用户名: 密码: 验证码:
电动汽车对电力系统的影响以及交互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
依靠燃烧汽油、柴油作为主要驱动力的传统汽车所产生的尾气排放导致环境污染越来越严重。为解决这个严峻的问题,各个国家力求寻找发展一种新能源汽车能够有效地降低大气污染。电动汽车的出现和发展让人们盼望到改善空气质量的新方向。以蓄电池中的电能作为主要驱动力,电动汽车因此减少燃烧不可再生资源而产生的碳氧化合物,也是推动电动汽车行业发展的重要优势,使新能源汽车发展具有强而有力的竞争性。
     随着电动汽车的普及和发展,蓄电池充放电等问题逐渐受到人们的关注和重视。当电动汽车发展到一定的规模时候,无序式的充电行为由于主要是伴随着车主的主观意识和电池电量状况的改变而发生,这必然对现有的电力系统造成一定的冲击和影响,如电压变化、供电质量、系统稳定性、无功平衡等问题。相反,从另一角度出发分析,电动汽车的电池具备能够储存电能的特点,利用智能、合理的充放电策略来引导电动汽车充放电行为,在电力系统高峰时段进行集中放电,在用电低峰时期进行有序充电,从而增强电力系统的经济性和稳定性。本文的研究目的是从各种不同类型的电动汽车和充电模式着手探讨,研究在各种充电行为的接入下对电力系统产生的影响,以及如何通过智能充放电策略管理充电行为、实现削峰填谷等积极作用。
     本文的主要工作如下:
     为解决当今世界面临着能源短缺和汽车尾气过度排放造成大气污染的问题,各国都在积极寻求和开发新的能源或代替能源。电动汽车利用蓄电池的电量作为动力驱动不但有效地降低车主的行驶成本、减少对石油的依赖、实现真正的―零‖排放,而且利用用电低谷时期进行充电可以提高电力系统的效能。本文将首先提出一种电动汽车换电站方案及其运营模式,假设公交车为模拟对象,根据换电站的快速换电特点进行模拟优化,使换电站的整体日均盈利最大、集中充电影响最小,同时用户可以解决购买与维护蓄电池的成本压力问题。
     其次,在我国电动汽车的发展处于研发初期向中期步伐迈进的背景下,其普及问题与充电方式和充电设施的建设息息相关。为进一步推广和发展电动汽车,提出基于电池租赁模式下的电动公交车可以通过换电站进行快速补充电力和利用集中充电站对回收电池统一充电的管理策略;同时,分析城市现有配电系统的规划,利用基于地理信息的VORONOI图特性,依次找出选址位置;以集中充电站的运营成本最小和社会效益最大为目标,建立选址和定容的优化模型,最后通过算例说明最优选址方案。
     当电动汽车电池和充放电技术发展成熟并逐渐得到人们的认可和普及后,大规模的随意式充电必然给电力系统带来一定的负面影响,甚至严重威胁到系统的安全性。为避免和解决这一问题,本文在此将基于价格影响消费者行为的经济学理论,分析私家车的日常出行习惯、停车习惯、充电习惯,提出相应充电负荷响应矩阵,建立分时充电电价模型,利用充电电价的变化对电动汽车充电行为进行引导,通过优化求解来减少大规模随意式的充电负荷给电力系统带来的负面影响,同时鼓励电动汽车车主调整充电时间,从而达到―削峰填谷‖的新能源调度效果。
     为进一步增强通过电动汽车充放电行为有效地实现对电力系统削峰作用,一些学者提出了有关电动汽车的各种充放电策略,其中包括通过研究电动汽车V2G(Vehicle-to-grid)的充放电特性帮助改善电力系统的运行。在此背景下,本文提出一种放电集中、稳定、易于同一管理的放电策略。这种策略针对电动公交车的营运、工作特点,在公交车数量相对恒定、固定营运时间、固定公交路线等条件下,研究其营运模式、充放电行为,并通过建立优化模型提出基于电池租赁模式下V2G集中充放电的优化策略。
     最后,电动汽车的动力电池拥有储存电能的特点,其充放电的特殊性使电动汽车或充电站演变成一个个分布式电源的角色。从整个电力系统经济运行的角度出发,当在有电动汽车的集中放电参与下,系统的机组组合得到全新的发电资源分配,同时可以弥补其他分布式电源(如风电场、光电等)不稳定与不确定性。为此,本文将发展一种计及电动汽车集中放电的机组最优组合策略,以整个系统的发电成本为最优目标,减少传统发电机组的启停次数、降低发电成本,最终提高电力系运行的经济性和稳定性。
The emission caused by the traditional automotives which reply on burning gasoline anddiesel oil as the main driving force leads to increasingly serious environmental pollution. Inorder to find a perfect solution, each country seeks to develop a brand new energy vehicle foreffectively reducing air pollution problems. The emergence of electric vehicles brings a newhope and direction to improve air quality and change people’s life. Electric vehicle usingbattery as the main driving force not only effectively solve the emission issues, but also it canhelp current power system to improve operation on power supply, which is of a strongcompetitive on promoting automotive innovation.
