用户名: 密码: 验证码:
抗肝炎新药SY-801对癌变、肿瘤细胞耐药、肝细胞损伤的作用及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Effects of the New Hepatoprotectant SY-801 on Carcinogenesis, Drug Resistance of Cancer Cells, Injury of Hepatocytes and Their Mechanisms
  • 作者:朱冰
  • 论文级别:博士
  • 学科专业名称:药理学
  • 学位年度:1996
  • 导师:刘耕陶
  • 学科代码:100706
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:1996-05-01
摘要
原发性肝癌的发生除与病毒性肝炎有着密切的关系外,与致癌物对肝脏的损伤亦有关系如果治疗肝炎的药物同时具有阻断肝脏痛变发生的化学预防作用,将具有重要的意义,另外,肿瘤细胞的耐药性是临床肿瘤治疗的一大障碍,原发性和获得性耐药使肿瘤的的化学治疗失效,增大抗癌药物的用量有时又可引起骨髓、心脏和肝脏等器官的毒性,如果治肝炎的药物同时可以增加耐药肿瘤细胞对化疗药物的敏感性,特别是肝癌,将有助于提高临床抗肿瘤药物的化疗效果和降低因耐药而引起的毒、副作用,中性粒细胞参与急慢性肝炎的肝脏炎症性病理损伤过程,抗肝炎药物如能抑制中性粒细胞对肝细胞的损伤,将有利于肝细胞的修复。SY-801是我所研制的新一代抗肝炎药物,对化学性、免疫性肝损伤具有显著的保护作用,而且具有抗乙肝病毒、抗肿瘤和一定的诱导癌细胞分化的作用,在此基础上,本文进一步研究了SY-801在癌变的化学预防、肿瘤细胞耐药的逆转以及中性粒细胞所致肝细胞损伤保护等方而的作用和相关的机制,为SY-801在临床中的用途作进一步的理论探讨,本研究的主要内容包括以下三个方面:
     1.癌变的化学预防作用
     体外实验中采用3-甲基胆蒽和TPA二阶段联合转化小鼠Balb/3T3细胞实验模型,发现SY-801(10~(-6)~10~(-4)M)对3T3细胞恶性转化具有明显的抑制作用,使转化灶数目明显减少、转化细胞的恶性程度明显下降,在10~(-6)M浓度下,其作用强度与已知的癌化学预防药物维甲酸(RA)相当。3T3细胞增殖实验和Dot-blot分析表明,SY-801对TPA诱发的静止态Balb/3T3细胞~3H-TdR掺人和细胞数目的增加具有明显的抑制作用,并对TPA诱导的H-ras、c-myc和PKCα基因mRNA表达升高具有明显的抑制作用、而对P53基因的表达具有显著的增强作用。
     体内实验表明,全程灌胃给SY-801(200,100mg/kg/day),对二乙基亚硝胺(DEN)诱导的大鼠肝癌前病变具有显著的抑制作用,可降低癌前病变肝组织中γ-GT阳性灶的数密度和而密度,降低肝胞浆液中GST-π蛋白表达的水平以及GST总酶活性和GSH量,降低肝胞浆液和微粒体中甲胎蛋白(AFP)的含量,Northern-blot和Dot-blot分析表明,SY-801对癌前病变肝组织中N-ras、c-myc、PKCα和GST-π基因mRNA的表达升高具有抑制作用,而对P53基因的表达则有增强作用,Western-blot分析表明,SY-801还具有抑制多药耐药药基因产物Mdr-1蛋白在癌前病变肝组织中表达增强的作用,以上结果表明,SY-801能够防止DEN诱发大鼠肝组织中的一系列生化特征和基因表达向恶性化、低分化和高增殖的癌变方向发展,起到化学预防的作用。
     为进一步了解SY-801在体内阻断DEN诱发肝癌前病变的作用与DEN代谢突径的关系,又研究了体内给SY-801对大鼠肝脏微粒体在体外代谢DEN作用的影响;同时,还研究了SY-801对DEN诱发肝细胞DNA损伤的作用和体外抗氧化作用,正常大鼠连续灌胃给SY-801三天,剂量200,100mg/kg/天,发现SY-801在诱导大鼠肝微粒体P-450总酶含量增加的同时,肝微粒体P-450代谢DEN的水平明显加强,表现在DEN脱乙基化和脱硝基化的产物均明显增加,尤其以解毒的脱硝基化途径为明显,而SY-801对与DEN结构十分类似的二甲基亚硝胺(DMN)经大鼠肝微粒体的代谢却没有影响。同样条件下,SY-801还显著诱导正常大鼠肝胞浆液中的GST活性,并以DCNB为底物的μ亚型活性升高最为显明;而Western-blot分析表明,SY-801对正常大鼠GST-π的极低表达没有影响,同时,SY-801对于DEN诱发体外培养大鼠肝细胞DNA损伤而导致的非程序DNA合成(UDS)的升高具有显著的抑制作用,表明预先给SY-801可增加DEN在正常大鼠肝脏中的解毒代谢和灭活后排出体外,防止肝脏及其它组织的DNA损伤,另外,SY-801还具有抑制黄嘌呤氧化酶系统生成O_(2~-)和Fenton反应生成OH·的作用。
     2.对肿瘤细胞耐药的逆转作用
     本实验以体外培养的耐受长春新碱(VCR)的人口腔癌KBv200细胞和耐受阿霉素(Adr)的人乳腺癌Adr~R MCF-7细胞为模型,探讨了SY-801对肿瘤细胞耐药性的影响及其相关机制,结果表明,给SY-801(2.5×10~(-5)~1×10~(-4) M)可明显逆转上述细胞的耐药性,其中以逆转KBv200细胞耐受VCR的作用最强,1×10~(-4)、5×10~(-5)和2.5×10~(-5) M SY-801分别逆转20.7、7.3和2.8倍;对于KBv200细胞交叉耐受紫杉醇(Taxol)和Adr~R MCF-7细胞耐受Adr,SY-801亦表现出显著的逆转作用,10~(-4)M时可分别逆转13.4和11.1倍。SY-801同时能够增强VCR对不耐药的敏感株KB细胞的杀伤作用,而对Taxol对KB细胞以及Adr对敏感株MCF-7细胞的杀伤作用均无影响。
     耐药的肿瘤细胞最显著的特征是抗肿瘤药物在细胞内的蓄积下降,耐药的Adr~R MCF-7细胞与敏感株MCF-7细胞相比,细胞内的Adr浓度只能达到后者的1/5,而经SY-801预先处理24~72小时或给Adr同时给SY-801,Adr在Adr~R MCF-7细胞内的蓄积浓度均有显著的提高。耐药肿瘤细胞内多药耐药基因编码的细胞膜P-糖蛋白表达的增加是其耐药的最主要机制。P-糖蛋白通过泵出抗肿瘤药物而使细胞内的蓄积下降;Western-blot分析表明,KBv200和Adr~R MCF-7细胞经SY-801处理12~72小时后,可显著降低耐药细胞内Mdr-1蛋白的高表达,免疫组织化学分析证实,上述细胞经SY-801处理后,细胞膜上Mdr-1蛋白的表达明显减少。GSH和GST与肿瘤的耐药亦密切相关,KBv200和Adr~R MCF-7细胞内的GSH含量均比敏感株的高出一倍左右,Adr~R MCF-7细胞内的GST活性是MCF-7的17.4倍;经SY-801处理后,上述两种耐药细胞内的GSH含量均明显降低,Adr~R MCF-7细胞内的GST活性亦明显降低。Bcl-2基因是细胞内控制死亡过程的重要基因之一,它可以抑制抗肿瘤药物引起的细胞毒作用及程序化死亡(apoptosis),包括Adr~R MCF-7细胞在内的许多耐药肿瘤细胞内的表达明显增高;Western-blot分析表明,经SY-801处理后的Adr~R MCF-7细胞内的Bcl-2蛋白的表达显著降低。
     3.对中性粒细胞、过氧化氢所致原代培养肝细胞损伤的保护作用及对中性粒细胞功能的影响
     活化的中性粒细胞(PMNs)在体内急性和慢性肝脏炎症反应起着重要的作用,其过量释放的氧自由基类还可能参与致癌和促癌过程。实验表明,SY-801对于A23187刺激PMNs所致的原代培养大鼠肝细胞的损伤具有保护作用,可以减少GPT的释放和肝细胞因损伤而引起的形态学上的改变。过氧化氢(H_2O_2)是活化的PMNs等免疫和炎症参与细胞所释放的一类重要的炎症介质,部分介导了PMNs引起的肝细胞损伤;给SY-801可显著抑制H_2O_2引起肝细胞损伤所造成的GPT释放增加和因膜脂质过氧化所造成的细胞膜MDA生成增加和膜流动性下降,扫描电镜观察亦表明SY-801对肝细胞的损伤有保护作用。
     通过研究SY-801对于大鼠腹腔PMNs经刺激活化的影响发现,SY-801具有显著抑制FMLP、PMA、F-离子、PMA+A23187四种不同刺激剂引起的PMNs释放O~(2-),以及抑制PMA刺激PMNs释放H_2O_2;同时,SY-801对FMLP和A23187刺激PMNs活化时[Ca~(2+)]i的升高有抑制作用,而[Ca~(2+)]i的升高介导了PMNs脱颗粒、炎症介质释放等多种功能。表明SY-801既通过直接降低H_2O_2的细胞毒性又通过抑制PMNs活化以及释放氧自由基类等炎症介质来实现减轻PMNs所致肝细胞的损伤。
     综上所述,本文应用多种方法,从多层次研究了SY-801在癌化学预防、肿瘤细胞耐药逆转和肝细胞保护几方面的作用及其相关的生化、分子机理,首次发现肝保护剂SY-801对癌变有化学预防作用,又首次发现非钙拮抗剂的具有细胞保护和解毒作用的SY-801亦具有逆转肿瘤细胞耐药的作用,这些为SY-801用于与肝炎密切相关疾病-肝癌的预防,以及用于克服肿瘤化疗耐药和降低化疗药物的毒性提供了新的实验依据,对评估SY-801临床应用的前景具有重要的理论和实际意义。
