用户名: 密码: 验证码:
组合式螺旋板齿种子玉米脱粒装置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脱粒是种子玉米收获和加工的关键环节之一,其性能决定了种子玉米的破碎与损伤程度。种子玉米破损后活力降低,影响种子的发芽和生长。因此,降低种子玉米脱粒损伤成为机械脱粒研究的主要问题。
     本文以种子玉米为研究对象,在进行种子玉米生物力学特性的技术上,采用有限元、仿真和试验分析等研究方法,对种子玉米籽粒机械损伤机理进行了研究;以种子玉米生物力学特性为理论依据,研制了变径变间距组合式螺旋板齿种子玉米脱粒机,并进行了脱粒机结构参数和工作参数优化与整机性能试验研究。
     本论文的主要研究工作和结论如下:
     (1)提出了以种子玉米生物力学特性作为脱粒原理设计的理论依据,研究了低损伤脱粒技术和脱粒装置,确定了组合式螺旋板齿脱粒机理。
     (2)对种子玉米籽粒三轴尺寸、粒重、籽粒基部果柄的横截面积进行了测量统计,得到种子玉米籽粒的三轴尺寸分布基本呈正态分布,其基本尺寸为:长度10.86mm、宽度7.22mm、厚度4.08mm。
     (3)进行了种子玉米籽粒的压缩、剪切试验,对玉米果穗0~3支撑行粒数进行了压缩和弯曲试验,对玉米果穗芯进行了压缩、弯曲试验,得到了种子玉米籽粒力学特性和不同约束性质下的种子玉米脱粒力学特性;
     (4)利用针尖压入法和压痕加载曲线在普通微机控制的万能材料试验机上进行了玉米籽粒种皮及角质胚乳、胚、粉质胚乳的弹性模量测定,进行了种子玉米籽粒泊松比测定,为种子玉米籽粒的有限元分析提供了基础数据。
     (5)在建立种子玉米籽粒复合模型的基础上,通过试验分别测得种子玉米种皮及角质胚乳、胚、粉质胚乳在顶面、腹面、侧面加力方式下的受压破裂力,得到种子玉米籽粒3种加载方式下的有限元模型。对3种加载方式下的种子玉米籽粒进行有限元分析,得到种子玉米籽粒低损伤最佳施力部位与施力方式。
     (6)设计的变径变间距组合式螺旋板齿脱粒滚筒,在脱粒工作时使玉米果穗轴线沿脱粒主轴轴线接近一致,从而使玉米碎芯率降低。在主轴上采取变间距螺旋平板齿、冠状齿。从主轴前段到后段,冠状齿间距增大,平板齿间距减小,冠状齿和平板齿的直径都增加。脱粒开始阶段增加螺旋冠状齿与玉米果穗的脱粒接触,从完整的玉米果穗上剥落玉米籽粒,脱粒后期阶段增加螺旋平板齿与玉米果穗的脱粒接触,保证低的玉米籽粒破碎率。新型螺旋板齿脱粒装置既保证了玉米果穗的脱净率,又降低了玉米籽粒破碎率及穗轴碎芯。
     (7)设计的排芯口变刚度压板装置,当种子玉米脱粒机排出玉米果穗芯后,变刚度弹簧能快速的关闭排芯口,减小了脱粒装置内压力波动范围,可有效提高种子玉米果穗脱净率。
     (8)以喂入量、脱粒轴转速、板齿螺旋角和排芯口压板压力为自变量,脱净率、籽粒含杂率、籽粒破碎率为响应值,建立了各因素与脱净率、籽粒含杂率、籽粒破碎率之间的数学模型。试验数据结果表明:4个因素对脱净率、籽粒含杂率、籽粒破碎率的影响从大到小顺序均为板齿螺旋角、脱粒轴转速、喂入量和排芯口压板压力;组合式螺旋板齿种子玉米脱粒机的最佳工作参数为:喂入量2.80~2.91kg/s、脱粒轴转速225~241r/min、板齿螺旋角度8.25~9.00°和排芯口压板压力40~48N,此时脱净率为99.86%,较参数优化前的脱净率减小了0.15~0.38%;籽粒含杂率为3.26%,较参数优化前的破碎率减小了0.97~1.70%;籽粒破碎率为0.366%,较参数优化前的破碎率减小了0.084~0.274%。
     (9)在农业部旱作农机具质量监督检验测试中心对5TYJ-10A型种子玉米脱粒机检测报告表明:该样机所检质量指标符合NY/T1136-2006《挤搓式种子玉米脱粒机技术条件》要求,在籽粒含水率19%条件下,样机脱净率、破碎率和含杂率分别为99.6%、0.4%和3.2%。
Threshing is a key issue in the process of seed corn harvesting and processing, itperformance decides the damage rate of seed corn. After the seed corn is damaged, its seedviability is decreased, which will influence the germination rate of seed and growth. For thisreason, it is a crucial issue to reduce the rate of damage in the process of mechanicalthreshing.