     With the popularization and development of electric vehicles, people have paid moreattentions on battery charging and discharge’s problem. Unconsciousness charging behaviorsare engaged as long as driver making decision on consciousness. When developing to acertain scale, it definitely will challenge existing power system and brings a certain impactand influences, such as voltage variations, power quality, system stability, reactive powerbalance. However, the battery from electric vehicle has a characteristic that can storeelectrical energy. With intelligent management strategy, electric vehicles having coordinatedcharging on off peak hours and coordinated discharging on peak hours can help enhancing theeconomy and stability of the power system. The purpose of this study is to analyses a varietyof different types of electric vehicles and charging behaviors, study the impact and influenceson existing power system with electric vehicle charging and discharging, develop theintelligent charging and discharging strategy for peak load shaving.
     This thesis mainly consists of five parts.
     With the traditional energy becoming less and less and the air pollution caused by vehicleexhaust being more and more serious, every country is active seeking and developing a newresource or replace energy. Supplied by a battery as main power source, electric vehicle notonly can effectively reduce users' driving cost and reliance on petroleum, achieve the real"zero" emissions, but also it can increase the efficacy of power system by charging batteriesduring off peak time. In order to further reduce impacts of coordinated charging on theexisting distribution system and the cost to the user, this thesis will proposes a batteryexchange station solution for electric vehicle and its operation model. Assuming modeled onbus and according to the rapid battery exchange character, a simulation is made for maximumannual profit of battery exchange station, minimum the charging impact, meanwhile it helpsusers reduce battery cost and its maintenance problems.
     Secondly, for further development of electric vehicles in automotive industry, theconstruction of charging facilities is one of the important key for promotion new energyvehicle. For electric bus, battery lease mode is the best option to run the operation effectivelyand have less impact for local distribution system, which is because all recycled batteries canbe charged in coordinated charging station later in off peak time period. With the analysis ofthe charging profile of electric buses, an optimal model for coordinated charging stations’planning and siting is developed to minimize the operation cost. Finally, by employingVoronoi diagram, the solutions of planning and siting strategy is made and illustrated.
     When the developed charging and discharging technology gain people’s recognition,large-scale of uncoordinated charging must bring some negative impact to current powersystem, or even become a serious threat to the security of the operation. In order to avoid andfind the solution, electric vehicle’s driving behaviors, daily travel route, charging habits, andcorresponding charging load response matrix will be studied. Peak and valley time pricemodel is constructed. Using different charging tariff to affect electric vehicle’s chargingbehaviors, an optimization solution is developed to achieve peak load shaving.
     The popularity of electric vehicles and the development of battery V2G(Vehicle-to-Grid) technology have brought many conveniences to people's lives and publicsociety. However, the raise of large scale charging load from electric buses impacts thenormal operation of power system. To minimize that impacts, many experts proposed avariety of V2G (Vehicle-to-Grid) charging strategy for helping improve the operation ofpower system. In order to transform the negative impacts into active benefits for powersystem, this thesis analyses the operation mode of coordinated charging station for electricbuses. Under the conditions of fixed driving hours, fixed bus routes, charging and operationmode are studied, and an optimal function is developed for establishing the coordinated V2Gcharging and discharging strategy, which is based on the battery leased model.
