 50%, they primarily distribute in the administration region of pollution discharge (ARPD) of Tuandao, Maidao, Haibo River, Licun River and Moshui River. According to the discharge value of NH4-N, the main source is from domestic sewage. The average percent is 57.0%. It is from 2.0%-98.6% in all PCU,and there are 84 PCUs are above 50%.The pollution of TP is the main source from nonpoint, there are 104 PCUs are above 50%.
     (2)According to multi-objective nonlinear programming, with Jiaozhou Bay, each ARPR capacity, each ARPR allocated capacity and each PCU emission capacity as the objective function, with constrains economic growth, population growth, pollutant emission intensity, environmental investment etc. as constrains, the capacity allocation model was setting and each PCU allowable emission capacity (AEC) was caculated. The caculation results showed that, in the Tuandao ARPD, the Dengzhou PCU has the most AEC of COD. It is is 361 t·a-1 takes about 27% of the Tuandao PCU. In the Haibo River ARPR, the Fuxin PCU has the most AEC of COD , and is 1321 t·a-1. In the Licun River ARPD, ,the Zhonghan PCU has the most AEC of COD. It is 830t·a-1 and takes about 32% of the total ARPD..In the Lousshan ARPD, of the Loushan PCU has the most AEC of COD. It is 512t·a-1 and takes about 26% of the total ARPD, In the Moshui River ARPD, the Tongji PCU has the most AEC of COD, is 174t·a-1, and takes about 30% of the ARPD. In the Dagu River ARPD, the PCU Lancun have the most AEC of COD. It is about 486t·a-1 and takes about 11% of the total ARPD. In the Yang River ARPD, the Hongshiya PCU have the most AECof COD, It is about 516t·a-1. In the Lianwan River ARPD, the Xin’an PCU have the most AEC of COD and it is about 550t·a-1.
     (3) The total emission control scheme based on PCUs around Jiaozhou Bay was proposed. About 79% of the units should reduce their discharge of COD under GradeⅠof the National Seawater Quality Standards (NSQS), the average reducing grate is 44.8%, primarily in the Moshui River, Dagu River, Haibo River ARPD .About 21% of the PCUs also have remain allowable emission capacity of COD,, the average remaination is 69.8%, primarily in the Tuandao and Lianwan River ARPD About 77% of PCUs should reduce their discharge of NH4-N under GradeⅠof the NSQS, the average reducingrate was 45.6%, primarily in the Moshui River, Dagu River, Haibo River ARPD; About 23% of PCUs also have remain allowable emission capacity of NH4-N, the average remaination is 77.4%, primarily in the Tuandao and Lianwan River ARPD.
     According to the AECs and current pollutant discharging characteristics of PCUs around Jiaozhou Bay, a series of pollution control measures are proposed, involved in speeding up the construction of the sewage treatment works and pipeline, raising the standard of factory sewage discharge and developing the ecological agriculture, fertilizing in science and so on.
     The research results can not only provide the necessary technical support for Jiaozhou Bay about pollutants emission, but also can provides the scientific basis for smooth implementation of the strategy of Jiaozhou Bay marine ecological environment protection, and improving Qingdao social economic and sustainable development .
引文
1.包存宽,张敏,尚金城.流域水污染物排放总量控制研究——以吉林省松花江流域为例.地理科学,2000,20(1):61-64.
    2.陈文颖,方栋,薛大知.总量控制规划中允许排放量的平权分配.环境污染与防治, 1998, 20(4):4-7.
    3.崔正国.环渤海13城市主要化学污染物排海总量控制方案研究.青岛:中国海洋大学硕士学位论文,2008.
    4.方秦华,张珞平,洪华生.水污染负荷优化分配研究.污染控制,2005,12:29-31.
    5.方秦华,张珞平,王佩儿等.象山港海域环境容量的二步分配法.厦门大学学报(自然科学版)2004,43(增): 217-220.
    6.顾松圃.第二松花江流域松原市江段水污染控制研究.长春:吉林大学硕士学位论文,2006.
    7.关卉.湛江市水环境容量分析与应用研究.北京:中国环境科学出版社,2005.
    8.郭宏飞,倪晋仁,王裕东.基于宏观经济优化模型的区域污染负荷分配.应用基础与工程科学学报,2003,11(2):133-142.
    9.国家环境保护局,中国环境科学研究院.城市大气污染总量控制典型范例.北京:中国环境科学出版社,1993: 5.
    10.国家环境保护局.第四次全国环境保护会议文件.北京:中国环境科学出版社,1996.