It is known that the occurrence of primary hepatocarcinoma is closely related to viral hepatitis as well as hepatocytes injuries induced by carcinogens. If an anti-hepatitis drug has blocking or suppressing effects on the development of hepato-carcinogenesis, it would be of great value. In addition, the emergence of drug resistance of tumor cells is a major problem in cancer chemotherapy. The intrinsic and acquired resistance of carcinoma to anti-cancer agents could cause failures of chemotherapy or toxicities of many organs such as bone marrow, heart, liver, as the dosage of anti-tumor drugs increased. If a hepatoprotectant possesses activity of increasing the sensitivity of carcinoma to chemotherapy, it will improve the efficiency of chemotherapeutics and reduce their toxic and side effects. Polymorphonuclear neutrophils ( PMNs ) participate in the inflammatory lesions of chronic hepatitis. If an anti-hepatitis drug could prevent the PMNs-induced injury to hepatocytes it should contribute to the reparation of liver injuries. SY-801, a new hepatoprotectant developed by our institute, showed significantly protective action against chemical and immunological hepatic injuries in mice and rats. It also has activities of anti - duck hepatitis virus B, anti-tumor and induction of cancer cells differentiation. On the bases of these investigations, the actions of SY-801 in chemoprevention of carcinogenesis, reversal of drug resistance and protection against hepatocyte injury as well as their related mechanisms were studied in the present study so as to further theoretically explore the clinical applications of SY-801. The results were summarized in three aspects as follows:1. Chmopreventive effect on carcinogenesisThe Balb / 3T3 cells were two stage transformed by co-use of 3-methylcholanthrene ( 3-MC ) and TPA in vitro. The results showed that SY-801 at concentrations of 10~(-6) - 10~(-4) M could obviously inhibit the malignancy of Balb / 3T3 cells expressed in decrease of transformed foci and reduction of malignant degree of transformed cells. The potency of SY-801 to inhibit such transformation was equal to the known positive cancer chemopreventive drug all trans-retinoic acid ( RA ) at the same concentration of 10~(-6) M. The experiments of cell proliferation show that SY-801 obviously inhibited the increase of cell numbers and incorporation of ~3H-TdR into quiescent Balb / 3T3 cells which induced by 100 ng / ml TPA with low concentration of serum ( 2.5 % ) or 2.5μg / ml insulin in serum-free culture medium. Dot blot assay of mRNA indicated that SY-801 suppressed the TPA-induced overexpression of H-ras, c-myc and PKCαgenes, whereas, markedly improved the expression of P53.
     In vivo, oral administration of SY-801 (100, 200mg/kg/day) markedly suppressed diethylnitrosamine (DEN)-induced praneoplasitic lesions in rat livers. Both number and area density ofγ-glutamyltransferase positive (γ-GT~+) foci in preneoplastic livers were obviously reduced in SY-801 treated rats. It was also observed that significant decreases of mRNA and protein expression of GST-πand total GST activity as well as cytosolic GSH andα-fetal protein in SY-801 treated rats. Northern blot and dot blot assay showed that SY-801 reduced the overexpression of N-ras, c-myc and PKCαmRNA in the preneoplatic livers, whereas, P53 expression was enhanced. The Western-blot indicated that SY-801 could also inhibit the Mdr-1 protein expression of multiple drug resistance gene in DEN-induced preneoplastic livers. All the results suggested that the chemoprevantive effect of SY-801 relied on its inhibition of biochemical characteristic alternations and oncogene expressions in malignant transformation, low differentiation and hyperplastic hepatic lesions induced by DEN.