     The random variation of wind power output brings more uncertainties and challenges tounit commitment in power system. By introducing large scale of coordinated charging anddischarging loads, electric vehicles and battery charging stations that acting as distributiongenerations not only help the traditional generating units reallocating the power output anddecreasing operation cost, but also their mobility and stability of power output cover theweaknesses from wind power’s output. Therefore, a new unit commitment model withcoordinated discharging loads of electric vehicle is developed to minimize the operating costfor traditional generating units. A5-unit24hours unit commitment problem is employed todemonstrate the feasibility of this optimal model.
引文
[1]吴憩棠.我国―十城千辆‖计划的进展.新能源汽车,2009,1(24):15-19.
    [2]郭自强.电动车电池的发展现状[J].电池工业.2008,13(1):55-59.
    [3]张彦琴.铅酸蓄电池技术的发展[J].汽车电器.2004,""(10):1-3.
    [4]王新虎,石祖春.纯一点混一点电动汽车的分类及特点[J].当代汽车.2010,2:15-23.
    [5]魏学哲,电动汽车及车用电池发展趋势[C].上海铅锌峰会.2007:77-85.
    [6] Kristien Clement-Nyns,Edwin Haesen,Johan Driesen. The Impact of ChargingPlug-In Hybrid Electric Vehicles on a Residential Distribution Grid[J].IEEE Trans onPower Systems,2010,25(1):371-380.
    [7]广濑久士,丹下昭二.电动车及混合动力车的现状与展望[J].汽车工程.2003,25(2):204-209,115.
    [8]徐顺余,高海鸥,邱国茂,等.混合动力汽车车用镍氢动力电池分析[J].上海汽车.2006,""(2):7-9.
    [9]云洁.浅论燃料电池的国内外研究与进展[J].现代化工,2010,30(2):106-111.
    [10]张洁.简论纯电动汽车的驱动电机及其控制系统[J].国内外机电一体化技术.2012,03:40-41.
    [11]郑虎,周中坚.汽车电动转向系统用驱动电机现状及其发展[J].上海汽车.2011,02:36-41.
    [12]吕宏.电动汽车电机的要求和发展趋势[J].汽车零部件.2011,04:17-18.
    [13]张春燕,马其华,陈安红.电动汽车电机驱动控制系统设计研究[J].机械设计与制造.2012,2:116-118
    [14]王知学,刘媛,张云,张伟.电动汽车驱动电机及控制系统研究现状[J].山东科技.2010,23(3):67-70.
    [15]李俄收,吴文民.铅酸蓄电池的充电方法与充电工艺[J].电源技术.2004,28(5):328-330.
    [16]廖金华,李建黎.铅酸蓄电池充电技术综述[J].蓄电池.2010,47(3):132-135,139.
    [17]王家捷,穆举国,茹海涛.锌镍动力电池的发展和应用[J].电池工业.2006,11(3):194-196.
    [18] Scrosati B, Garche J. Lithium batteries: Status, prospects and future[J]. Journal ofpower sources.2010,195(9):2419-2430.
    [19]杜海健,苏谢祖,颜钢锋.电动汽车新型超级电容能量管理系统设计[J].电子技术应用.2011,37(6):77-80.
    [20]李兴虎.电动汽车概论[M].北京理工大学出版社.2005:5-9.
    [21]陈清泉,孙立清.电动汽车的现状和发展趋势[J].科技导报.2005,23(4):24-28.
    [22]鲁莽,周小兵,张维.国内外电动汽车充电设施发展状况研究[J].华中电力.2010,23(5):16-20.
    [23]康继光,卫振林,程丹明,等.电动汽车充电模式与充电站建设研究[J].电力需求侧管理.2009(5):64-66.
    [24]辛克伟,周宗祥,卢国良.国内外电动汽车发展及前景预测[J].电力需求侧管理,2008,10(01):75-77.
    [25]张文亮,武斌,李武峰,等.我国纯电动汽车的发展方向及能源供给模式的探讨[J].电网技术,2009,33(04):1-5.
    [26] Andersen PH, Mathews JA, Rask M. Integrating private transport into renewableenergy policy:The strategy of creating intelligent recharging grids for electric vehicles[J].Journal of Energy Policy,2009,37(7):2481-2486.