     This paper takes seed corn as the object of study, it researches on the mechanical damagemechanism of seed corn by means of a series of research methods including finite elementanalysis, simulation study and experimental analysis based on carrying out the researchtechnique on biomechanics characteristics for seed corn, thus the biomechanics characteristicsof seed corn is taken as the theoretical basis, the combined type of spiral bar tooth seed cornthresher with variable radius and space is developed and manufactured, thus it studies on thestructural parameters of seed corn thresher, the optimization of running parameters as well asthe performance test on the whole machine.
     The main researches and conclusions in this paper can be summarized as follows:
     (1) The biomechanics characteristics of seed corn is proposed to be the theoretical basisfor the schematic design of threshing, this paper researches on the threshing technology andmechanism which can make the damage rate of seed low and determine the combined type ofspiral bar tooth threshing mechanism for seed corn.
     (2) It conducts a statistical study on the three-axis sizes and weight of seed corn as wellas the cross sectional area of carpopodium at the base of seed by means of measurement, theresults show that the three-axis size distribution of seed corn is primarily in normaldistribution and its basic sizes can be determined as10.86mm long,7.22mm wide and4.08mm thick.
     (3) It carries out compression test and shearing test on seed corn. In this paper,compression test and bending test is conducted for0~3support line seeds per corn ear, theoverall compression test is carried out on corn ear, while compression test and bending test isdone for corn cob, finally the mechanical properties of seed corn and the threshing mechanicalproperties of seed under different constraint conditions are obtained.
     (4) The process of elastic modulus measurement is conducted for seed coat and keratinendosperm, embryo, farinaceous endosperm of seed corn on the universal material testing machine controlled by the common PC with the help of sharp-tip-indentation load–depthcurve, Poisson's ratio of corn kernel is conducted, and the basic datas are provided for thefinite-element analysis on seed corn.
     (5) Based on establishing the combined model for seed corn, the disrupture force underpressure of seed corn coat and keratin endosperm, embryo, farinaceous endosperm whenpressure is exerted on the top, ventral and side faces have been measured by testingrespectively, thus the finite element model of seed corn under three kinds of loading methodscan be obtained, and therefore the optimal position of force application and the best way offorce application for the low rate of damage are known.
     (6) The combined type of spiral bar tooth roller with variable radius and space isdesigned to make the axis of corn ear is approximately consistent with the principal axis ofthreshing, therefore the damage rate of seed corn can be reduced. The spiral flat bar tooth andcoronary bar tooth with variable space are adopted for the principal axis. From the forepart tothe posterior segment of principal axis, the space width of coronary bar tooth is increase whilethat of flat bar tooth is decreased, and the diameters of both are increased. At the beginning ofthreshing, the times of contact between the spiral coronary bar tooth and corn ear can beincreased, seed corns are threshed away from the whole corn cob, and the times of contactbetween the spiral flat bar tooth and corn ear can be increased at the later period of threshingso as to maintain the low damage rate of seed corn. The new-type spiral bar tooth threshingmechanism not only ensures the threshing performance of corn ear but also reduce the rate ofdamage for corn ear.