     In order to know the relation of DEN metabolism with its induced hepatic praneoplastic lesion, the metabolism of DEN in vitro by the hepatic microsomes from rats treated with SY-801 for three days was studied. The results indicated that the metabolism of DEN by rat hepatic microsomes was obviously enhanced as accompanied with significantly increase of hepatic microsomal P-450 content. Deethylation and particular denitrosation pathways of DEN metabolism by the hepatic microsomes from SY-801 treated rats were both enhanced. However, SY-801 showed no effect on dimethylnitrosamines (DMN) metabolism in the same conditions, although the chemical structure of DMN is similar to DEN. The increase of cytosolic and microsomal GSTs activities in SY-801 treated rat liver were also observed, especially for the GSTμclass isoenzyme as using DCNB for substrate. However, no expression of GST-πby Western-blot assay in normal and SY-801 treated rat livers was found. The DNA damage and its associated unscheduled DNA synthesis (UDS) in DEN treated rat hepatocytes was also observed in vitro. Co-incubation of SY-801 for 4 and 18 hr showed inhibitory effect on UDS of rat hepatocytes induced by DEN. All the results suggest that SY-801 could increase the detoxication and elimination of DEN in inactivating forms, which result in preventing DNA damage in rat livers. In addition, SY-801 inhibited the superoxide anion (O_2~-) and hydroxyl free radicals production in Xanthane oxidase system and Fenton reaction, respectively.
     2. Reversal effect on drug resistance of carcinoma
     The effects of SY-801 on drug resistance of two carcinoma cell lines: vincristine (VCR)- resistant human stomatic epidermoid carcinoma KBv_(200) and adriamycin (Adr)-resistant human breast carcinoma Adr~R MCF-7 and their related mechanism were investigated in vitro. The results indicated that SY-801 (2.5×10~(-5)~1×10~(-4) M) obviously reversed the drug resistance of the two kinds of tumor cell lines in dose-dependent manner. The reversal rate of SY-801 at the concentrations of 1×10~(-4), 5×10~(-5) and 2.5×10~(-5) M on KBv_(200) resistant to VCR was 20.7, 7.3 and 2.8 folds, respectively, as compared with the untreated group. 10~(-4) M SY-801 also showed reversal effect on KBv_(200) cross-resistant to anti-tumor drug Taxol and Adr~R MCF-7 resistant to Adr for 13.4 and 11.1 folds, respectively. In addition, SY-801 enhanced the cytotoxic effect of VCR against sensitive KB cell line for about several times, whereas no effect on Taxol to sensitive KB cells and Adr to sensitive MCF-7 cells was demonstrated.
     The decrease of antitumor drugs accumulation in cells was the most outstanding characteristic of drug resistant carcinoma cell lines. It was found that the intracellular concentration of adriamycin in resistant Adr~R MCF-7 cells was just about one fifth of the sensitive MCF-7 cells. Pretreatment with SY-801 for 24-72 hr or simultaneous coincubation with SY-801 obviously elevated the Adr accumulation in Adr~R MCF-7 cells. The major mechanism for carcinoma drug resistance was postulated the reason of overexpression of P-glycoprotein in cell membrane which encode by multiple drug resistant genes (MDR). Western-blot assay indicated that treatment of KBv_(200) and Adr~R MCF-7 cells with SY-801 for 12~72 hr, the Mdr-1 protein in cell membrane was markedly reduced. Immunohistochemical assay also confirmed such results. The role of GSH and GST in carcinoma drug resistance was attached importantly in recent years. The GSH content in KBv_(200) and Adr~R MCF-7 cells were higher than their sensitive cells for almost about 1 fold, and the GST activity in Adr~R MCF-7 cells was about 17.4 folds as compared with MCF-7 cells. It was observed that both GSH content in KBv_(200) and Adr~R MCF-7 cells as well as GST activities in Adr~R MCF-7 cells were markedly decreased after these cells were treated with SY-801 (1×10~(-4) M) for 24~72 hr. Bcl-2 gene plays an important role in regulation of cell death. It could suppress the toxicity and apoptosis induced by antitumor drugs. Many drug resistant carcinoma including Adr~R MCF-7 cells show overexpression of Bcl-2 as compared with sensitive cell lines. SY-801 obviously reduced the elevation of Bcl-2 expression in Adr~R MCF-7 cells by Western blot assay.
     3. Protection against polymorphornuclear neutrophils (PMNs) and hydrogen peroxide (H_2O_2) induced injuries of primary cultured rat hepatocytes, and effect on the function of PMNs.
     Activated PMNs show important role in acute and chronic liver inflammatory lesions. The over production of oxygen Free radicals and other inflammatory mediators from PMNs also involve in the processes of mutation and promotion of carcinogenesis. The results indicated that SY-801 protected the primary cultured rat hepatocytes from the cytotoxicity induced by A23187-stimulated rat peritoneal PMNs expressed in reduction of GPT release and morphological damages of rat hepatocytes. H_2O_2 is an important inflammatory mediator in immune and inflammatory participated cells such as PMNs. It partially mediates the cytotoxicity of PMNs toward hepatocytes. SY-801 obviously inhibited the H_2O_(2-) induced hepatocyte injury and lipid peroxidation in cell membrane as GPT release and MDA accumulation reduced and the cell membrane fluidity increased. The scan electromicrscopy indicated the damage of rat hepatocytes surface induced by H_2O_2, while, SY-801 showed protective effects on this damages.
     In addition, SY-801 influenced the activating processes and release of inflammatory mediators such as oxygen free radicals (OFRs) by PMNs. SY-801 markedly reduced the O~(2-) production by activating PMNs which challenged by four different kinds of stimuli FMLP、PMA、fluoride ion and PMA+A23187. The H_2O_2 production by PMA-stimulated PMNs was also inhibited. The elevation of intracellular calcium concentration of PMNs modulates many functions of PMNs such as the degranulation and OFRs production. SY-801 inhibited FMLP and A23187 induced [Ca~(2+)]i elevation. All the results indicated that the protective effect of SY-801 on the PMNs induced hepatocytes injuries may through directly reducing the toxicity of H_2O_2 and suppressing the activation of PMNs and its associated over production of OFRs.
     In summary, it was the first time demonstrated that SY-801 with very low toxicity in vivo has actions in prevention of carcinogenesis, reversal of drug resistance and protection against hepatocyte injury mediated by PMNs. The related biochemical and molecular mechanisms of the actions of SY-801 was also elucidated in different ways and levels. The results of present study not only provide a new scientific basis for using SY-801 as a potential drug to prevent heaptocarcinogenesis and overcome drug resistance of carcinoma, but also have importantly theoretical and practical values in evaluating the clinical prospects of SY-801 in the long-term treatment of chronic viral hepatitis in the future.
引文
1. Farber E. Cancer development and its natural history: a cancer prevention pespective. Cancer 1988; 62: 1676-1679.
    2. Weinberg RA. Oncogenes, antioncogenes and the molecular bases of mulfistep carcinogenesis. Cancer Research 1989; 49:3713-3721.
    3. Wattenberg LW. Inhibition of carcinogenesis by naturally-occurring and sythefic compounds. Basic Life Sci. 1990; 52: 155-166.
    4. Gottesman MM. How cancer cells evade chemotherapy: sixteenth Richard and Hinda Rosenthal Foundation Award lecture. Cancer Res. 1993; 53: 747-754.