    [27] Greater London Authority (GLA). London’s Electric Vehicle InfrastructureStrategy–Turning LondonElectric[R/OL].http://www.sourcelondon.net/sites/default/files/draft%20Electric%20Vehicle%20Infrastructure%20Strategy.pdf. London: Greater London Authority’s Draftfor Consultation,2009.
    [28]李颖颜,曾广辉,赵冰锋.电动汽车规模化发展对美国社会效益的影响分析[J].中国电力教育.2011,(24):69-70.
    [29]范玉宏,张维,陈洋.国外电动汽车发展分析及对我国的启示[J].华中电力,2010,23(06):8-12.
    [30]李志青.中美电动汽车发展政策比较[J].环境经济,2010,(07):63-64.
    [31] Kean.站在世界之巅日本电动汽车产业现状[J].当代汽车,2010,(02):32-35.
    [32]国家电网公司电动汽车考察团.法国和意大利电动汽车考察报告[J].电力需求侧管理.2008,10(1):1-4.
    [33]忻文.英国政府低碳汽车发展和《2011年电动汽车发展指南》[J].汽车与配件,2011,3(35):24-25.
    [34]黄李,张维戈,姜久春.2008年奥运会电动车充电站规划及运营模式方案[J].现代交通技术,2007,4(05):73-75.
    [35]孙晓霞.中国2010年上海世博会上的锂离子电池纯电动汽车[J].新材料产业.2010,(10):75-77.
    [36]崔玉峰,杨晴,张林山,王骏.国内外电动汽车发展现状及充电技术研究[J].云南电力技术,2010,38(02):9-12.
    [37]朱金花,含风力发电的配电系统可靠性评估研究[D].浙江大学.2006.
    [38] Shao S, Pipattanasomporn M, Rahman S. Challenges of PHEV penetration to theresidential distribution network[C].//Proceedings of2009IEEE PES General Meeting2009:1–8.
    [39] Maitra A, Kook KS, Giumento A, et al. Evaluation of PEV loading characteristics onHydro-Quebecs distribution system operations[C].//Proceedings of Electric vehiclesymposium24;2009:1–11.
    [40] Schneider K, Gerkensmeyer C, Kintner-Meyer M, Fletcher R. Impact assessment ofplug-in hybrid vehicles on Pacific Northwest distribution systems[C].//Proceedings of2008IEEE power and energy society general meeting–conversion and delivery ofelectrical energy in the21st century;2008:1–6.
    [41] Taylor J, Maitra A, Alexander M, Brooks D, et al. Evaluation of the impact of plug-inelectric vehicle loading on distribution system operations[C].//Proceedings of Power&Energy Society General Meeting2009:1–6.
    [42] Clement K, Haesen E, Driesen J. The impact of charging plug-in hybrid electricvehicles on the distribution grid[C].//Proceedings of2008-4th IEEE BeNeLux youngresearchers symposium in electrical power engineering;2008. p.1–6.
    [43] Clement K, Haesen E, Driesen J. Stochastic analysis of the impact of plug-in hybridelectric vehicles on the distribution grid[c].//Proceedings of Electricity distribution,2009. CIRED2009.20th International conference on electricity distribution;2009:1–4.
    [44] Pieltain Fernandez L, Gomez San Roman T, Cossent R, et al. Assessment of theImpact of Plug-in Electric Vehicles on Distribution Networks[C].//Proceedings ofIEEE Transactions on Power Systems,2010:1-8.
    [45] Farmer C, Hines P, Dowds J,et al. Modeling the impact of increasing PHEV loads onthe distribution infrastructure[C].//Proceedings of the43rd Hawaii internationalconference on system sciences.2010:1–10.
    [46] Moses Paul S, Deilami Sara, Masoum Amir S, et al. Power quality of smart grids withPlug-in Electric Vehicles considering battery charging profile[C].//Proceedings of2010IEEE PES on Innovative Smart Grid Technologies Conference Europe (ISGTEurope).2010:1-7.
    [47]吴将,李卫国,马继先.奥运汽车充电机对配网电能质量影响研究[J].电气技术.2009(12):41-43,48.