     (7) The pressure plate mechanism with variable stiffness at the outlet of corn cob isdesigned. When corn cob is discharged by the corn thresher, the variable stiffness spring canshut down the outlet of corn cob rapidly so that the scope of pressure fluctuation within thethreshing mechanism can be reduced, which can effectively improve the threshingperformance for corn ear.
     (8) Feed quantity, rotational speed of threshing axis, spiral angle of bar tooth andpressure of plate at the outlet of corn cob are regarded as the independent variables, damagerate of seed, threshing rate and kernel impurity rate are taken as the response value, thereforethe mathematical model between various factors and damage rate, threshing rate and kernelimpurity rate of seed are established. From the analysis on the test data, it can be seen that thefour factors influencing the damage rate, threshing rate and kernel impurity rate of seed arelisted in a descending order as: spiral angle of bar tooth, rotational speed of threshing axis,feed quantity and pressure of plate at the outlet of corn cob (min). Meanwhile, the optimalrunning parameters indicate feed quantity2.80~2.91kg/s, rotational speed of threshing axis 225~241r/min, spiral angle of bar tooth8.25~9.00°and pressure of plate at the outlet of corncob40~48N, under this condition, by comparison with that before the optimization ofparameters, the threshing rate of seed is99.86%, which is reduced by0.15~0.38%, the kernelimpurity rate is3.26%, which is reduced by0.97~1.70%, the damage rate is0.366%, which isreduced by0.084~0.274%.
     (9) Test report on5TYJ-10A type seed corn thresher released by Dry FarmingAgricultural Implements Quality Supervision&Inspection Testing Center of AgricultureDepartment show that the quality indicators of this inspected sample machine accord with therequirements of Technical Specifications for Seed Corn Rubbing Thresher, the threshingperformance, percentage of damage and percentage of trash content of this sample machineare99.6%,0.4%and3.2%respectively under the condition when the seed moisture content is19%.
引文
毕辛华,戴心维.种子学[M].北京:中国农业出版社,2002.
    陈翠英,王志华,李青林.油菜脱出物在气流中的运动分析[J].农业机械学报,2004,35(5):90~93.
    陈吕西.5TY-0.2型玉米脱粒机[J].农机与食品机械,1998(2):26,29.
    陈燕,蔡伟亮,邹湘军,等.荔枝的力学特性测试及其有限元分析[J].农业工程学报,2011,27(12):358~363.
    池宁骏,赵立杉. SOLIDWORKS2007产品设计教程[M].西安:西北工业大学出版社,2008.
    迟彦明.种子玉米切胚法应用技术[J].种子科技,1998(5):37.
    戴飞,高爱民,孙伟,等.纵轴流锥型滚筒脱粒装置设计与试验[J].农业机械学报,2011,42(1):74~78.
    戴飞,张锋伟,韩正晟,等.自动跟踪式小型太阳能集热玉米果穗干燥装置设计[J].农业工程学报,2012,28(5):189~193.
    戴飞,张锋伟,韩正晟,等.玉米果穗机械干燥装置设计与试验研究[J].干旱地区农业研究,2011,29(3):260~264.
    戴飞.纵轴流锥型滚筒小区小麦种子脱粒装置设计与试验研究[D].甘肃:甘肃农业大学,2012.
    戴俊英,林钧安,李文耀.玉米形态与微超结构图谱[M].沈阳:辽宁科学技术出版社,1990.
    杜连起.特种玉米加工技术[M].北京:金盾出版社,2002.
    冯和平,毛志怀.含水率、干燥温度和应力裂纹对玉米力学性能影响的试验研究[J].粮油加工与食品机械,2003(4):48~50.
    冯静安,张宏文,梅卫江,等.立式TMR搅拌机的混合原理及其搅龙参数的设计[J].石河子大学学报:自然科学版,2009(4):503~506.
    付宏,吕游,李艳双,等.基于离散元法的玉米脱粒过程分析[J].吉林大学学报(工学版),2012,42(4):997~1002.