    5. Ford J M, Bruggemann E P, Pastan I, Gottesman M M Hait W N. Cellular and biochemical characterization of thioxathenes for reversal of multidrug resdistance in human and murine cell lines. Cancer Res. 1990; 50:1748-1756.
    6. Hayes J D, WolfC R. Molecular mechanisms of drug resistance. Biochem J. 1990; 272: 281-295.
    7. Boise L H, Gonzalez-Garcia M, Postema C E, Ding L L, Turka T, Mao L A, Nunez G, Thompson C B. Belx, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597-608.
    8.孙士勇。多药抗药性.肿瘤化学预防及药物治疗,韩锐主编.北京,北京医科大学中国协和医科大学联合出版社,1986;pp 358~361.
    9. Fantone JC, Ward PA. Polymorphonuelear leukocyte-mediated cell and tissue injury: oxygen metabolites and their relations to human disease. Hum Pathol 1985; 16: 973-978.
    10. Cerutti PA. Peroxidant states and tumor promotion. Science 1985; 227:375-381.
    1. Kakunaga T. A quantitative system for assay of malignant transformation by chemical carcinogens using a clone derived from Balb/3T3. Cancer 1973; 12: 463-473.
    
    2. Greenwald P et al. Concepts in cancer chemoprevention research. Cancer. 1990; 65: 1483-1490.
    
    3. Scanlan RA. Formation and occurence of nitrosamines in food. Cancer Res 1983; 43: 2435s-2440s.
    
    4. Solt D, Farber E. New principle for the analysis of chemical carcinogenesis. Nature 1976; 263:701-702.
    
    5. Kitagawa T. Sequential phenotypic changes in hyperplastic areas during hepatocarcinogenesis in the rat. Cancer Res 1976; 36(3): 534.
    
    6. Fairchild C R, Ivy S P, Rushmore T, Lee G, Koo P, Goldsmith M E, Myers C E, Farber E, Cowan K H. Carcinogen-induced mdr overexpression is associated with xenobiotic resistance in rat preneoplastic liver nodules. Proc Natl Acad Sci USA 1987; 84: 7701 - 7705.
    
    7. Dicker P, Rozengurt E. Stimulation of DNA synthesis by tumour promoter and pure mitogenic factors. Nature 1978; 276: 723-726.
    
    8. Yuspa S H, Lichti U, Ben T, Patterson E, Hennigs H. Phorbol esters stimulate DNA sythesis and ornithine decarboxylase activity in mouse epidermal cell cultures. Nature 1976; 262: 402 - 404.
    
    9. Chomczynski P, Scchi N. Single-step method of RNA isolation by acid quanidinium thiocyanate-pheno-chloroform extraction. Anal Biochem 1987; 162: 156-159.
    
    10. Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual. Second edition by cold spring harbor laboratory press. 1989.
    
    11. Solt D B, et al. Rapid emergence of carcinogeninduced hyperplastic lesions in a new model for the sequential analysis of liver carcinogenesis Am J Path 1977; 88: 595 , 1977.
    12. Kalengayi M M R, Rorichi G, Desmet V J. Histochemistry of gamma-glutamyl transpetidase in rat liver during aflatoxin B_1-induced carcinogenesis. J National Cancer Institute 1975; 55(3): 579-582.
    13. Lesca P, Lecointe P, Paoletti C, Mansury D. Induction desmonoxygenase hepatiques par lellipticine chezle rat: formationde cytochrome P445, activete hydroxylante. C. R. Acad. Sci. 1976; 282: 1457-1462.
    14. Lowry O H, Rosebrough N G, Farr A L, Randall R G. Protein measurement with the folin phenol reagent. J. Bid. Chem. 1964; 239: 2370-2376.
    15. Hissin PJ, Hill R. A fluorometric method for determination of oxidized andreduced glutathione in tissue. Analytical Biochem, 1976, 74(1):214-225.
    16. Nomura M, Nakachiyama M, Hida T, Ohtaki Y, Sudo K, Aizawa T, Aburada M, Miyamoto K-1. Gomisin A, a lignan component of schizandora fruits, inhibits development of preneoplastic lesions in rat liver by 3'-methyl-4-dimethylamino-azobenzene. Cancer Letters. 1994; 76: 11-18.
    17. Richert N D, Aldwin L, Nitecki D, Gottesman M M, Pastan I. Stability and covalent modification of P-glycoprotein in multidrug-resistance KB cells. Biochemistry. 198g; 27: 7607-7613.
    18. Habig W H, Pabst M J, Jakoby W B. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry. 1974; 249(22): 7130-7139.
    19. Omura T, Sato S. The carbon monoxide pigment of liver microsomes, l. Evidence for its hemoprotein nature. J. Biol. Chem. 1964; 239: 2370-2376.
    20. Farrelly G. A new assay for the microsomal metabolism of nitrosamines. Cancer Res. 1980: 40: 3241-3244.
    21. Yoo J S H,.Guengeridh F P, Yang C S. Metabolism of N-Nitrosodialkylamines by human liver microsomes. Cancer Res. 1988; 88:1499-1504.
    22. Yang C S, Tu Y Y, Koop D R, Coon M J. Metabolism of nitrosamines by purified rabbit liver cytochrome P-450 isozymes. Cancer Res. 1985; 45:1140-1145.
    23. Rossberge S, Andrae U, Wiebel F J. Comparison of the continuous rat hepatoma cell line 2sFou with primary rat hepatocyte cultures for the induction of DNA repair synthesis by nitrosamines. Benzo[α]pyrene and hydroxyurea. Mutation Res. 1986; 182:41-51.
    24. Cai Y T, Luo L T, Zhai Y H, Shen Y W. A study of unscheduled DNA synthesis in freshly suspended rat liver cells induced by chemical carcinogens. Tumor. 1986; 6: 200-201.
    25. Xin H B, Zhang B H. Scavenging effects of cyproheptadine on oxygen free radicals. Acta Pharmaceutica Sinica. 1993; 28 (3): 161-165.
    26. Feuguson PJ, et al. Critical issues relating to clinical drug resistance. Cancer Bull 1989; 41: 7.
    27. Gottesman MM. How cancer cells evade chemotherapy: sixteenth Richard and Hinda Rosenthal Foundation Award lecture. Cancer Res. 1993; 53:747-754.
    28. Thorgeirsson S S, Huber B E, Sorrell S. Fo.jo A, Pastan I, Gottesman M M. Expression of the multidrug-resistant gene in hepatocarcinogenesis and regenerating rat liver. Science 1987; 236: 1120-1122.
    29. Pastan I, Gottesman M M. Multidrug resistance. Annu. Rev. Med. 1991; 42: 277-286.
    30. Beck W T. The cell biology, of multiple drug resistance. Biochcm. Pharmacol. 1987; 36: 2879-2888.
    31. Juliano RI, Ling V. Biochem Biophys Acla. 1976; 455:152-156.
    32. Tsuruo T, lida H, Tsukagoshi S, Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vitro and in vivo through enhanced eytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981 : 41: 1967-1972.