    [48]陈玉进.电动汽车充电设备特点及对电网影响探讨[J].湖北电力.2009,33(6):48-50.
    [49]陈新琪,李鹏,胡文堂,等.电动汽车充电站对电网谐波的影响分析[J].中国电力.2008,41(9):31-36.
    [50]卢艳霞,张秀敏,蒲孝文.电动汽车充电站谐波分析[J].电力系统及其自动化学报.2006,18(3):51-54.
    [51] New York ISO. Alternate route: electrifying the transportation sector[R]. Technicalreport. NY: New York ISO;2009.
    [52] Karnama A. Analysis of integration of plug-in hybrid electric vehicles in thedistribution grid. Master’s thesis. Stockholm, Sweden: Royal Institute of Technology;2009.
    [53] Gabriel SA, Kydes AS,Whitman P. The national energy modeling system: a large scaleenergy-economic equilibrium model[J]. Operation Research.2001,49(1):14–25.
    [54] Li Y. Scenario-based analysis on the impacts of plug-in hybrid electricvehicles’(PHEV) penetration into the transportation sector[C].//Proceedings of IEEEinternational symposium on technology and society.2007.
    [55] Meliopoulos S, Meisel J, Cokkinides G, Overbye T. Power system level impacts ofplug-in hybrid vehicles. Technical report. Power Systems Engineering ResearchCenter (PSERC);2009.
    [56] Yu X. Impacts assessment of PHEV charge profiles on generation expansion usingnational energy modeling system[C].//Proceedings of2008IEEE power and energysociety general meeting.2008:1–5.
    [57] Li X, Lopes LAC, Williamson SS. On the suitability of plug-in hybrid electric vehicle(PHEV) charging infrastructures based on wind and solar energy[C].//Proceedings ofIEEE Power&Energy Society General Meeting.2009:1–8.
    [58] Short W, Denholm P. A preliminary assessment of plug-in hybrid electric vehicles onwind energy markets[R]. Technical Report. National Renewable Energy Laboratory;2006.
    [59]滕耘,胡天军,卫振林.电动汽车充电电价定价分析[J].交通运输系统工程与信息,2008,8(3):126-130.
    [60] Sinhuber P, Rohlfs W, Sauer DU. Conceptional considerations for electrification ofpublic city buses—Energy storage system and charging stations [C]//Proceedings ofEmobility-Electrical Power Train, Leipzig, Germany:2010:1-5.
    [61] Dow L, Marshall M, Le Xu, et al; A novel approach for evaluating the impact ofelectric vehicles on the power distribution system [C]//Proceedings of IEEE Powerand Energy Society General Meeting. Minneapolis, US:2010:1-6.
    [62] Singh M, Kar I, Kumar P. Influence of EV on grid power quality and optimizing thecharging schedule to mitigate voltage imbalance and reduce power loss [C]//Proceedings of14th International Power Electronics and Motion Control Conference(EPE/PEMC). Ohrid, Macedonia:2010:T2-196-203.
    [63] Putrus G A, Suwanapingkarl P, Johnston D, et al. Impact of electric vehicles on powerdistribution networks [C]//Proceedings of Vehicle Power and Propulsion Conference,VPPC. Dearborn Michigan, US:2009:827-831.
    [64]王震坡,孙逢春,林程.电动公交客车充电站容量需求预测与仿真[J].北京理工大学学报,2006,26(12):1061-1064.
    [65]方正证据.新能源汽车专题之运营模式篇行业专题投资策略报告[DB/OL].2011.06.24.http://wenku.baidu.com/view/73c5834ff7ec4afe04a1df00.html?from=related
    [66] C Pang, P Dutta, S Kim, et Al. PHEVs as dynamically configurable dispersed energystorage for V2B uses in the smart grid [C]//Proceedings of7th ConversionMediterranean Conference and Exhibition on Power Generation, Transmission,Distribution and Energy. Agia Napa, Cyprus:2010:1-6.
    [67] Willett K, Jasna T. Vehicle-to-grid power fundamentals: Calculating capacity and netrevenue [J]. Journal of Power Sources,2005,144(1):268-279.
    [68]任玉珑,史乐峰,张谦,等.电动汽车充电站最优分布和规模研究[J].电力系统自动化,2011,35(14):53-57.