    甘肃农业大学.变径变间距组合式螺旋板齿脱粒装置:中国,201010515028.0[P].2012-05-09.
    甘肃农业大学.揉搓式玉米脱粒机排芯口变刚度压板装置:中国,200920033440.1[P].2010-03-10.
    甘应爱,田丰,李维铮,等.运筹学[M].北京:清华大学出版社,2005.
    高爱民,戴飞,孙伟,等.小区小麦育种收获机锥型脱粒滚筒性能试验[J].农业工程学报,2011,27(10):22~26.
    高连兴,李飞,张新伟.含水率对种子玉米脱粒性能的影响机理[J].农业机械学报,2011,42(12):92~96.
    高梦祥,郭康权,杨中平,等.玉米秸秆的力学特性测试研究[J].农业机械学报,2003,34(7):47~52.
    苟文,马荣朝,樊高琼,等.套作模式下链环式覆土器的参数优化[J].农业工程学报,2011,27(12):33~37.
    郭维俊,王芬娥,黄高宝,等.小麦茎秆力学性能与化学组分试验[J].农业机械学报,2009,40(2):110~114.
    郭文忠.美国种子玉米生产及加工技术考察[J].种子世界,2003(11):46~49.
    何晓鹏,刘春和,师建芳,等.挤搓式玉米脱粒机的研制[J].农业工程学报,2003,19(2):105~108.
    侯守印,陈海涛.立式轴流大豆育种脱粒机参数优化[J].农业工程学报,2012,28(5):19~25.
    黄晓鹏,万芳新,黄建龙,等.基于挤压模拟试验的苜蓿草颗粒成型工艺参数优化[J].农业工程学报,2011,27(11):354~358.
    姬尔信,巨贵仁,李彦庆,等.种子玉米加工中破碎因素分析[J].中国种业,2009(5):36~38.贾灿纯,曹崇文.干燥过程中玉米颗粒内部应力的有限元分析[J].农业机械学报,1996,27(1):57~62.
    贾世奎,李成贵,刘春红.超光滑表面纳米压痕硬度测试研究[J].工业计量,2008,18(2):3~5.
    姜瑞涉,王俊.农业物料物理特性及其应用[J].粮油加工与食品机械,2002(1):35~37.
    接鑫,李晓峰,孙亮,等.种子玉米机械脱粒最佳施力方式试验[J].农业机械学报,2009,40(12):71~75,29.
    Jamal N,应立斌,王剑平,等.西瓜的有限元模型及其应用[J].农业工程学报,2005,21(1):17~22.
    雷得天,马小愚等.农业及食品物料的力学-流变学特性的应用研究[J].农机化研究,1996(1):7~11.
    李敬玲,贾敬莺,刘敏,等.多胞质玉米胚乳淀粉粒性状的扫描电镜观察[J].遗传学报,1999,26(3):249~253.
    李力生,潘世强,张盛文.我国种子玉米加工业的现状及发展对策[J].吉林农业大学学报,2001,23(3):116~120.
    李昇揆,川村登.軸流スレツシャに関する研究(第2報)[J].農業機械学会誌,1992,48(1):33~41.
    李小昱.农业生物力学在农业工程中的应用[J].西北农业大学学报,1994,22(1):105~109.
    李心平,高连兴,马福丽,等.种子玉米籽粒冲击损伤的试验研究[J].沈阳农业大学学报,2007,38(1):89~93.
    李心平,高连兴,马福丽.种子玉米力学特性的有限元分析[J].农业机械学报,2007,23(10):64~67,72.
    李心平,高连兴,马福丽.种子玉米脱粒特性的试验研究[J].农机化研究,2007,2(2):156~158.
    李心平,高连兴.差速式种子玉米脱粒机的性能试验[J].农业工程学报,2009,25(12):102~106.
    李心平,高连兴.种子玉米籽粒果柄断裂机理试验研究[J].农业工程学报,2007,23(11):47~51.