    33. Fojo A. el al. Reduced drug accumulation in multiple drng-resistant human KB carcinoma cell lines. Cancer Res. 1985: 45: 3002.
    34. Endicott J A, Ling V. The bioehemistry of P-glycoprotein-mediated multidrug resistance. Annu. Rev. Biochem. 1989; 58: 351-375.
    35. Hayes J D, Wolf C R. Molecular mechanisms of drug resistance. Biochem J. 1990; 272:281-295.
    36. Borst P, Schinkel A H, Smit J J M, Wagenaar E, Deemter L V, Smith A J, Eijdems E W H M, Baas F, Zaman G J R. Classical and novel forms of multidrug resistance and the physiological functions of P-glyeoproteins in mammals. Pharmac. Ther. 1993; 60: 289-299.
    37. Gamcsik M P, Millis K K, Colvin O M. Noninvasive detectopm of elevated glutathione levels in MCF-7 Cells resistant to 4-hydroperoxycyclophosphamide. Cancer Res. 1995; 55:2012-2016.
    38. Mosccw J A, Townsend A J, Cowan K H. Elevation of π class glutathione S-transferase activity in human breast cancer cells by transfection of the GST π gene and its effect on sensitivity to toxins. Molecular Pharmacology. 1989; 36: 022-028.
    39. Sumantran V N, Ealovega M W, Nufiez G, Clarke M F, Wicha M S. Overexpression of BcI-X_s Sensitizes MCF-7 Cells to Chemotherapy-induced Apoptosis. Cancer Res. 1995; 55: 2507-2510.
    40.张晓红,张福荣,籍秀娟,李占荣.KB细胞耐药株的建立及其耐药机制的探讨.药学学报. 1994;29(4):246-251.
    41. Scudiero DA, Shoemarker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 1988; 48: 4827.
    42. Ford J M, Bruggemann E P, Pastan I, Gottesman M M Halt W N. Cellular and biochemical characterization of thioxathenes for reversal of multidrug resdistance in human and murine cell lines. Cancer Res. 1990;50: 1748-1756.
    43. Towbin H, Staehelin T, Gordon J. Electrophorefic transfer of proteins from polyacrylamide gels to nitrcelulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 1979; 76: 4350-4354.
    44. Simmods N J, Rampton D S. Inflammatory bowel disease-a radical view. GUT 1983: 34: 865-868.
    45. Parker C W. Neutrophils mechanism. Am Rev Respir Dis. 1991; 143:S59-S60.
    46. Simpson P J, Lucchesi B R. Free radicals and myocardial ischemia and repcffusion injury. J Lab Clin Med 1987; 110:13-15.
    47. Fanton J C, Ward P A. PoJymorphonuclear leukocyte-mediated cell and tissue injury: oxygen metabolities and their relations to human disease. Hum Pathol 1985; 16 : 973-978.
    48. Williams A J K, Barry R E. Free radical generation by neutrophil: a potential mechanism of cellular injury in acute alcoholic hepatitis. GUT 1987; 28: 1157-1161.
    49. Review by an international group. Alcoholic liver disease: morphological manifestations. Lancet 1981; 1: 707-711.
    50. Guigui B, Rosenbaum J, Preaux AM, Martin N, Zafrani ES, Dhumeaux D, et al. Toxicity of phorbol myristate acetate-stimulated polymorphornuclear neutrophils against rat hepatocytes. Lab Invest, 1988: 59(6): 831-837.
    51. Mavier P, Preaux A M, Guigui B, Lescs M C, Zafrani E S, Dhumeaux D. In vitro toxicity of polymorphonuclear neutrophils to rat hepatocytes: evidence for a proteinase-mediated mechanism. Hepatology 1988; 8:254-258.
    52. Zhang K J, Liu C S, Kim K, Lee S Y, Song Y S, din C B, RYU J C, Kim M, Park J. Anti-inflammatory compound inhibiting formation of leukotriene B4 in rat neutrophils. Environmental Mutagens & Carcinogens. 1994:14: 34-42.
    53. Pertfort H, Smedsr φ d B. Separation and characterization of liver cells, In: Pretlow Ⅱ TG, Pretlow TR, eds. Cell, Separation: Method and ,Selected Applications, vol4.Oxford: Academic Press, 1987. 1-24.
    54. Mavier P, Rosenbaum J, Preaux A M, Mallat A, Dhumeaux D. Decrease toxicity of polymorphonuclear neutrophils toward hepatocytes isolated from rats with acute inflammatory reaction.
    55. Mosmann T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays.J Immunol Methods, 1983, 65(1): 55-63.
    56. Yagi K. A simple fluoromctric assay for lipoperoxide in blood plasma. Biochem Med, 1976, 15(2):212-216.
    57. Watanabe H, Kobayashi A, Yamamoto T, Suzuki S, Hayashi H, Yamazaki N. Alternations of human erythrocyte membrane fluidity by oxygen-derived free radicals and calcium. Free Radic Biol Med, 1990, 8 (6): 507-514.
    58. Barcenas-Ruiz L, Weir WG. Voltage dependence of intracellular [ Ca~(2+) ]i transients in guinea pig ventricular myocytes. Circulation Research. 1987, 61(1): 145-154.
    59. Mavier P, Guigui B, Preaux AM, Roscnbaum J, Lescs MC, Zafrani ES, et al. In vitro toxicity of hydrogen peroxide against normal vs. tumor rat hepatocytes : role of catalase and of the glutathione redox cycle. Hepatology, 1988, 8(6): 1673-1678.
    60. Babson JR, Abell NS, Reed DJ. Protective role of the glutathione redox cycle against adriamycin-mediated toxicity in isolated hepatocytes, Biochem Pharmacol. 1981, 30(16): 2299-2304.
    61. Hirai K I, et al. Human neutrophils produce free radicals from the cell-zymosan interface during phagocytosis and from the whole plasma membrane when stimulated with calcium ionophore A 23187. Exp Cell Res 1991; 194:19-27.
    62. Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J lmmunol Meth 1980; 38: 161-170.
    63. Ding A H, Nathan C F, Stuehr D J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal marcophages: comparison of activiting cytokines and evidence for independent production. J Immunol 1985; 141: 2407-2412.
    64. Richard J E, Sheterline P. Evidence that phorbol ester interferes with stimulated Ca2+ redistribution by activating efelux in neutrophil leucocytes. Biocbem J 1985; 231:623.
    65. Diamond L. Tumor promoters and cell transformation. Pharmac. Ther. 1984; 26: 89-145.
    66. Graft J M, et al. Phosphorylation-regulated calmodulin binding to a prominent celluar substrate for protein kinase C. J. Biol, Chem. 1989; 264: 21818-21823,
    67. Stable S. The protein kinase C family. In: Habenieht A and growth faetors, differentiation factors and cytokines berlin: springer-verlar verlar press, pp 410, 1990.
    68. Kikkawa U et al. The heterogeneity and differential expression of protein kinase C in nervous tissues. Phil Trans R Soe. Lond Biol. S. 1988: 320: 313.