    [69]刘志鹏,文福拴,薛禹胜,等.电动汽车充电站的最优选址和定容[J].电力系统自动化,2011,36(3):54-59.
    [70]李如琦,苏浩益.基于排队论的电动汽车充电设施
    [71]优化配置[J].电力系统自动化,2011,35(14):58-61.
    [72] GAO Hong-li, HUO Ya-min, LUO Yong. Optimization model of the public EVcharging station distribution in city [C]//Proceedings of the Second InternationalConference on Transportation Engineering. Chengdu, China:2009:3166-3171.
    [73] Pan Feng, Russell P, Alan Berscheid, et al. Locating PHEV Exchange Stations in V2G.Smart Grid Communications [C]//Proceedings of First IEEE InternationalConference on Communications. Gaithersburg, US:2010:173-178.
    [74] Lombardi P, Heuer M, Styczynski Z. Battery switch station as storage system in anautonomous power system: Optimization issue [C]//Proceedings of IEEE Power andEnergy Society General Meeting. Minneapolis, US:2010:1-6.
    [75]温家鹏,姜久春,张维戈.电池更换模式下电池管理系统的研究[J].高技术通讯,2010,20(4):415-421.
    [76] Liu Xing-zi, Lin Liang, Zang Dong-ran. Stochastic Programming Models and HybridIntelligent Algorithm for Unbalanced Bidding Problem [J]. Computer and InformationScience,2009,2(1):188-194.
    [77]刘坚.电动汽车充电方式和商业运营模式初探[J].汽车工程师,2011(1):19-23.
    [78] Su Wen-cong, Chow M-Y. Evaluation on intelligent energy management system forPHEVs/PEVs using Monte Carlo method [C]//Proceedings of20114th InternationalConference on Electric Utility Deregulation and Restructuring and PowerTechnologies. Weihai, China: IEEE,2011:1675-1680.
    [79] Su Wen-cong, Chow M-Y. Performance evaluation of an EDA-based large-scaleplug-in hybrid electric vehicle charging algorithm [J]. IEEE Transactions on SmartGrid,2011(99):1-8.
    [80]黄李,张维戈,姜久春.2008年奥运会电动汽车充电站规划及运营模式方案[J].现代交通技术,2007,4(5):73-75.
    [81]陈良亮,张浩,倪峰,等.电动汽车能源供给设施建设现状与发展探讨[J].电力系统自动化,2011,35(14):11-17.
    [82]周逢权,连湛伟,王晓雷,等.电动汽车充电站运营模式探析[J].电力系统保护与控制,2010,38(21):63-66.
    [83]高赐威,张亮,薛飞,等.考虑集中型充电站定址分容的电网规划研究[J].中国电机工程学报,2012Vol.32(7):40-46.
    [84] Pan Feng, Russell P, Alan Berscheid, et al. Locating PHEV Exchange Stations in V2G.Smart Grid Communications [C]//Proceedings of First IEEE InternationalConference on Communications. Gaithersburg, US:2010:173-178.
    [85] Ge Shao-yun, Feng Liang, Liu Hong. The planning of electric vehicle charging stationbased on Grid partition method [C]//Proceedings of IEEE International Conferenceon Electrical and Control Engineering. Yichang, China:2011:2726-2730.
    [86] Luo Han-wu, Ruan Jiang-jun, Li Fang. Study on the Electric Vehicles Ownership andPlanning for the Construction of Charging Infrastructure [C]//Proceedings ofAsis-Pacific Conference on Power and Energy Engineering, Wuhan, China:2011:1-4.
    [87] Wang Heng-song, Huang Qi, Zhang Chang-hua, et al. A novel approach for the layoutof electric vehicle charging station [C]//Proceedings of International Conference onApperceiving Computing and Intelligence Analysis, Chengdu, China:2010:64-70.
    [88] Ip A, Fong S, Liu E, Optimization for allocating BEV recharging stations in urbanareas by using hierarchical clustering [C]//Proceedings of6th InternationalConference on Advanced Information Management and Service, Seoul, Korea:2010:460-465.