    11.国家环境保护总局.中华人民共和国环境保护行业标准环境信息分类与代码.北京:中国环境科学出版社,2007.
    12.何优选.总量控制下排污指标分配的原则.嘉应大学学报,2001,19(3):28-32
    13.环境科学大辞典编委会.环境科学大辞典.北京:中国环境科学出版社,1991.
    14.即墨市统计局.即墨统计年鉴--2008.
    15.胶南市统计局.胶南市统计年鉴—2008
    16.胶州市统计局.胶州市统计年鉴—2007.
    17.莱西市统计局.莱西市统计年鉴—2008.
    18.雷蕾.成都高新区水污染总量控制研究.四川:四川大学硕士学位论文,2006.
    19.李开明,陈铣成,许振成.潮汐河网区水污染物总量控制及其分配方法.环境科学研究,1990,3(6):36-41.
    20.李开明,陈铣成.东莞运河水环境容量优化研究.环境科学研究,1991,4(5):13-15.
    21.李克强.胶州湾主要化学污染物海洋环境容量研究.青岛:中国海洋大学博士学位论文,2007.
    22.李崖,邢鹤,朱琦等.全国排污申报登记系统的研究与开发.环境科学,1998,3:94-96.
    23.李正最,汤喜春.论三峡工程建成后长江城汉河段的综合整治.水电站设计,2002,18(4):10-16.
    24.梁博,王晓燕.我国水环境污染物总量控制研究的现状与展望.首都师范大学学报(自然科学版),2005,26(1):93-98.
    25.林巍,傅国伟,刘春华.基于公理体系的排污总量公平分配模型.环境科学,1996b,17(3):35-37.
    26.林巍,傅国伟.冲突分析理论方法及其在环境管理中的实例研究.中国环境科学,1996a,16(2):143-147.
    27.刘国华,傅伯杰,杨平.海河水环境质量及污染物入海通量.环境科学,2001,22(4):46-50.
    28.刘忠熳.松花江哈尔滨市江段地表水环境容量测算及总量控制研究.吉林:吉林大学硕士学位论文, 2006.
    29.毛晓文.江苏省水环境状况及水污染控制措施研究.南京:河海大学硕士学位论文,2005.
    30.毛战坡,李怀恩.总量控制中削减污染物合理分摊问题的求解方法.西北水资源与水工程,1999,10(1):25-30.
    31.孟春霞,王成见,董少杰等.大沽河青岛段地表水水质变化分析.水资源与水工程学报,2008,19(1):73-77.
    32.孟伟,张楠,张远等.流域水质目标管理技术研究(Ⅰ)—控制单元的总量控制技术[J].环境科学研究,2007,20(4):1-8.
    33.孟伟.流域水污染物总量控制技术与示范.北京:中国环境科学出版社,2008.
    34.牛青山,亓靓.影响胶州湾海域海水水质的主要污染源分析—李村河及其主要支流流域水质现状评价.海岸工程, 2006,25(3):50-59.
    35.潘伯宁,徐进.大沽河干流青岛段水污染现状调查评价及防治对策.环境科学与管理,2006,31(6):180-183.
    36.裴相斌,赵冬至.基于GIS的海湾陆源污染排海总量控制的空间优化分配方法研究—以大连湾为例.环境科学学报,2000,20(3):294-298.
    37.平度市人民政府.平度市城市污水工程规划.2006.
    38.平度市统计局.平度市统计年鉴—2008
    39.乔旭东.胶州湾排污管理区和单元主要化学污染物分配容量的准确计算研究.青岛:中国海洋大学博士学位论文,2009.
    40.青岛经济技术开发区统计局.青岛经济技术开发区统计年鉴—200
    41.青岛市城阳区统计局.青岛城阳统计年鉴—2006
    42.青岛市崂山区统计局.崂山区统计年鉴—2008.
    43.青岛市李沧区统计局.李沧区统计年鉴—2007.
    44.青岛市史志办.青岛年鉴.青岛:青岛年鉴社,2004.
    45.青岛市市北区统计局.市北区统计年鉴—2008.
    46.青岛市市南区统计局.市南区统计年鉴—2008.
    47.青岛市市政工程设计研究院,胶州市城乡建设局.胶州市排水工程规划.2005.
    48.青岛市市政工程设计研究院.即墨市城市排水规划.2003.
    49.青岛市四方区统计局.四方区统计年鉴—2008.