    69. Land H. et al. Behavior of myc and ras oncogenes in transformation of rat embryo fibroblast. Mol. Cell. Biol. 1986; 6: 1917-1925.
    70. Farber E. Cellular biochemistry of the stepwise development of cancer with chemicals: G. H. A elowes memorial lecture. Cancer Res. 1984; 44:5463-5474.
    71. Hanigan M H. et al. Careinogenesis. 1985: 6: 165-172.
    72. Sato K, Kitahara A, Satoh K, Ishikawa T, Tatematsu M, Ito N. The plaeentalform of glutathione stransferase as a new marker protein for preneoplasia in rat chemical hepatocarcinogenesis. Gann 1984; 75: 199-202.
    73. Kitahara A, Satoh K, Nishimura K, Ishikawa T, Ruike Kazuo, Sato K, Tsuda H, Ito N. Changes in molecular forms of rat hepatic glutathione S-transferase during chemical hepatocarcinogenesis. Cancer Res. 1984; 44: 2698-2703.
    74. Hayes J D, Pulford D J. The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Critical Reviews in Biochemistry and Molecular Biology. 1995; 30(6): 445-600.
    75. Tsuchida S, Sato K. Glutathione transferases and cancer. Critical Reviews in Biochemistry and Molecular Biology. 1992; 27(4,5): 337-384.
    76. Richardsoon K K, Rexroat M A, Helvering L M, Copple D M, Richardson F. Temporal changes in the mutant frequency and mutation spectra of the 61st codon of the H-ras oncogene following exprosure of B6C3FI mice to N-nitrosodiethylamine (DEN). Carcinogesis. 1992; 13: 1277-1279.
    77. Ito S. et al. lmmunohistochemical demonstration of the c-myc oncogene product in rat chemical hepatocarcinogenesis. Biomed Res. 1988; 9: 177.
    78. Galand P. et al. lmmunohistochemical detection of c-Ha-ras oncogene P21 product in pre-neoplastic and neoplastic lesions during hepatocarcinogenesis in rats. Int J Cancer. 1988: 41: 155.
    79. Coreos D, Defer N, Raymondjean M, Paris B, Corral M, Tiehonieky L, Kruh J. Correlated increase of the expression of the C-RAS genes in ehemieaily induced hepatocareinomas. Bioch and Bioph. Res. Com. 1984; 122(1): 259-264.
    80.陈焕朝,于树玉,诸亚君,赵清正,刘建国,魏长利,曹禄森.硒对大鼠肝癌前病变的抑制及对蛋白激酶C-α基因表达的影响.中华肿瘤杂志.1993;15(4):279-281.
    81. Alexandrow M G, Moses H L. Transforming growth factor β and cell cycle regulation. Cancer Res. 1995; 55:1452-1457.
    82. Trahey M, McCormiek R. A cytoplasmic protein stimulates normal N-ras P21 GTPase, but does not affect oneogenie mutants. Science. 1987; 238: 542-545.
    83. Singh J, Roseher E. Induction of DNA damage by N-nitrosodiethylamine in rat hepatoma cells: correlation with eytochrome P450-mediated aldrin epoxidase activity. Mutagenesis. 1991; 6(2): 117-121,
    84. Yamazaki H, Inui Y, Ytm C H, Cuengerich F P, Shimada T. Cytochrome P-450 2E1 and 2A6 enzymes as major catalysis for metabolic activation of N-nitrosodialkylamines and tobacco-related nitrosamines in human liver microsomes. Carcinogenes. 1992; 13(10): 1789-1794.
    85. Yamazaki H, Oda Y, Funae Y, Imaoda S, Inui Y, Guengerich F P, Shimada T. Participation of rat liver cytochrome P450 2E1 in the activation of N-nitrosodiethylamine to products genotoxic in an acetyltransferase-overexpressing salmonella typhimurium strain (NM2009). Carcinogenes. 1992; 13: 979-985.
    86. Dragan Y P, Hully J R, Nakamura J, Mass M J, Swenberg J A, Pitot H. Biochemical events during initiation of rat hepatocarcinogenesis. Carcinogenes. 1992; 13: 1451-1458.
    87. Dahlhaus M, Appel K E. N-nitrosodimethylamine, N-nitrosodiethylamine, and N-nitrosomorpholine fail generate 8-hydroxy-2'-deoxyguanosine in liver DNA of male F344 rats. Mutation Res. 1993; 285: 295-302.
    88. Cerutti PA, et al. Peroxidant states and tumor promotion. Science 1985; 227:375-381.
    89. Sara AR, Glower CJ, Sewell JL, Meyers MB, Biedler JL, Felsted RL. Identification of the multidrug resistance-related membrance glycoprotein as accepter for calcium channel blockers. J Biol Chem 1987; 282: 7884-7888.
    90. Fairchild C R, Ivy M K, Kao-Shan C S, Whang-Peng J, Rosen N, Israel M A, Melera P W, Cowan K H, Goldsmith M E. Isolation of amplified and overexpressed DNA sequences from Adriamycin-resistant human breast cancer cells. Cancer Res. 1987; 47:5141-5148.
    91. Choi K, Chen C J, Kriegier M, Roninson I B. An altered pattern of muttations in mdrl (P-glycoprotein) gene. Cell 1988; 53:519-529.
    92. Fine R L, Patel J. Chabner B A. Phorbol esters induce multidrug resistance in human breast cancer cells. Proc. Natl. Acad. Sci. U. S. A 1988; 85: 582-586.
    93. Liebmann J E, Hahn S M, Cook J A, Lipschuitz C, Mitchell J B, Kaufman D C. Glutathione depletion by L-Buthionine sulfoximine antagonizes Taxol cytotoxicity. Cancer Res.1993; 53: 2066-2070.
    94. Ishikawa T, Wright C D, lshizuka H. GS-X pump is functionally over-expressed in cis-diamminedichloroplafinum (Ⅱ)-resistant human leukemia HL-60 cells and down-regulated by cell differentiation. J. Biol. Chem. 1994; 269: 29085-29093.
    95. Grant C E, Valdimarsson G, Hipfner D R, Almquist K C, Cole S P C, Deeley R G. Overexpression ofmultidrug resistance-associated protein (MRP) increases resistance to natural product drugs, Cancer Res. 1994; 54: 357-361.
    96. Dole M, Nufiez G, Merchant A K, Maybaum J, Rode C K, Bloch C A, Castle V P. Bcl-2 inhibits chemotherapy-induced apoptosis in neuroblastoma. Cancer Res. 1994; 54: 3253-3259.
    97. Kamesaki S, Kamesaki H, Jorgenson TJ, Tanizawa A, Pommier Y, Cossman J. Bcl-2 protein inhibites etoposide-induced apoptosis through its effects on events subsequent to topoisomerase Ⅱ-induced DNA strand breaks and their repair. Cancer Res. 1993; 53:4251-4256.
    98. Boise L H, Gonzalez-Garcia M, Postema C E, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson C B. Bclx, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597-608.
    99. Dallegri F, Frument G, Partrone F. Mechanism of tumor cell destruction by PMA-activated human neutrophils. Immunology 1983; 48:273-279.