    [89] Wang Chuan-neng, Yang Jing-yan, Liu Nian, et al. Study on siting and sizing ofbattery-switch station [C]//Proceedings of4th International Conference on ElectricUtility Deregulation and Restructuring and Power Technologies, Weihai, China:2011:657-662.
    [90]葛少云,李慧,刘洪.基于加权Voronoi图的变电站优化规划[J].电力系统自动化,2007Vol.31(3):29-33.
    [91]关洪浩,唐巍.基于Voronoi图的变电站选址方法[J].电力系统保护与控制,2010Vol.38(20):196-200
    [92] Sovacool B K, Hirsh R F. Beyond batteries: an examination of the benefits andbarriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G)transition [J]. Energy Policy.2009,.7(3):1095-1103.
    [93] Andersen P H, Mathews J, Morten R. Integrating private transport into renewableenergy policy: the strategy of creating intelligent recharging grids for electric vehicles[J]. Energy Policy.2009,37(7):2481-2486.
    [94] Sekyung Han, Soohee, Sezaki. Development of an optimal vehicle-to-grid aggregatorfor frequency regulation [J]. IEEE Transactions on Smart Grid.2010,1(1):65–72.
    [95]高赐威,张亮.电动汽车充电对电网影响的综述[J].电网技术.2011,35(2):127-131.
    [96] Brooks A, Lu E, Reicher D, et al. Demand dispatch [J]. IEEE Power and EnergyMagazine.2010,8(3):20–29.
    [97] Pota H R, Ali M S. V2G technology for designing active filter system to improve windpower quality [C]//Proceedings of21st Australasian Universities Power EngineeringConference (AUPEC). Brisbane QLD, Australia:2011:1-6
    [98] Taniguchi H, Nakajima T, Liyanage K M, et al. Autonomous distributed V2G(Vehicle-to-Grid) satisfying scheduled charging [J]. IEEE Transactions on Smart Grid.2012,3(1):559-564。
    [99]刘志鹏,文福拴,薛禹胜,等.计及可入网电动汽车的分布式电源的最优选址和定容[J].电力系统自动化,2011,35(18):11-16.
    [100] Kevin Mets, Tom Verschueren, Filip De Turck, et al. Exploiting V2G to optimizeresidential energy consumption with electrical vehicle (dis)charging [C]. Proceedingsof IEEE First International Workshop on Smart Grid Modeling and Simulation(SGMS). Brussels, Belgium:2011:7-12.
    [101]梁立柱,尤洪鹏.浅析电动公交车是综合治理城市污染缓解能源紧缺的发展方向
    [C].公路交通与建设论坛(2009).山东,中国:2010:398-400.
    [102]范海雁.城市公交车辆的发展方向分析[J].能源研究与信息.2007,23(3):154-158.
    [103]王泽众.电动公交车充换电站相关运营分析[J].科技和产业.2012,12(3):123-124.
    [104]吕鹏,张文夫,雷鹏.公交车调度[J].工程数学学报.2002, S1(19):75-80.
    [105]胡伟,丁宇飞,刘芳.变直接售电为电池租赁服务—供电企业在电动汽车产业中的定位及相关问题[J].电力需求侧管理.2009,11(4):63-66.
    [106]杨洪明,熊脶成,刘保平.插入式混合电动汽车充放电行为的概率分析[J].电力科学与技术学报,2010,25(3):8-12.
    [107]胡泽春,宋永华,徐智威,等.电动汽车接入电网的影响与利用[J].中国电机工程学报,2012,32(4):1-10.
    [108]张文亮,武斌,李武峰,等.电动汽车我国纯电动汽车的发展方向及能源供给模式的探讨[J].电网技术,2009,33(4):1-5.
    [109]陈清泉.孙逢春,祝嘉光.现代电动车技术[M].北京理工大学出版社,2002:289-315.
    [110] Bradley T, Quinn C. Analysis of plug-in hybrid electric vehicle utility factors [J].Journal of Power Sources,2010,195(16):5399-5408.
    [111]岳芳.上班出行行为特征研究[D].北京:北京交通大学,2008
    [112]李惠玲,白晓民.电动汽车充电对配电网的影响及对策[J].电力系统自动化.2011,35(17):38-43.