    李心平,李玉柱,高吭,等.种子玉米籽粒仿生脱粒机理分析[J].农业机械学报,2009,42(2):99~103.
    李心平,李玉柱,马福丽,等.种子玉米抗压特性及裂纹生成规律[J].农业机械学报,2011,42(8):94~98.
    李心平,马福丽,高连兴.差速式种子玉米脱粒机的设计[J].农业机械学报,2008,39(8):192~195.
    李心平,马福丽,高连兴.种子玉米的机械损伤对其发芽率的影响[J].农机化研究,2009,(3):34~35,39.
    李心平,马福丽,高连兴.种子玉米的跌落式冲击试验[J].农业工程学报,2009,25(1):113~116.
    李心平.种子玉米脱粒损伤机理及5TYZ-1型定向喂入式脱粒机研究[D].沈阳:沈阳农业大学,2007.
    李耀明,林恒善,陈进,等.基于神经网络的风筛式清选气流场研究[J].农业机械学报,2006,37(7):197~198.
    李玉道,杜现军,宋占华,等.棉花秸秆剪切力学性能试验[J].农业工程学报,2011,27(2):124~128.
    李增刚.ADAMS入门详解与实例[M].北京:国防工业出版社,2006.
    刘庆庭,区颖刚,卿上乐,等.农作物茎秆的力学特性研究进展[J].农业机械学报,2007,38(7):172~176.
    刘天舒,李树君,景全荣.植物纤维餐具干法热压成型工艺响应面法优化[J].农业机械学报,2012,43(9):116~119,84.
    刘小虎. SPSS12.0for windows在农业试验统计中的应用[M].沈阳:东北大学出版社,2007.
    刘雪强,陈晓光等.玉米干燥过程中颗粒内部应力分析与预测[J].吉林工业大学学报,2006,36(增刊):42~45.
    刘治先.美国玉米经济的发展战略[J].国外农业,2003(8):19~20.
    毛炳寰.用EXCEL和SPSS学习统计学[M].沈阳:中国财政经济出版社,2005.
    蒙贺伟,高振江,坎杂,等.等径变螺距奶牛精确饲喂给料装置设计与试验[J].农业工程学报,2011,27(3):103~107.
    牛海华,赵武云,史增录.玉米籽粒力学特性的研究进展及应用[J].中国农机化,2011(2):101~104.
    NY/T1136-2006,挤搓式种子玉米脱粒机技术条件[S].
    卿艳梅,曹玉华,李长友,等.龙眼鲜果剥壳力学特性[J].农业工程学报,2010,26(5):122~126.
    邱爱红,龚曙光,谢桂兰,等.变径变螺距螺旋轴参数化模型及性能仿真[J].机械工程学报,2008,44(5):131~136.
    邱高伟,郭玉明,郑德聪.新型小籽粒脱粒机机构的动力学分析[J].华中农业大学学报,2005,(增刊1):260~264.
    邵陆寿,魏雅鹛,钟成义.基于GA-BP算法的收获机械性能建模与仿真[J].系统仿真学报,2003,15(9):1294~1296.
    盛玉萍,黄其椿,周琼,等.微胚乳玉米子粒显微结构研究[J].玉米科学2008,16(5):20~24.
    宋亚英.变螺距螺旋结构参数的理论研究[J].苏州大学学报(自然科学),1996,12(4):96~100.
    孙步功,吴建民,赵武云,等.小冠花硬实种子破皮处理工艺参数优化[J].农业工程学报,2012,28(14):283~287.
    王成芝,葛永久.轴流滚筒的试验研究[J].农业机械学报,1982,(1):55~72.
    王多成,肖占文.种子玉米生产与加工技术[M].兰州:甘肃科学技术出版社,2008.
    王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.
    王晶,聂影,宫元娟,等.玉米对生种子脱粒机试验[J].农业机械学报,2011,42(2):104~108.
    王敏,李元瑞,陈锦屏.南瓜丝热风干燥工艺参数的试验研究[J].农业工程学报,1996,12(4):199~203.