    100. Dizdaroglu M, et al. Ionizing-radiation induced damage in the DNA of culture human cells. Biochem J 1987; 241:929-932.
    101. Rubin R, Farber J. Mechanisms of the killing of cultured hepatocytes by hydrogen peroxide. Arch Biochem Biophys, 1984, 228(2): 450-459.
    1. Mosialou E, Ekstrom G, Adang A E P, Morgenstern R. Evidence that rat liver microsomal glutathione transferase is responsible for glutathione-dependent protection against lipid pcroxidation. Biochem. Pharmacol. 45:1645-1651, 1993.
    2. Keen J H. Jakoby W B. Glutathione transferases. Catalysis of nuclcophilic reaclions of glutathione. J. Biol. Chem. 253: 5654-5657, 1978.
    3. lshigaki S, Abramovitz M. Listowsky, I. Glutathione S-transferases are major cvtosolic thyroid hormone binding proteins. Arch. Biochem. Biophys. 273: 265-272, 1999.
    4. Buetler T M, Ealon D L. Glutathione S-transtferases: amino acid sequence comparison, classification and phyiogenetic relationship. Environ. Carcinogen. Ecotoxicol Revs C10:181-2O3, 1992.
    5. Mannervik B, Awasthi Y C, Board P G, Hayes J D, Di llio C, Ketterer B, Lislowsky I, Morgenstern R, Muramatsu M, Pearson W R, Pickett C B, Sato K, Widersten M. Wolf C R Nomenelature for human glutathione transferases. Biochem. J. 282: 305-306, 1992
    6. Hayes J D, Pulford D J. The glutathione S-transferase supergene family: Rcgulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Critical Reviews in Biochemistry and Molecular Biology. 30(6): 445-600, 1995.
    7. Bass N M, Kirseh R E, Tuff S A, Marks I, Saunders S J. Ligandin heterogeneity: evidence that two non-identical subunits are the monomers of two distinet proteins. Biochim. Biophys. Acta. 492: 163-175, 1977.
    8. DeJong J L, Mohandas T, Tu C-P D. The gene for the microsomal glutathionc S-transferase is on human chromosome 12. Genomics. 6: 379-382, 1990.
    9. Nicholson D W, All A, Vaillancourt J P, Calaycay J R, Mumford R A, Zamboni R J, Ford-Hutchinson A W. Purification to homogeneity and the N-terminal sequence of human leukotriene C_4 synthase: a homodimeric glutathione S-transferase composed of 18-kDa subunits Proc. Nail. Acad. Sci. U. S. A. 90: 2015-2019, 1993.
    10 Tsuchida S, Sato K. Glutathione transferases and cancer. Critical Reviews in Biochemistry and Molccular Biology. 27(4,5): 337-384, 1992.
    11. Spencer S R, Xue L, Klenz E M, Talalay P The potency of inducers of NAD(P)H:(quinone-aeceptor)oxidoreductase parallels their efficiency as substrates for glutathione transferases. Structural and electronic correlations. Biochem. J. 273:711-717, 1991.
    12. McLellan I.I, Harrison D J, Hayes J D. Modulation of glutathione S-transferases and glutathione peroxidase by the anticarcinogen butylated hydroxyanisole in murine extrahcpatic organs. Carcinogenesis. 13: 2255-2261, 1992.
    13. Pearson W R. Windle J J, Morrow J F, Benson A M, Talalay P. Increased synthesis of glutathione S-transferases in response to anticarcinogenic antioxidants Cloning and measurement of messenger RNA. J. Biol. Chem. 258: 2052-2062, 1983.
    14. MeLellan L I, Hayes J D. Differential induction of class alpha glutathione S-transferases in mouse liver by the anticarcinogenic antioxidant, butylated hydroxyanisole. Biochem. J. 263: 393-402. 1989.
    15. Telakowski-Hopkins C A, Rothkopf G S, Pickett C B. Structural analysis of a rat liver glutathione S-transferase Ya gene. Proc. Natl. Acad. Sci. U. S. A. 83: 9393-9397, 1986.
    16. Rothkopf G S, Telakowski-Hopkins C A, Stotish R L, Pickett C B. Multiplicity of glutathione S-transfcrase genes in the rat and association with a type 2 Alu repetitive element. Biochemistry. 25: 993-1002. 1986.
    17. Friling R S, Bensimon A. Tichauer Y, Daniel V. Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-rcsponsive element. Proc. Natl. Acad. Sci. U. S. A. 87: 6258-6262, 1990.
    18. Friling R S. Bergelson S, Daniel V. Two adjacent AP-1-like binding sites form the clcctrophilc- responsive element of the murine glutathionc S-transferase Ya subunit gene. Proc. Natl. Acad. Set. U. S. A. 89: 66-672. 1992
    19. Ding V D-H, Pickett C B. Transeriptional rcgulation of rat liver glutathione S-transferase genes by phenobarbital and 3-methylcholanthrene. Arch. Biochem Biophys. 240: 553-559. 1985.
    20. Telakowski-Hopkins C A, King R G, Pickett C B. Glutathione S-transferase Ya subunit gene: Identification of regulatory elements required for basal level and inducible expression. Proc. Natl. Acad. Sci. U. S A. 85 1000-1004. 1988.
    21. Paulson K E. Darnell J E, Jr. Rushmore T H. Pickett C B. Analysis of the uqstream elements of the xenobiotic compound-inducible and positionally regulated glutathione S-transferase Ya gene Mol. Cell Biol. 10: 1841-1852.1990
    22. Sogawa K. Nakano R. Kobayashi A. Kikuchi Y. Ohe N. Matsuhita N. Fujii-Kuriyama Y. Possible function of Ah receptor nuclear translocator (Arnt)homodimer in transcriptional regulation. Proe. Nall. Acad.Sci. U. S. A 92: 1936-1940. 1995.
    23. Prochaska H J. Talalay P. Regulalory: mechanisms of monofunctional and bifunctional anticarcinogcnic enzyne inducers in murine liver. Cancer Res. 48: 4776-4782. 1988.
    24. Rushmore T H, King R G, Paulson K E. Pickett C B. Regulation of glutathione S-transferase Ya subunit gene expression: Identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds. Proc. Nail. Acad Sci. U. S. A. 87: 3826-3830. 1990.
    25. Rushmore T H. Morton M R, Pickett C B. The antioxidanl responsive element.J Biol. Chem. 266: 11632-11639. 1991.
    26. Nguyen T. Rushmore T H. Pickett C B Transcriptional regulation of a rat liver glutathione S-transferase Ya subunit gene. Analysis of the antioxidanl responese element and its activation by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate. J. Biol. Chem. 269: 13656-13662. 1994.
    27. Daniel V, Bergelson S, Pinkus R. The role of AP-1 transcription factor in the regulation of glutathione S-transferase Ya subunit gene expression by chemical agents, in Structure and Function of Glutathione Transferases, Tew K D, Pickett C B, Mantle T J, Mannervik B, Haves J D, Eds, CRC Press, Boca Raton, F L, 1993, 129-136.