    50.青岛市统计局,国家统计局青岛调查队.2008青岛统计年鉴.北京:中国统计出版社,2008.
    51.青岛市政工程设计研究院,胶南市规划局.胶南市城市排水规划.2005.
    52.上海市政工程设计研究院.青岛市污水系统工程规划(1995-2010年).1997.
    53.沈淞涛.安昌河流域绵阳市培城区段水污染物总量控制研究.成都:西南交通大学硕士学位论文,2005.
    54.苏惠波.嫩江水污染物排放总量分配方法研究.环境科学进展,1997,5(5):70-74.
    55.孙楠思,姜世强,李宝珠等.青岛市水资源现状及保护对策.海岸工程,2003,22(2):109-114.
    56.孙亚梅.面向农业污水灌溉的水污染物总量控制研究.保定:河北农业大学硕士学位论文,2005.
    57.汤一凡.乐山市水环境容量研究.成都:西南交通大学硕士学位论文,2004.
    58.万飚,吴贻名.河流环境容量的推求及分配方法探讨.武汉水利电力大学学报,2000,33(1):74-76.
    59.王红莉,姜国强,陶建华.海岸带污染负荷预测模型及其在渤海湾的应用.环境科学学报,2005,(25)3:307-312.
    60.汪俊启,张颖.总量控制中水污染物允许排放量公平分配研究.安庆师范学院学报(自然科学版),2000,3:37-40.
    61.王建,张金生.日本水质污染总量控制及其方法.环境科学与技术,1981,4: 55-64.
    62.王金南,潘向忠.线性规划方法在环境容量资源分配中的应用.环境科学,2005,26(6):195-198.
    63.王亮,张宏伟,岳琳.水污染物总量行业优化分配模型研究.天津大学学报(社会科学版) ,2006,8(1):59-63.
    64.王亮.天津市重点水污染物容量总量控制研究.天津:天津大学博士学位论文,2005.
    65.王西琴,周孝德.区域水环境经济系统优化模型及其应用.西安理工大学学报,1999,15(4):80-85.
    66.王修林,李克强.胶州湾主要化学污染物海洋环境容量.北京:科学出版社,2006.
    67.王修林,李克强.渤海主要化学污染物海洋环境容量.北京:科学出版社,2006.
    68.王艳玲,崔文连,刘峰等.青岛市大沽河河口区生态环境现状研究.中国环境监测,2007,23(3):76-80.
    69.王有乐.区域水污染控制多目标组合规划模型研究.环境科学学报,2002,22(1):107-110.
    70.吴群河.区域合作与水环境综合整治.北京:化学工业出版社,2005.
    71.夏青,王华东,关伯仁等.总量控制技术手册.北京:中国环境科学出版社,1990.
    72.杨媚媚,娄安刚,徐艳东等.胶州湾东岸娄山河李村河附近海域水质变化预测.海洋湖沼通报,2007,增刊:75-81.
    73.杨晓东.实施污染物总量控制的要点和保证.环境科学,1998,19(8):6-12.
    74.俞穆清,田卫,王国平等.环境影响评价中实施污染物总量控制的初探.环境科学,1998,S1:18-22.
    75.张存智,韩康,张砚峰等.大连湾污染排放总量控制研究—海湾纳污能力计算模型.海洋环境科学,1998,17(3):1-5.
    76.张天柱.区域水污染物排放总量控制系统的理论模式.环境科学动态,1990,(1):1-23.
    77.张天柱.水污染物排放总量控制管理的经济原则.环境科学,1990,11(6):2-6.
    78.张煦荣.海洋环保应从海域环境容量管理入手--从厦门市海域环境质量变化看实施海域环境容量管理的必要性.中国海洋报,2004.
    79.张燕.海湾入海污染物总量控制方法与应用研究.青岛:中国海洋大学博士学位论文,2007.
    80.张永胜.浙江省象山港入海污染物总量控制规划研究.青岛:中国海洋大学硕士学位论文,2004.
    81.张永胜.浙江省象山港入海污染物总量控制规划研究.青岛:中国海洋大学硕士学位论文,2005.
    82.张志强.天津市水污染物容量总量控制方法研究.天津:河北工业大学硕士学位论文,2006
    83.郑英铭,周晶璧,袁国兵.控制排污总量的河流水质管理—实例介绍.水资源保护,1993(2):13-18.
    84.郑英铭.控制排污总量的水质管理.水资源保护,1993,(6):2-3.