    [113]陈建长,黄锟宁.基于需求侧响应的上网侧与售电侧峰谷分时电价联动机制[J].电系统工程,2006,24(10):88-91.
    [114]谭忠富,王绵斌,等.发电侧与供电侧峰谷分时电价联动的分级优化模型[J].电力系统自动化,2007,31(21):26-29.
    [115]秦祯芳,岳顺民.零售端电力市场中的电量电价弹性矩阵[J].电力系统自动化,2004,28(5):16-20.
    [116] Sikai Huang, Infield D. The potential of domestic electric vehicles to contribute topower system operation through vehicle to grid technology [C].//Proceedings of the44International Universities Power Engineering Conference (UPEC), Glasgow, UK.2009:1-5.
    [117] F. Geth, K. Willekens, K. Clement, et, al. Impact-analysis of the Charging of Plug-inHybrid Vehicles on the Production Park in Belgium [C].//Proceedings of15th IEEEMediterranean Electrotechnical Conference,2010:425-430.
    [118] P. Mohseni, R.G. Stevie. Electric Vehicles: Holy Grail or Fool’s Gold [C].//Proceedings of Power&Engineering Society General Meeting,2010:1-5.
    [119]张丽,王媚,杜成刚.一种V2G充放电控制策略算法应用[J].华东电力,2011,38(11):1765-1766.
    [120]邹文,吴福保,刘志宏.实时电价下插电式混合动力汽车智能集中充电策略[J].电力系统自动化,201135(14):62-67.
    [121] Marano V, Rizzoni G. Energy and economic evaluation of PHEVs and their interactionwith renewable energy sources and the power grid [c].//proceedings of the2008IEEEInternational Conference on Vehicle Electronics and Safety, September22-24,2008,Columbus, OH, US:84-89.
    [122]陆凌荣,文福拴,薛禹胜,等.计及可入网电动汽车的电力系统机组最优组合[J].电力系统自动化.2011,35(21):16-20.
    [123]张燕,周明.考虑备用成本的含风电场短期经济调度[J].电力科学与工程,2011,27(4):6-12.
    [124]杨毅,韦钢,周冰,等.含分布式电源的配电网模糊优化规划[J].电力系统自动化.2010,34(13):19-23.
    [125] Wang J, Shahidehpour M, Li Z. Security-constrained unit commitment with volatilewind power generation [J]. IEEE trans on power systems,2008,23(3):1319-1327.
    [126] Ummels B C, Gibescu M, Pelgrum E, et al. Impacts of wind power on thermalgeneration unit commitment and dispatch [J]. IEEE trans on energy conversion,2007,22(1):44-51.
    [127] Saber A Y, Veneryafamoorthy G K. Intelligent unit commitment with vehicle to grid: acost emission optimization [J]. Journal of Power sources,2010,195(1):898-911.
    [128]岳芳.上班出行行为特征研究[D].北京:北京交通大学,2008
    [129]罗卓伟,胡泽春,宋永华,等.电动汽车充电负荷计算方法[J].电力系统自动化.2011,35(14):36-42;
    [130] Hertzer J, Yu D C, Bhattarai K. An economic dispatch model incorporating windpower[J]. IEEE Trans on Energy Conversion,2008,23(2):603-611.
    [131] Celik A N. A statistical analysis of wind power density based on the Weibull andRayleigh models at the southern region of Turkey[J]. Renewable Energy,2003,29(4):593-604.
    [132]赵俊华,文福拴,薛禹胜,等.计及电动汽车和风电出力不确定性的随机经济调度[J].电力系统自动化.2010,34(20):22-29
    [133]吴春阳,黎灿兵,杜力,等.电动汽车充电设施规划方法[J].电力系统自动化.2010,34(24):37-45
    [134]高赐威,张亮,薛飞,等.考虑集中型充电站定址分容的电网规划研究[J].中国电机工程学报.2012,32(7):40-46
    [135]徐智威,胡泽春,宋永华,等.充电站内电动汽车有序充电策略[J].电力系统自动化.2012,36(11):38-43
    [136]于大洋,黄海丽,雷鸣,等.电动汽车充电与风电协同调度的碳减排效益分析[J].电力系统自动化.2012,36(10):14-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700