    王荣,焦群英,魏德强,等.葡萄的力学特性及有限元模拟[J].农业工程学报,2005,21(2):7~10.
    王晓燕,高荣岐,董树亭.玉米胚乳发育研究进展[J].中国农学通报,2005,6(6):107~109.
    王新忠,王敏.银杏种核力学特性试验[J].农业机械学报,2008,39(8):84~88.
    王业成,陈海涛,林青.黑加仑采收装置参数的优化[J].农业工程学报,2009,25(3):79~83.
    吴多峰,许峰,袁长胜.板齿式与钉齿式玉米脱粒机的性能比较[J].农机化研究,2006,(10):78~80.
    吴子恺,郝小琴,罗高玲,等.微胚乳超高油玉米几个性状的研究[J].种子,2004,23(9):25~31.
    向家伟,杨连发,李尚平.小型甘蔗收获机切割器试验研究[J].农业工程学报,2007,23(11):158~163.
    徐立章,李耀明,马朝兴,等.横轴流双滚筒脱粒分离装置设计与试验[J].农业机械学报,2009,40(11):55~58.
    徐向宏,何明珠.试验设计与Design-Expert、SPSS应用[M].北京:科学出版社,2010.
    徐中儒.回归分析与试验设计[M].北京:中国农业出版社,1998
    阳小成,王伯初等.试论农业工程中的力学问题及主要研究方向[J].华南师范大学学报(自然科学版),2003(3):145~149.
    杨松华,孙裕晶,马成林,等.气力轮式精密排种器参数优化[J].农业工程学报,2008,24(2):116~120.
    杨玉芬,张永丽.典型种子玉米籽粒的静压破损试验研究[J].农机化研究,2008(7):149~151.
    于义良,罗蕴玲,安建业.概率统计与SPSS应用[M].西安:西安交通大学出版社,2009.
    《玉米遗传育种学》编写组.玉米遗传育种学[M].北京:科学出版社,1979.
    袁雪,祁力钧,王虎,等.温室摇摆式变量弥雾机喷雾参数响应面法优化[J].农业机械学报,2012,43(4):45~50.
    袁月明,李云飞.玉米籽粒的几何特征和抗破裂性的试验研究[J].试验技术与试验机,1994,34(5、6):30~34.
    袁月明,栾玉振.玉米籽粒力学性质的试验研究[J].吉林农业大学学报,1996,18(4):75~78.
    袁越锦,袁月定,党新安,等.板栗真空破壳力学特性有限元分析[J].农业机械学报,2011,42(5):136~141.
    詹国勇,卢永奋,张卫君,等.人工老化处理时间对萝卜种子活力的影响[J].广东农业科学,2009(11):41~42.
    张锋伟,戴飞,张克平,等.基于两级干燥工艺的玉米果穗太阳能集热通风干燥系统设计[J].农业工程学报,2010,26(8):338~342.
    张锋伟,赵春花,郭维俊,等.基于压痕加载曲线的谷物籽粒硬度性能测定技术[J].农业机械学报,2010,41(4):128~133.
    张克平,黄建龙,杨敏,等.冬小麦籽粒受挤压特性的有限元分析及试验验证[J].农业工程学报,2010,26(6):352~356.
    张黎骅,秦文,马荣朝,等.杏核压缩力学特性的研究[J].食品科学,2010,31(17):143~147.
    张丽,董树亭,刘存辉,等.玉米籽粒容重与产量和品质的相关分析[J].中国农业科学,2007,40(2):405~411.
    张明学,赵祥涛,辛烁军.东北玉米颗粒破碎敏感性分析报告[J].粮油流通技术,2005,(5):18~20.
    张永丽,高连兴.玉米籽粒剪切破碎的试验研究[J].农机化研究,2007(5):136~138.
    张永丽.种子玉米损伤机理与5TYZ-1型脱粒机总体方案研究[D].沈阳:沈阳农业大学,2007.
    张运伟.怎样选择和布局玉米杂交种子生产基地[J].种子世界,2004(6):45.