    28. Prestera T, Holtzelaw W D. Zhang Y, Talalay P. Chemical and molecular regnlation of enzymes that detoxify carcinogens. Proc Natl Acad Sci USA, 90: 2965-2969, 1993.
    29. Choi H-S, Moore D D. Induction of c-fos and c-jun gene expression by phenolic antioxidants. Mol. Endocrinol. 7: 1596-1602, 1993.
    30. Yoshioka K, Deng T, Cavigelli M, Karin M. Antitumor promotion by phenolic antioxidants: inhibition of AP-1 activity through induction of Fra expression. Proc. Natl. Acad Sci. U S. A. A. 92: 4972-4976, 1995.
    31. Kerppola T K, Curran T. Maf and Nrl can bind to AP-1 sites and form heterodimers with Fos and Jun. Oncogene. 9: 675-684, 1994.
    32. Xanthoudakis S, Miao G, Wang F, Pan Y-C E, Curran T. Redoxactivation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO. J. 11: 3323-3335, 1992.
    33. Xanthoudakis S, Curran T. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J. 11: 653-665, 1992.
    34. Smeal T, Binetruy B, Mercola D, Grover-Bardwick A, Heidecker G, Rapp U R, Karin M. Oucoproteinmediated signalling cascade stimulates c-Jun activity by phosphorylation,of serines 63 and 73. Mol. Cell. Biol. 12: 3507-3513, 1992.
    35. Seger R, Krebs E G. The MAPK signaling cascade. FASEB J. 9: 726-735, 1995.
    36. Lane B P, Lieber C S. Effects of butylated hydroxytoluene on the ultrastructure of rat hepatocytes. Lab. Invest. 16: 342-348, 1967.
    37. Liang O, He J-S, Fulco A J. The role of barbie box sequences as cis-acting cicments involved in the barbiturate-mediated induction of cytochromes P450BM-1 and P450BM-3 in Bacillus megaterium. J. Biol. Chem 270:4438-4450, 1995.
    38. Pinkus R, Bergelson S. Daniel V. Phenobarbital induction of AP-1 binding activity mediates activation of glutathione S-transferase and quinone reductase gene expression. Biochem. J. 290: 637-640, 1993.
    39. Waxman D J, Sundseth S S, Srivaslava P K, Lapenson D P. Gene-specific oligonucleotide probes for α, μ,π, and microsomal rat glutathione S-transferases: analysis of liver transferase expression and its modulation by hepatic onzyme inducers and platinum anticancer drugs Cancer Res. 5:2: 5797-5802. 1992.
    40. Jantzen H-M. Strahle U. Gloss B. ,Stewart F. Schmid W, Boshart M. Milksicck R. Schutz G Cooperativity of glucocorticoid response elements located far upstream of the tyrosinc aminotransferase gene, Cell 49: 29-38, 1987
    41. Strahle U, Klock G, Schutz G. A DNA sequence of 15 base pairs is sufficient to mediate both glucocorticoid and progesterone induction of gene expression. Proc. Natl. Acad. Sci. U. S. A 84: 7871-7875, 1987.
    42. Fan W, Trifileiti R, Cooper T, Norris J S. Cloning of a μ-class glutathione S-transferase gene and identification of the glucocorticoid regulatory domains in its 5' flanking sequence. Proc. Natl. Acad. Sci. U. S. A 89: 6104-6108. 1992.
    43. Mankowitz L, Staffas L, Bakke M, Lund J. Adrenocorticotrophic-hor-mone-dependcnt regulation of a μ-class glutathione transferase in mouse adrenocortical cells. Biochem.J. 305: 111-118. 1995.
    44. Sugioka Y, Fujii-Kuriyama Y, Kitagawa T, Muramatsu M. Changes in polypeptidc pattern of rat liver cells during chemical hepatocarcinogenesis. Cancer Res. 45: 365-378, 1985.
    45. Okuda A, Sakai M, Muramatsu M. The strueture of the rat glutathione S-transferase P gene and related pseudogenes. J. Biol. Chem. 267: 3858-3863, 1987.
    46. Sakai M, Okuda A, Muramatsu M. Multiple regulatory elements and phorbol 12-0-tetradecanoate 13-acctate responsiveness of the rat placntal glutathione transferase gene Proc Natl. Acad. Sci. U.S. A. 85: 9456-9460. 1988.
    47. Okuda A. Imagawa M, Sakai M, Muramatsu. Funetional cooperalivity between two TPA responsive elements in undiffercntiated F9 embryonic stem cell. EMBO J. 9:1131-1135, 1990.
    48. Diccianni M B, Imagawa M. Muramatsu M. The dyad palindromic glutathione transferase P enhancer binds multiple faclors including AP1, Nucleic Acid Res. 20:5153-5158, 1992
    49. Burt R K, Garfield S. Johnson K, Thorgeirsson S S. Transformation of rat liver epithelial cells with v-H-ras or v-raf causes expression of MDR-1, glutathione S-transferase-P and inereased resistance to cytotoxic chemicals Carcinogenesis 9: 2329-2332, 1988.
    50. Koo P, Nagai M K, Farber E. Multiple sites of control of glutathione S-transferase P1-1 in rat liver. J. Biol. Chem. 269: 14601-14606, 1994
    51. Hatayama I, Yamada Y, Tanaka K, lchihara A, Sato K. Induction of glutathione, S-transferase P-form in primary cultured rat hepatocytes, by epidermal growth factor and insulin. Jpn. J. Cancer Res. 82:807-814, 1991.
    52. Moffat G. J, McLaren A W, Wolf C R. lnvolvement of Jun and Fos prolcins in regulating transcriptional activation of the human pi class glutathionc S-transferasc gene in multidrug-resistant MCF7 breast cancer cells. J. Biol. Chem. 269:16397-16402, 1994.
    53. Xia C, Taylor J B, Spencer S R, Ketterer B. The human glutathione S-transferase P1-1 gene: modulation of expression by, rctinoic acid and insulin. Biochem. J. 292: 845-850, 1993.
    54. Singh S, Aggarwal B B. Proteintyrosine phosphatase inhibitors block tumor necrosis factor-dependent activation of the nuclear trancription factor NF-_κB. J. Biol. Chem. 270: 10631-10639, 1995.
    55. Schccter R L, Woo A, Duong M, Baitst G.In vivo and in vitro mechanisms of drug resistance in a rat mammary carcinoma model. Cancer Res. 51: 1434-1442, 1991.
    56. Smith M J, Evans C G, Donne-Selzer P, Castro V M, Tahir M K, Manncrvik B. Dcnitrosation of 1.3-Bis(2-chloroethyl)-1-nitrosourea by class muglutathione transferases and its rolc in cellular resistance in rat brain tumor cells. Cancer Res. 49:2621-2625, 1989.
    57. Costa R H, Grayson D R. Darnell Jr. J E. Multiple hepatocyleenriched nuclear faclors funtion in the regulation of transthyretin and α1-antitrypsin genes. Mol Cell. Biol. 9:1415-1425.1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700