    85.钟成华,幸治国,蒋良伟等.长江嘉陵江重庆段水环境容量研究.重庆环境科学,1994,16(3):43-50.
    86.朱连奇.日本水质保护的现状及趋势.中国人口资源与环境,1999,(4):107-109.
    87.朱泽华,张宁红,倪元成等.河流污染总量监测方法的探索.云南环境科学,2003,22(增刊1):116-117.
    88. Arjumand Z.Zaidi .Economic TMDL allocation-an opitimization Framework.A dissertation submitteded to the graduate faculty of Gerorge Mason university in partial fulfillment of the requirements for the degree of doctor,2004.
    89. Cardwell H,Ells H.Stochastic dynamic programming models for water quality management.Water Resources Research,1993,29 (4):803-813.
    90. Chih sheng Lee,Ching gung Wen.Application of muti-objective programming to water quality management in a river basin.Journal of Environment Management,1996,47:11-26.
    91. Clinton.President Clinton Announces New Clean Water Action Plan.Water Quality Professional,1998,2(4):3-5.
    92. Drapper D,Tomlinson R,Williams P.Pollution concentration in road runoff:southeast Queensland case study.Journal of Environmental Engineering,2000,(4):313-320.
    93. Duarte E.A.,Neto I.,Alegrias M.,R.Barroso."Appropriate technology" for pollution control in corrugated board industry - the Portuguese case.Water Science and Technology, 1998,38(6):45-53.
    94. Ecker G H.A Geometric Programming Model for Optimal Allocation of Stream Dissolved Oxygen.Management Science,1975,21(6):581-591.
    95. Ellis J H.Stochastic water quality optimization using imbedded chance constraints. Water Resource Res,1987,23(12):2227.
    96. Fujiwara O,Gnanandran S K,Ohgaki S.River quality management under stochastic stream flow.Journal of Environmental Engineering,1986,112(2):185-198.
    97. GESAMP. (Joint Group of Experts on the Scientific Aspects of Marine Pollution). Environmental capacity: An approach to marine pollution prevention. UNEP REG. SEAS REP. STUD. 1986,80:62 .
    98. Hernz-Christian Baumgart, et al. Managing the Lower Lippe. Water Quality Internation. 1999, 10(1):46-51.
    99. Joshi V, Modak P. Heuristic algorithms for waste load allocation in a river basin . Water Sci. Tech., 1989, 21: 1057-1064.
    100. Leonard Ortolano. Environmental Planning and Decision Making. New York, 1984.
    101. Liebman J. C., Lynn W. R., The Optimal Allocation of Stream Dissolved Oxygen, Water Resource Research, 1966, 2(3): 581-591.
    102. Lohani B N, Thanh N C. Probabilistic water quality control polices, Journal of Environmental Eneineering Division, 1979, 105(EE4): 713-725.
    103. Lyn B I, et al. Use of regression models for analyzing stormwater loads. Journal of Environmental Engineering, 2000,13(3):231-233.
    104. Mohamed A A. Water Demand Management in Egypt: Policy objectives and strategy measures. Physics and chemistry of the Earth Part B. Hydrology. Oceans Atmosphere, 2000.25(3):243-249.
    105. Nash J F. The Bargaining Problem. Econometrica, 1950, 18:155-162.
    106. Nazarov N. D., Cook H. F., Water Pollution Control Issues in an Independent Ukraine. Water and environment, 1997, 6(5): 23~26.
    107. Nischke Lutz Schussler. Walter. Surface Water Pollution by herbicides from effluents of waste water treatment plants. Chemosphere, 1998.36(1):35-41.
    108. Piet Odendael. Integrated Urban Water Management—A vision for Developing countries .New World Water, 2000,5(3):10-13.
    109. Sveinn T. Thorolfsson. A new direction in the urban runoff and pollution management in the city of Bergen, Norway. Water Science and Technology, 1998,5(10): 123-130.
    110. Tapani Kohonen J. Finnish strategies for reduction and control of effluents to the marine environment—examples from agriculture, municipalities and industry . Marine Pollution Bulletin , 2003, 47:162-168.
    111. Thomann R V, Sobel M S. Estuarine Water Quality Management and Forecasting. Journal of Sanitary Engineering Division, ASCE, 1964, 89(5):9-36.
    112. USEPA. Protocol for Developing Nutrient TMDLs. WashingtonDC:Office of Water,USEPA,1999.
    113. Yhdego M. Environmental pollution management for Tanzania, towards pollution prevention . Journal of Cleaner Production, 1995, 3(3):143-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700