    赵春花,韩正晟,师尚礼,等.新育牧草茎秆收获期力学特性与显微结构[J].农业工程学报,2011,27(7):179~183.
    赵春花,张锋伟,曹致中.豆禾牧草茎秆的力学特性试验[J].农业工程学报,2009,25(9):122~126.
    赵工,宋晓明. SolidWorks设计与应用教程[M].北京:清华大学出版社,2009.
    赵可夫.玉米生理[M].济南:山东科学技术出版社,1982.
    赵武云,王广万,刘国春,等.低破碎种子玉米脱粒机的研制[J].机械研究与应用,2010(1):132~134.
    赵武云,吴劲锋,张锋伟,等.玉米轴流脱粒机研究现状分析[J].机械研究与应用,2009(5):9~10,13.
    赵学笃,马中苏,孙永海等.玉米籽粒力学性能的实验研究[J].吉林工业大学学报,1996,21(1):60~65.
    郑渝.中国种业现状分析与战略研究[D].北京:北京大学,2002.
    周红.数字图像处理技术在种子玉米轮廓检测中的应用[J].种子,2004,23(9):90~92.
    周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    周旭.种子玉米脱粒损伤机理与低损伤脱粒原理研究[D].沈阳:沈阳农业大学,2006.
    朱文学,曹崇文.自然晾晒玉米显微结构分析[J].中国农业大学学报,1996,1(4):49~54.
    朱文学,曹崇文.玉米应力裂纹的研究进展[J].洛阳工学院学报,1996,17(1):48~53.
    朱文学,曹崇文.玉米应力裂纹率和破碎敏感性的关系[J].农业机械学报,1998,29(3):48~51.
    朱文学,连政国.玉米应力裂纹的生成和扩展过程模拟[J].农业工程学报,2000,16(1):113~116.
    朱文学,张玉先等.玉米应力裂纹扩展的分形模型及动力学分析[J].农业机械学报,1999,30(3):48~51.
    Akubuo C O. Performance evaluation of a local maize sheller[J]. Biosystems Engineering,2002,83(1):77~83.
    Balastreire L A,Herum F L,Blaisdell J L. Fracture of corn endosperm in bending:PartⅡI:Fractureanalysis by fractography and optical microscopy[J]. Trans of the ASAE,1982,25(4):1062~1065.
    Bilanski W K. Damage Resistance of Seed Grains [J]. Trans of ASAE.1966,11(2):360~363.
    Candia A,Saasa A R,Muzei J,et al. Improving the AEATRI-motorized maize sheller to meet themarket demands of commercial maize farmers[J]. Uganda Journal of Agricultural Sciences,2004,9(1):569~573.
    Dai Fei, Zhang Fengwei, Gao Aimin, et al. Optimization of key operating parameters in4GX-100typecropland plot wheat seed combine harvester[J]. Transactions of the Chinese Society of AgriculturalEngineering (Transactions of the CSAE),2012,28(Supp.2):53~58.
    DAUDA A,AVIARA A N. Effect of Threshing Methods on Maize Grain Damage and Viability[J].Agric Mech Asia Afr Lat Am,2001,32(4):43~46.
    Ekstrom G.A,Liljedahl J.B and Peart R. M. Thermal Expansion and Tensile Properties of CornRernels and Their Relationship to Cracking During Drying[J]. Trans of ASAE,1966,9(4):556~561.
    Gustafson R J,T hompson D R,Sokhansanj S. Temperature and stress analysis of corn kernel-finiteelement analysis[J]. Transactions of the ASAE,1979,22(3):955~960.
    H. D. Almeida–Dominguez,E. L. Suhendro, L. W. Rooney. Factors Affecting Rapid Visco AnalyserCurves for the Determination of Maize Kernel Hardness[J]. Journal of Cereal Science,1997,25(1):93~102.
    H. P. Song,J. B. Litchfield. Measurement of Stress Cracking in Maize Kernels by MagneticResonance Imaging [J]. Journal of Agricultural Engineering Research,1994,57(2):109~118.
    Hall G. E. Damage during handing of shelled corn and soybean[J].Transaction of ASAE.1974,17(2):556~561.
    Irufayaraj J,Haghighi K and Stroshine R. Finite element analysis of drying with application to cerealgrains[J]. J.agri.eng.res.1992,53:209~229.
    J.Irudayara. J.K.Haghighi. and R.Stroshine. Stress analysis of viscoelastic materials during drying:Ⅱ-application to grain kemels[J]. Drying Techoology,1993,11(5):929~959.
    J.M. Gregory. Combine model for grain threshing [J]. Mathematical and Computer Modelling,1988,11:506~509.
    J.R. Trollope. A mathematical model of the threshing process in a conventional combine-thresher[J].Journal of Agricultural Engineering Research,1982,27(2):119~130.
    KHAYAT R E,HUNEAULT M A, DUQUETTE R. A boundary element analysis of planar dropdeformation in the screw channel of a mixing extruder[J]. Engineering Analysis with Boundary Elements,1998,21(1):155~168.
    Leora Shelef and Nuri N, Mohsenin. Effect of Moisture Content on Mechanical Propeties of Shelledcorn [J]. Cereal Chemistry.1969,46(5):242~253.
    Litchfield J B,Martin R O. Prediction of Corn Kernel Stress and Breakage Induced by Drying,Tempering,and Cooling[J]. Trans of the ASAE,1988,31(2):585~594.
    Mahmoud Ali R,Buchele W F. Corn ear orientation effects on mechanical damage and forces onconcave[J]. Transactionsof the ASAE,1975,18(3):444~447.
    Mohsenin N N. Physical Properties of Plant and Animal Materials[M]. New York:Gordon and BreachScience Publisher,1970.
    Muthukumarappan,K. Gunasekaran,S. Moisture diffusivity of corn kernel components duringadsorption. I. Germ[J]. Trans of the ASAE,1994,37(4):1263~1268.
    Pomeranz Y,Czuchajowska Z,Lai F S. Comparision of Methods for Determination of Hardness andBreakage Susceptibility of Commercially Dried Corn[J]. Cereal Chemistry,1986,63(1):39~43.
    Rao V N M,Hamann D D,Hammerile J R. Stress analysis of aviscoelastic sphere subjected totemperature and moisture gradients[J]. J Agric Enging Res,1975,20:283~293.
    Rao V N M. Stresses in a maxwell viscoelastic cylinder due to transient temperature and moisturegradients[J]. Trans of the ASAE,1975,18(4):1165~1169.
    Ronald W.Brass,Stephen J.Marley. Roller Sheller:Low Damage Corn Shelling Cylinder [J]. Trans ofthe ASAE,1973,16(2):64~66.
    Srivastava A K,Herum F L,Stevens K K. Impact Parameters Related to Physical Damage to CornKernel[J]. Trans. ASAE.1976,19(8):1147~1151.
    Thompson R A,Foster G H. Stress cracks and breakage in artificially dried corn [Z]. MarketingResearch Bulletin,No.631,TFRD, AMS, USDA, October,1963.
    Tracy W F,Galinat W C. Thickness and cell layer number of the pericarp of sweet corn and some ofits relatives[J]. Hortscience,1987,22(4):645~647.
    V. K. Jindal,T. J. Siebenmorgen. Effects of Oven Drying Temperature and Drying Time on RoughRice Moisture Content Determination[J]. Transactions of the ASAE,1987,30(4):1185~1192.
    Watson S A,Herum F L. Comparison of Eight Devices for Measuring Breakage Susceptibility[J].Cereal Chemistry,1986,63(2):139~142.
    Zorerb G. C,Hall C.W. Some mechanical and rheological propertiesk of grain[J]. The Journal ofAgricultural Engineering.1960,5(1):83~92.
    Zorerb G. C. Instrumentation and measurement techniques for determing physical properties of farmproducts[J]. Transation of ASAE.1967,10(1):100~109,113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700